summaryrefslogtreecommitdiff
path: root/dev-python/astroml
diff options
context:
space:
mode:
authorV3n3RiX <venerix@redcorelinux.org>2017-10-09 18:53:29 +0100
committerV3n3RiX <venerix@redcorelinux.org>2017-10-09 18:53:29 +0100
commit4f2d7949f03e1c198bc888f2d05f421d35c57e21 (patch)
treeba5f07bf3f9d22d82e54a462313f5d244036c768 /dev-python/astroml
reinit the tree, so we can have metadata
Diffstat (limited to 'dev-python/astroml')
-rw-r--r--dev-python/astroml/Manifest4
-rw-r--r--dev-python/astroml/astroml-0.3.ebuild42
-rw-r--r--dev-python/astroml/metadata.xml18
3 files changed, 64 insertions, 0 deletions
diff --git a/dev-python/astroml/Manifest b/dev-python/astroml/Manifest
new file mode 100644
index 000000000000..0880211069a5
--- /dev/null
+++ b/dev-python/astroml/Manifest
@@ -0,0 +1,4 @@
+DIST astroML-0.3.tar.gz 242925 SHA256 ea6d0119593aed0e0dadc79c613ac0bddad95e6f12151237562a4fd67552b2b8 SHA512 7b9c6824ec1c09c35a0e9ea10674c93c7f301a3b15c5104357d9749534b78203c33eaac82c8ec1d1c51bdf30e1408d21002d1d2e7e243aa08c28cc7b1f1ab74a WHIRLPOOL 9f2bcc6bc9e56f7b513d7d5dc1367b3d8b1e1ae6ee4ddf9f8b917ff1f2d3952fd9d7101a876b6b820a7f30a3607997e45d0435c4929085998724c64657867cb7
+EBUILD astroml-0.3.ebuild 971 SHA256 5f73779ef9f659f7c9a14f899d19e8540e1b762be6f0ece90668c0ead391264d SHA512 20c3a938cb703ab3bb4c1c0d4b1696657ada7d36f5d7d674461e3cacb82085a73b17035e8ff05d8c5206cd74ac6c26302eed6fb937fb4856272aeec51cec8e09 WHIRLPOOL 0a5d21d575823e983427b74f6772fbd519009a2f4048d0b644f3a34cdbea78e63d1368836b62f843550fa47c8ae1c149b778b8dae2f132ef01dce8b2cb5ae68b
+MISC ChangeLog 312 SHA256 d4ce36fd239649b30013e91e8223974baa418613cb520d214866a55ff49b2f6a SHA512 cb1d2fe009aef760a62524ac5bda756cb0701b86e29f5a93e689056503f998ea9009b6adde12eb6130d2795e6636288c9906f8eb4b7b51d8127f50daf624f8de WHIRLPOOL be1c58fa6b1e200342b8b57dcc5425abca204e2b02bb50a9f41da59f712573319c627642fccb8128edbda75ff3603726466ed2f5ca6e50cd70410d0a06ee0cb5
+MISC metadata.xml 770 SHA256 7465e54566a245aaa9aa5e5a88c9652653495308a5a41d8a4719589d49f0a6a5 SHA512 b1134c879b3a47608584621255916dd406a1de7f14b4ee4cb4a6e0f241f83dc86e4e48c54075b574e063f569049f0c793293fdb13098d874be75f0860ed0c082 WHIRLPOOL 8139d9b411551fde4d583964be922303dcc87496546ed9966cd7e406a516b7ef35d738e64cabf0de221bc938b10e5920da04770967041aa9512482c2d10803d9
diff --git a/dev-python/astroml/astroml-0.3.ebuild b/dev-python/astroml/astroml-0.3.ebuild
new file mode 100644
index 000000000000..fee62f375ff5
--- /dev/null
+++ b/dev-python/astroml/astroml-0.3.ebuild
@@ -0,0 +1,42 @@
+# Copyright 1999-2016 Gentoo Foundation
+# Distributed under the terms of the GNU General Public License v2
+
+EAPI=6
+PYTHON_COMPAT=( python{2_7,3_4,3_5} )
+
+inherit distutils-r1 virtualx
+
+MYPN=astroML
+MYP=${MYPN}-${PV}
+
+DESCRIPTION="Python Machine Learning library for astronomy"
+HOMEPAGE="http://www.astroml.org/"
+SRC_URI="mirror://pypi/${PN:0:1}/${MYPN}/${MYP}.tar.gz"
+
+LICENSE="BSD"
+SLOT="0"
+KEYWORDS="~amd64 ~x86 ~x86-fbsd ~amd64-linux ~x86-linux"
+IUSE="examples test"
+
+RDEPEND="
+ dev-python/astropy[${PYTHON_USEDEP}]
+ dev-python/matplotlib[${PYTHON_USEDEP}]
+ dev-python/numpy[${PYTHON_USEDEP}]
+ sci-libs/scipy[${PYTHON_USEDEP}]
+ sci-libs/scikits_learn[${PYTHON_USEDEP}]"
+DEPEND="${RDEPEND}
+ test? ( dev-python/nose[${PYTHON_USEDEP}] )"
+
+S="${WORKDIR}/${MYP}"
+
+DOCS=( CHANGES.rst README.rst )
+
+python_test() {
+ virtx nosetests --verbose || die
+}
+
+python_install_all() {
+ distutils-r1_python_install_all
+ insinto /usr/share/doc/${PF}
+ use examples && doins -r examples
+}
diff --git a/dev-python/astroml/metadata.xml b/dev-python/astroml/metadata.xml
new file mode 100644
index 000000000000..ce125c4d77e8
--- /dev/null
+++ b/dev-python/astroml/metadata.xml
@@ -0,0 +1,18 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<!DOCTYPE pkgmetadata SYSTEM "http://www.gentoo.org/dtd/metadata.dtd">
+<pkgmetadata>
+ <maintainer type="project">
+ <email>sci-astronomy@gentoo.org</email>
+ <name>Gentoo Astronomy Project</name>
+ </maintainer>
+ <longdescription lang="en">
+ AstroML is a Python module for machine learning and data mining built on
+ numpy, scipy, scikit-learn, and matplotlib. It contains a growing library of
+ statistical and machine learning routines for analyzing astronomical data in
+ Python, loaders for several open astronomical datasets, and a large suite of
+ examples of analyzing and visualizing astronomical datasets.
+ </longdescription>
+ <upstream>
+ <remote-id type="pypi">astroML</remote-id>
+ </upstream>
+</pkgmetadata>