1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
|
diff -Nur a/arch/powerpc/platforms/cell/spufs/sched.c b/arch/powerpc/platforms/cell/spufs/sched.c
--- a/arch/powerpc/platforms/cell/spufs/sched.c 2018-10-10 07:54:28.000000000 +0100
+++ b/arch/powerpc/platforms/cell/spufs/sched.c 2018-11-03 16:06:32.704528679 +0000
@@ -65,11 +65,6 @@
static struct timer_list spuloadavg_timer;
/*
- * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
- */
-#define NORMAL_PRIO 120
-
-/*
* Frequency of the spu scheduler tick. By default we do one SPU scheduler
* tick for every 10 CPU scheduler ticks.
*/
diff -Nur a/arch/x86/Kconfig b/arch/x86/Kconfig
--- a/arch/x86/Kconfig 2018-11-03 16:00:51.897619785 +0000
+++ b/arch/x86/Kconfig 2018-11-03 16:06:32.705528711 +0000
@@ -963,10 +963,26 @@
depends on SMP
---help---
SMT scheduler support improves the CPU scheduler's decision making
- when dealing with Intel Pentium 4 chips with HyperThreading at a
+ when dealing with Intel P4/Core 2 chips with HyperThreading at a
cost of slightly increased overhead in some places. If unsure say
N here.
+config SMT_NICE
+ bool "SMT (Hyperthreading) aware nice priority and policy support"
+ depends on SCHED_MUQSS && SCHED_SMT
+ default y
+ ---help---
+ Enabling Hyperthreading on Intel CPUs decreases the effectiveness
+ of the use of 'nice' levels and different scheduling policies
+ (e.g. realtime) due to sharing of CPU power between hyperthreads.
+ SMT nice support makes each logical CPU aware of what is running on
+ its hyperthread siblings, maintaining appropriate distribution of
+ CPU according to nice levels and scheduling policies at the expense
+ of slightly increased overhead.
+
+ If unsure say Y here.
+
+
config SCHED_MC
def_bool y
prompt "Multi-core scheduler support"
diff -Nur a/Documentation/scheduler/sched-BFS.txt b/Documentation/scheduler/sched-BFS.txt
--- a/Documentation/scheduler/sched-BFS.txt 1970-01-01 01:00:00.000000000 +0100
+++ b/Documentation/scheduler/sched-BFS.txt 2018-11-03 16:06:32.702528615 +0000
@@ -0,0 +1,351 @@
+BFS - The Brain Fuck Scheduler by Con Kolivas.
+
+Goals.
+
+The goal of the Brain Fuck Scheduler, referred to as BFS from here on, is to
+completely do away with the complex designs of the past for the cpu process
+scheduler and instead implement one that is very simple in basic design.
+The main focus of BFS is to achieve excellent desktop interactivity and
+responsiveness without heuristics and tuning knobs that are difficult to
+understand, impossible to model and predict the effect of, and when tuned to
+one workload cause massive detriment to another.
+
+
+Design summary.
+
+BFS is best described as a single runqueue, O(n) lookup, earliest effective
+virtual deadline first design, loosely based on EEVDF (earliest eligible virtual
+deadline first) and my previous Staircase Deadline scheduler. Each component
+shall be described in order to understand the significance of, and reasoning for
+it. The codebase when the first stable version was released was approximately
+9000 lines less code than the existing mainline linux kernel scheduler (in
+2.6.31). This does not even take into account the removal of documentation and
+the cgroups code that is not used.
+
+Design reasoning.
+
+The single runqueue refers to the queued but not running processes for the
+entire system, regardless of the number of CPUs. The reason for going back to
+a single runqueue design is that once multiple runqueues are introduced,
+per-CPU or otherwise, there will be complex interactions as each runqueue will
+be responsible for the scheduling latency and fairness of the tasks only on its
+own runqueue, and to achieve fairness and low latency across multiple CPUs, any
+advantage in throughput of having CPU local tasks causes other disadvantages.
+This is due to requiring a very complex balancing system to at best achieve some
+semblance of fairness across CPUs and can only maintain relatively low latency
+for tasks bound to the same CPUs, not across them. To increase said fairness
+and latency across CPUs, the advantage of local runqueue locking, which makes
+for better scalability, is lost due to having to grab multiple locks.
+
+A significant feature of BFS is that all accounting is done purely based on CPU
+used and nowhere is sleep time used in any way to determine entitlement or
+interactivity. Interactivity "estimators" that use some kind of sleep/run
+algorithm are doomed to fail to detect all interactive tasks, and to falsely tag
+tasks that aren't interactive as being so. The reason for this is that it is
+close to impossible to determine that when a task is sleeping, whether it is
+doing it voluntarily, as in a userspace application waiting for input in the
+form of a mouse click or otherwise, or involuntarily, because it is waiting for
+another thread, process, I/O, kernel activity or whatever. Thus, such an
+estimator will introduce corner cases, and more heuristics will be required to
+cope with those corner cases, introducing more corner cases and failed
+interactivity detection and so on. Interactivity in BFS is built into the design
+by virtue of the fact that tasks that are waking up have not used up their quota
+of CPU time, and have earlier effective deadlines, thereby making it very likely
+they will preempt any CPU bound task of equivalent nice level. See below for
+more information on the virtual deadline mechanism. Even if they do not preempt
+a running task, because the rr interval is guaranteed to have a bound upper
+limit on how long a task will wait for, it will be scheduled within a timeframe
+that will not cause visible interface jitter.
+
+
+Design details.
+
+Task insertion.
+
+BFS inserts tasks into each relevant queue as an O(1) insertion into a double
+linked list. On insertion, *every* running queue is checked to see if the newly
+queued task can run on any idle queue, or preempt the lowest running task on the
+system. This is how the cross-CPU scheduling of BFS achieves significantly lower
+latency per extra CPU the system has. In this case the lookup is, in the worst
+case scenario, O(n) where n is the number of CPUs on the system.
+
+Data protection.
+
+BFS has one single lock protecting the process local data of every task in the
+global queue. Thus every insertion, removal and modification of task data in the
+global runqueue needs to grab the global lock. However, once a task is taken by
+a CPU, the CPU has its own local data copy of the running process' accounting
+information which only that CPU accesses and modifies (such as during a
+timer tick) thus allowing the accounting data to be updated lockless. Once a
+CPU has taken a task to run, it removes it from the global queue. Thus the
+global queue only ever has, at most,
+
+ (number of tasks requesting cpu time) - (number of logical CPUs) + 1
+
+tasks in the global queue. This value is relevant for the time taken to look up
+tasks during scheduling. This will increase if many tasks with CPU affinity set
+in their policy to limit which CPUs they're allowed to run on if they outnumber
+the number of CPUs. The +1 is because when rescheduling a task, the CPU's
+currently running task is put back on the queue. Lookup will be described after
+the virtual deadline mechanism is explained.
+
+Virtual deadline.
+
+The key to achieving low latency, scheduling fairness, and "nice level"
+distribution in BFS is entirely in the virtual deadline mechanism. The one
+tunable in BFS is the rr_interval, or "round robin interval". This is the
+maximum time two SCHED_OTHER (or SCHED_NORMAL, the common scheduling policy)
+tasks of the same nice level will be running for, or looking at it the other
+way around, the longest duration two tasks of the same nice level will be
+delayed for. When a task requests cpu time, it is given a quota (time_slice)
+equal to the rr_interval and a virtual deadline. The virtual deadline is
+offset from the current time in jiffies by this equation:
+
+ jiffies + (prio_ratio * rr_interval)
+
+The prio_ratio is determined as a ratio compared to the baseline of nice -20
+and increases by 10% per nice level. The deadline is a virtual one only in that
+no guarantee is placed that a task will actually be scheduled by this time, but
+it is used to compare which task should go next. There are three components to
+how a task is next chosen. First is time_slice expiration. If a task runs out
+of its time_slice, it is descheduled, the time_slice is refilled, and the
+deadline reset to that formula above. Second is sleep, where a task no longer
+is requesting CPU for whatever reason. The time_slice and deadline are _not_
+adjusted in this case and are just carried over for when the task is next
+scheduled. Third is preemption, and that is when a newly waking task is deemed
+higher priority than a currently running task on any cpu by virtue of the fact
+that it has an earlier virtual deadline than the currently running task. The
+earlier deadline is the key to which task is next chosen for the first and
+second cases. Once a task is descheduled, it is put back on the queue, and an
+O(n) lookup of all queued-but-not-running tasks is done to determine which has
+the earliest deadline and that task is chosen to receive CPU next.
+
+The CPU proportion of different nice tasks works out to be approximately the
+
+ (prio_ratio difference)^2
+
+The reason it is squared is that a task's deadline does not change while it is
+running unless it runs out of time_slice. Thus, even if the time actually
+passes the deadline of another task that is queued, it will not get CPU time
+unless the current running task deschedules, and the time "base" (jiffies) is
+constantly moving.
+
+Task lookup.
+
+BFS has 103 priority queues. 100 of these are dedicated to the static priority
+of realtime tasks, and the remaining 3 are, in order of best to worst priority,
+SCHED_ISO (isochronous), SCHED_NORMAL, and SCHED_IDLEPRIO (idle priority
+scheduling). When a task of these priorities is queued, a bitmap of running
+priorities is set showing which of these priorities has tasks waiting for CPU
+time. When a CPU is made to reschedule, the lookup for the next task to get
+CPU time is performed in the following way:
+
+First the bitmap is checked to see what static priority tasks are queued. If
+any realtime priorities are found, the corresponding queue is checked and the
+first task listed there is taken (provided CPU affinity is suitable) and lookup
+is complete. If the priority corresponds to a SCHED_ISO task, they are also
+taken in FIFO order (as they behave like SCHED_RR). If the priority corresponds
+to either SCHED_NORMAL or SCHED_IDLEPRIO, then the lookup becomes O(n). At this
+stage, every task in the runlist that corresponds to that priority is checked
+to see which has the earliest set deadline, and (provided it has suitable CPU
+affinity) it is taken off the runqueue and given the CPU. If a task has an
+expired deadline, it is taken and the rest of the lookup aborted (as they are
+chosen in FIFO order).
+
+Thus, the lookup is O(n) in the worst case only, where n is as described
+earlier, as tasks may be chosen before the whole task list is looked over.
+
+
+Scalability.
+
+The major limitations of BFS will be that of scalability, as the separate
+runqueue designs will have less lock contention as the number of CPUs rises.
+However they do not scale linearly even with separate runqueues as multiple
+runqueues will need to be locked concurrently on such designs to be able to
+achieve fair CPU balancing, to try and achieve some sort of nice-level fairness
+across CPUs, and to achieve low enough latency for tasks on a busy CPU when
+other CPUs would be more suited. BFS has the advantage that it requires no
+balancing algorithm whatsoever, as balancing occurs by proxy simply because
+all CPUs draw off the global runqueue, in priority and deadline order. Despite
+the fact that scalability is _not_ the prime concern of BFS, it both shows very
+good scalability to smaller numbers of CPUs and is likely a more scalable design
+at these numbers of CPUs.
+
+It also has some very low overhead scalability features built into the design
+when it has been deemed their overhead is so marginal that they're worth adding.
+The first is the local copy of the running process' data to the CPU it's running
+on to allow that data to be updated lockless where possible. Then there is
+deference paid to the last CPU a task was running on, by trying that CPU first
+when looking for an idle CPU to use the next time it's scheduled. Finally there
+is the notion of cache locality beyond the last running CPU. The sched_domains
+information is used to determine the relative virtual "cache distance" that
+other CPUs have from the last CPU a task was running on. CPUs with shared
+caches, such as SMT siblings, or multicore CPUs with shared caches, are treated
+as cache local. CPUs without shared caches are treated as not cache local, and
+CPUs on different NUMA nodes are treated as very distant. This "relative cache
+distance" is used by modifying the virtual deadline value when doing lookups.
+Effectively, the deadline is unaltered between "cache local" CPUs, doubled for
+"cache distant" CPUs, and quadrupled for "very distant" CPUs. The reasoning
+behind the doubling of deadlines is as follows. The real cost of migrating a
+task from one CPU to another is entirely dependant on the cache footprint of
+the task, how cache intensive the task is, how long it's been running on that
+CPU to take up the bulk of its cache, how big the CPU cache is, how fast and
+how layered the CPU cache is, how fast a context switch is... and so on. In
+other words, it's close to random in the real world where we do more than just
+one sole workload. The only thing we can be sure of is that it's not free. So
+BFS uses the principle that an idle CPU is a wasted CPU and utilising idle CPUs
+is more important than cache locality, and cache locality only plays a part
+after that. Doubling the effective deadline is based on the premise that the
+"cache local" CPUs will tend to work on the same tasks up to double the number
+of cache local CPUs, and once the workload is beyond that amount, it is likely
+that none of the tasks are cache warm anywhere anyway. The quadrupling for NUMA
+is a value I pulled out of my arse.
+
+When choosing an idle CPU for a waking task, the cache locality is determined
+according to where the task last ran and then idle CPUs are ranked from best
+to worst to choose the most suitable idle CPU based on cache locality, NUMA
+node locality and hyperthread sibling business. They are chosen in the
+following preference (if idle):
+
+* Same core, idle or busy cache, idle threads
+* Other core, same cache, idle or busy cache, idle threads.
+* Same node, other CPU, idle cache, idle threads.
+* Same node, other CPU, busy cache, idle threads.
+* Same core, busy threads.
+* Other core, same cache, busy threads.
+* Same node, other CPU, busy threads.
+* Other node, other CPU, idle cache, idle threads.
+* Other node, other CPU, busy cache, idle threads.
+* Other node, other CPU, busy threads.
+
+This shows the SMT or "hyperthread" awareness in the design as well which will
+choose a real idle core first before a logical SMT sibling which already has
+tasks on the physical CPU.
+
+Early benchmarking of BFS suggested scalability dropped off at the 16 CPU mark.
+However this benchmarking was performed on an earlier design that was far less
+scalable than the current one so it's hard to know how scalable it is in terms
+of both CPUs (due to the global runqueue) and heavily loaded machines (due to
+O(n) lookup) at this stage. Note that in terms of scalability, the number of
+_logical_ CPUs matters, not the number of _physical_ CPUs. Thus, a dual (2x)
+quad core (4X) hyperthreaded (2X) machine is effectively a 16X. Newer benchmark
+results are very promising indeed, without needing to tweak any knobs, features
+or options. Benchmark contributions are most welcome.
+
+
+Features
+
+As the initial prime target audience for BFS was the average desktop user, it
+was designed to not need tweaking, tuning or have features set to obtain benefit
+from it. Thus the number of knobs and features has been kept to an absolute
+minimum and should not require extra user input for the vast majority of cases.
+There are precisely 2 tunables, and 2 extra scheduling policies. The rr_interval
+and iso_cpu tunables, and the SCHED_ISO and SCHED_IDLEPRIO policies. In addition
+to this, BFS also uses sub-tick accounting. What BFS does _not_ now feature is
+support for CGROUPS. The average user should neither need to know what these
+are, nor should they need to be using them to have good desktop behaviour.
+
+rr_interval
+
+There is only one "scheduler" tunable, the round robin interval. This can be
+accessed in
+
+ /proc/sys/kernel/rr_interval
+
+The value is in milliseconds, and the default value is set to 6 on a
+uniprocessor machine, and automatically set to a progressively higher value on
+multiprocessor machines. The reasoning behind increasing the value on more CPUs
+is that the effective latency is decreased by virtue of there being more CPUs on
+BFS (for reasons explained above), and increasing the value allows for less
+cache contention and more throughput. Valid values are from 1 to 1000
+Decreasing the value will decrease latencies at the cost of decreasing
+throughput, while increasing it will improve throughput, but at the cost of
+worsening latencies. The accuracy of the rr interval is limited by HZ resolution
+of the kernel configuration. Thus, the worst case latencies are usually slightly
+higher than this actual value. The default value of 6 is not an arbitrary one.
+It is based on the fact that humans can detect jitter at approximately 7ms, so
+aiming for much lower latencies is pointless under most circumstances. It is
+worth noting this fact when comparing the latency performance of BFS to other
+schedulers. Worst case latencies being higher than 7ms are far worse than
+average latencies not being in the microsecond range.
+
+Isochronous scheduling.
+
+Isochronous scheduling is a unique scheduling policy designed to provide
+near-real-time performance to unprivileged (ie non-root) users without the
+ability to starve the machine indefinitely. Isochronous tasks (which means
+"same time") are set using, for example, the schedtool application like so:
+
+ schedtool -I -e amarok
+
+This will start the audio application "amarok" as SCHED_ISO. How SCHED_ISO works
+is that it has a priority level between true realtime tasks and SCHED_NORMAL
+which would allow them to preempt all normal tasks, in a SCHED_RR fashion (ie,
+if multiple SCHED_ISO tasks are running, they purely round robin at rr_interval
+rate). However if ISO tasks run for more than a tunable finite amount of time,
+they are then demoted back to SCHED_NORMAL scheduling. This finite amount of
+time is the percentage of _total CPU_ available across the machine, configurable
+as a percentage in the following "resource handling" tunable (as opposed to a
+scheduler tunable):
+
+ /proc/sys/kernel/iso_cpu
+
+and is set to 70% by default. It is calculated over a rolling 5 second average
+Because it is the total CPU available, it means that on a multi CPU machine, it
+is possible to have an ISO task running as realtime scheduling indefinitely on
+just one CPU, as the other CPUs will be available. Setting this to 100 is the
+equivalent of giving all users SCHED_RR access and setting it to 0 removes the
+ability to run any pseudo-realtime tasks.
+
+A feature of BFS is that it detects when an application tries to obtain a
+realtime policy (SCHED_RR or SCHED_FIFO) and the caller does not have the
+appropriate privileges to use those policies. When it detects this, it will
+give the task SCHED_ISO policy instead. Thus it is transparent to the user.
+Because some applications constantly set their policy as well as their nice
+level, there is potential for them to undo the override specified by the user
+on the command line of setting the policy to SCHED_ISO. To counter this, once
+a task has been set to SCHED_ISO policy, it needs superuser privileges to set
+it back to SCHED_NORMAL. This will ensure the task remains ISO and all child
+processes and threads will also inherit the ISO policy.
+
+Idleprio scheduling.
+
+Idleprio scheduling is a scheduling policy designed to give out CPU to a task
+_only_ when the CPU would be otherwise idle. The idea behind this is to allow
+ultra low priority tasks to be run in the background that have virtually no
+effect on the foreground tasks. This is ideally suited to distributed computing
+clients (like setiathome, folding, mprime etc) but can also be used to start
+a video encode or so on without any slowdown of other tasks. To avoid this
+policy from grabbing shared resources and holding them indefinitely, if it
+detects a state where the task is waiting on I/O, the machine is about to
+suspend to ram and so on, it will transiently schedule them as SCHED_NORMAL. As
+per the Isochronous task management, once a task has been scheduled as IDLEPRIO,
+it cannot be put back to SCHED_NORMAL without superuser privileges. Tasks can
+be set to start as SCHED_IDLEPRIO with the schedtool command like so:
+
+ schedtool -D -e ./mprime
+
+Subtick accounting.
+
+It is surprisingly difficult to get accurate CPU accounting, and in many cases,
+the accounting is done by simply determining what is happening at the precise
+moment a timer tick fires off. This becomes increasingly inaccurate as the
+timer tick frequency (HZ) is lowered. It is possible to create an application
+which uses almost 100% CPU, yet by being descheduled at the right time, records
+zero CPU usage. While the main problem with this is that there are possible
+security implications, it is also difficult to determine how much CPU a task
+really does use. BFS tries to use the sub-tick accounting from the TSC clock,
+where possible, to determine real CPU usage. This is not entirely reliable, but
+is far more likely to produce accurate CPU usage data than the existing designs
+and will not show tasks as consuming no CPU usage when they actually are. Thus,
+the amount of CPU reported as being used by BFS will more accurately represent
+how much CPU the task itself is using (as is shown for example by the 'time'
+application), so the reported values may be quite different to other schedulers.
+Values reported as the 'load' are more prone to problems with this design, but
+per process values are closer to real usage. When comparing throughput of BFS
+to other designs, it is important to compare the actual completed work in terms
+of total wall clock time taken and total work done, rather than the reported
+"cpu usage".
+
+
+Con Kolivas <kernel@kolivas.org> Fri Aug 27 2010
diff -Nur a/Documentation/scheduler/sched-MuQSS.txt b/Documentation/scheduler/sched-MuQSS.txt
--- a/Documentation/scheduler/sched-MuQSS.txt 1970-01-01 01:00:00.000000000 +0100
+++ b/Documentation/scheduler/sched-MuQSS.txt 2018-11-03 16:06:32.702528615 +0000
@@ -0,0 +1,347 @@
+MuQSS - The Multiple Queue Skiplist Scheduler by Con Kolivas.
+
+MuQSS is a per-cpu runqueue variant of the original BFS scheduler with
+one 8 level skiplist per runqueue, and fine grained locking for much more
+scalability.
+
+
+Goals.
+
+The goal of the Multiple Queue Skiplist Scheduler, referred to as MuQSS from
+here on (pronounced mux) is to completely do away with the complex designs of
+the past for the cpu process scheduler and instead implement one that is very
+simple in basic design. The main focus of MuQSS is to achieve excellent desktop
+interactivity and responsiveness without heuristics and tuning knobs that are
+difficult to understand, impossible to model and predict the effect of, and when
+tuned to one workload cause massive detriment to another, while still being
+scalable to many CPUs and processes.
+
+
+Design summary.
+
+MuQSS is best described as per-cpu multiple runqueue, O(log n) insertion, O(1)
+lookup, earliest effective virtual deadline first tickless design, loosely based
+on EEVDF (earliest eligible virtual deadline first) and my previous Staircase
+Deadline scheduler, and evolved from the single runqueue O(n) BFS scheduler.
+Each component shall be described in order to understand the significance of,
+and reasoning for it.
+
+
+Design reasoning.
+
+In BFS, the use of a single runqueue across all CPUs meant that each CPU would
+need to scan the entire runqueue looking for the process with the earliest
+deadline and schedule that next, regardless of which CPU it originally came
+from. This made BFS deterministic with respect to latency and provided
+guaranteed latencies dependent on number of processes and CPUs. The single
+runqueue, however, meant that all CPUs would compete for the single lock
+protecting it, which would lead to increasing lock contention as the number of
+CPUs rose and appeared to limit scalability of common workloads beyond 16
+logical CPUs. Additionally, the O(n) lookup of the runqueue list obviously
+increased overhead proportionate to the number of queued proecesses and led to
+cache thrashing while iterating over the linked list.
+
+MuQSS is an evolution of BFS, designed to maintain the same scheduling
+decision mechanism and be virtually deterministic without relying on the
+constrained design of the single runqueue by splitting out the single runqueue
+to be per-CPU and use skiplists instead of linked lists.
+
+The original reason for going back to a single runqueue design for BFS was that
+once multiple runqueues are introduced, per-CPU or otherwise, there will be
+complex interactions as each runqueue will be responsible for the scheduling
+latency and fairness of the tasks only on its own runqueue, and to achieve
+fairness and low latency across multiple CPUs, any advantage in throughput of
+having CPU local tasks causes other disadvantages. This is due to requiring a
+very complex balancing system to at best achieve some semblance of fairness
+across CPUs and can only maintain relatively low latency for tasks bound to the
+same CPUs, not across them. To increase said fairness and latency across CPUs,
+the advantage of local runqueue locking, which makes for better scalability, is
+lost due to having to grab multiple locks.
+
+MuQSS works around the problems inherent in multiple runqueue designs by
+making its skip lists priority ordered and through novel use of lockless
+examination of each other runqueue it can decide if it should take the earliest
+deadline task from another runqueue for latency reasons, or for CPU balancing
+reasons. It still does not have a balancing system, choosing to allow the
+next task scheduling decision and task wakeup CPU choice to allow balancing to
+happen by virtue of its choices.
+
+
+Design details.
+
+Custom skip list implementation:
+
+To avoid the overhead of building up and tearing down skip list structures,
+the variant used by MuQSS has a number of optimisations making it specific for
+its use case in the scheduler. It uses static arrays of 8 'levels' instead of
+building up and tearing down structures dynamically. This makes each runqueue
+only scale O(log N) up to 64k tasks. However as there is one runqueue per CPU
+it means that it scales O(log N) up to 64k x number of logical CPUs which is
+far beyond the realistic task limits each CPU could handle. By being 8 levels
+it also makes the array exactly one cacheline in size. Additionally, each
+skip list node is bidirectional making insertion and removal amortised O(1),
+being O(k) where k is 1-8. Uniquely, we are only ever interested in the very
+first entry in each list at all times with MuQSS, so there is never a need to
+do a search and thus look up is always O(1). In interactive mode, the queues
+will be searched beyond their first entry if the first task is not suitable
+for affinity or SMT nice reasons.
+
+Task insertion:
+
+MuQSS inserts tasks into a per CPU runqueue as an O(log N) insertion into
+a custom skip list as described above (based on the original design by William
+Pugh). Insertion is ordered in such a way that there is never a need to do a
+search by ordering tasks according to static priority primarily, and then
+virtual deadline at the time of insertion.
+
+Niffies:
+
+Niffies are a monotonic forward moving timer not unlike the "jiffies" but are
+of nanosecond resolution. Niffies are calculated per-runqueue from the high
+resolution TSC timers, and in order to maintain fairness are synchronised
+between CPUs whenever both runqueues are locked concurrently.
+
+Virtual deadline:
+
+The key to achieving low latency, scheduling fairness, and "nice level"
+distribution in MuQSS is entirely in the virtual deadline mechanism. The one
+tunable in MuQSS is the rr_interval, or "round robin interval". This is the
+maximum time two SCHED_OTHER (or SCHED_NORMAL, the common scheduling policy)
+tasks of the same nice level will be running for, or looking at it the other
+way around, the longest duration two tasks of the same nice level will be
+delayed for. When a task requests cpu time, it is given a quota (time_slice)
+equal to the rr_interval and a virtual deadline. The virtual deadline is
+offset from the current time in niffies by this equation:
+
+ niffies + (prio_ratio * rr_interval)
+
+The prio_ratio is determined as a ratio compared to the baseline of nice -20
+and increases by 10% per nice level. The deadline is a virtual one only in that
+no guarantee is placed that a task will actually be scheduled by this time, but
+it is used to compare which task should go next. There are three components to
+how a task is next chosen. First is time_slice expiration. If a task runs out
+of its time_slice, it is descheduled, the time_slice is refilled, and the
+deadline reset to that formula above. Second is sleep, where a task no longer
+is requesting CPU for whatever reason. The time_slice and deadline are _not_
+adjusted in this case and are just carried over for when the task is next
+scheduled. Third is preemption, and that is when a newly waking task is deemed
+higher priority than a currently running task on any cpu by virtue of the fact
+that it has an earlier virtual deadline than the currently running task. The
+earlier deadline is the key to which task is next chosen for the first and
+second cases.
+
+The CPU proportion of different nice tasks works out to be approximately the
+
+ (prio_ratio difference)^2
+
+The reason it is squared is that a task's deadline does not change while it is
+running unless it runs out of time_slice. Thus, even if the time actually
+passes the deadline of another task that is queued, it will not get CPU time
+unless the current running task deschedules, and the time "base" (niffies) is
+constantly moving.
+
+Task lookup:
+
+As tasks are already pre-ordered according to anticipated scheduling order in
+the skip lists, lookup for the next suitable task per-runqueue is always a
+matter of simply selecting the first task in the 0th level skip list entry.
+In order to maintain optimal latency and fairness across CPUs, MuQSS does a
+novel examination of every other runqueue in cache locality order, choosing the
+best task across all runqueues. This provides near-determinism of how long any
+task across the entire system may wait before receiving CPU time. The other
+runqueues are first examine lockless and then trylocked to minimise the
+potential lock contention if they are likely to have a suitable better task.
+Each other runqueue lock is only held for as long as it takes to examine the
+entry for suitability. In "interactive" mode, the default setting, MuQSS will
+look for the best deadline task across all CPUs, while in !interactive mode,
+it will only select a better deadline task from another CPU if it is more
+heavily laden than the current one.
+
+Lookup is therefore O(k) where k is number of CPUs.
+
+
+Latency.
+
+Through the use of virtual deadlines to govern the scheduling order of normal
+tasks, queue-to-activation latency per runqueue is guaranteed to be bound by
+the rr_interval tunable which is set to 6ms by default. This means that the
+longest a CPU bound task will wait for more CPU is proportional to the number
+of running tasks and in the common case of 0-2 running tasks per CPU, will be
+under the 7ms threshold for human perception of jitter. Additionally, as newly
+woken tasks will have an early deadline from their previous runtime, the very
+tasks that are usually latency sensitive will have the shortest interval for
+activation, usually preempting any existing CPU bound tasks.
+
+Tickless expiry:
+
+A feature of MuQSS is that it is not tied to the resolution of the chosen tick
+rate in Hz, instead depending entirely on the high resolution timers where
+possible for sub-millisecond accuracy on timeouts regarless of the underlying
+tick rate. This allows MuQSS to be run with the low overhead of low Hz rates
+such as 100 by default, benefiting from the improved throughput and lower
+power usage it provides. Another advantage of this approach is that in
+combination with the Full No HZ option, which disables ticks on running task
+CPUs instead of just idle CPUs, the tick can be disabled at all times
+regardless of how many tasks are running instead of being limited to just one
+running task. Note that this option is NOT recommended for regular desktop
+users.
+
+
+Scalability and balancing.
+
+Unlike traditional approaches where balancing is a combination of CPU selection
+at task wakeup and intermittent balancing based on a vast array of rules set
+according to architecture, busyness calculations and special case management,
+MuQSS indirectly balances on the fly at task wakeup and next task selection.
+During initialisation, MuQSS creates a cache coherency ordered list of CPUs for
+each logical CPU and uses this to aid task/CPU selection when CPUs are busy.
+Additionally it selects any idle CPUs, if they are available, at any time over
+busy CPUs according to the following preference:
+
+ * Same thread, idle or busy cache, idle or busy threads
+ * Other core, same cache, idle or busy cache, idle threads.
+ * Same node, other CPU, idle cache, idle threads.
+ * Same node, other CPU, busy cache, idle threads.
+ * Other core, same cache, busy threads.
+ * Same node, other CPU, busy threads.
+ * Other node, other CPU, idle cache, idle threads.
+ * Other node, other CPU, busy cache, idle threads.
+ * Other node, other CPU, busy threads.
+
+Mux is therefore SMT, MC and Numa aware without the need for extra
+intermittent balancing to maintain CPUs busy and make the most of cache
+coherency.
+
+
+Features
+
+As the initial prime target audience for MuQSS was the average desktop user, it
+was designed to not need tweaking, tuning or have features set to obtain benefit
+from it. Thus the number of knobs and features has been kept to an absolute
+minimum and should not require extra user input for the vast majority of cases.
+There are 3 optional tunables, and 2 extra scheduling policies. The rr_interval,
+interactive, and iso_cpu tunables, and the SCHED_ISO and SCHED_IDLEPRIO
+policies. In addition to this, MuQSS also uses sub-tick accounting. What MuQSS
+does _not_ now feature is support for CGROUPS. The average user should neither
+need to know what these are, nor should they need to be using them to have good
+desktop behaviour. However since some applications refuse to work without
+cgroups, one can enable them with MuQSS as a stub and the filesystem will be
+created which will allow the applications to work.
+
+rr_interval:
+
+ /proc/sys/kernel/rr_interval
+
+The value is in milliseconds, and the default value is set to 6. Valid values
+are from 1 to 1000 Decreasing the value will decrease latencies at the cost of
+decreasing throughput, while increasing it will improve throughput, but at the
+cost of worsening latencies. It is based on the fact that humans can detect
+jitter at approximately 7ms, so aiming for much lower latencies is pointless
+under most circumstances. It is worth noting this fact when comparing the
+latency performance of MuQSS to other schedulers. Worst case latencies being
+higher than 7ms are far worse than average latencies not being in the
+microsecond range.
+
+interactive:
+
+ /proc/sys/kernel/interactive
+
+The value is a simple boolean of 1 for on and 0 for off and is set to on by
+default. Disabling this will disable the near-determinism of MuQSS when
+selecting the next task by not examining all CPUs for the earliest deadline
+task, or which CPU to wake to, instead prioritising CPU balancing for improved
+throughput. Latency will still be bound by rr_interval, but on a per-CPU basis
+instead of across the whole system.
+
+Isochronous scheduling:
+
+Isochronous scheduling is a unique scheduling policy designed to provide
+near-real-time performance to unprivileged (ie non-root) users without the
+ability to starve the machine indefinitely. Isochronous tasks (which means
+"same time") are set using, for example, the schedtool application like so:
+
+ schedtool -I -e amarok
+
+This will start the audio application "amarok" as SCHED_ISO. How SCHED_ISO works
+is that it has a priority level between true realtime tasks and SCHED_NORMAL
+which would allow them to preempt all normal tasks, in a SCHED_RR fashion (ie,
+if multiple SCHED_ISO tasks are running, they purely round robin at rr_interval
+rate). However if ISO tasks run for more than a tunable finite amount of time,
+they are then demoted back to SCHED_NORMAL scheduling. This finite amount of
+time is the percentage of CPU available per CPU, configurable as a percentage in
+the following "resource handling" tunable (as opposed to a scheduler tunable):
+
+iso_cpu:
+
+ /proc/sys/kernel/iso_cpu
+
+and is set to 70% by default. It is calculated over a rolling 5 second average
+Because it is the total CPU available, it means that on a multi CPU machine, it
+is possible to have an ISO task running as realtime scheduling indefinitely on
+just one CPU, as the other CPUs will be available. Setting this to 100 is the
+equivalent of giving all users SCHED_RR access and setting it to 0 removes the
+ability to run any pseudo-realtime tasks.
+
+A feature of MuQSS is that it detects when an application tries to obtain a
+realtime policy (SCHED_RR or SCHED_FIFO) and the caller does not have the
+appropriate privileges to use those policies. When it detects this, it will
+give the task SCHED_ISO policy instead. Thus it is transparent to the user.
+
+
+Idleprio scheduling:
+
+Idleprio scheduling is a scheduling policy designed to give out CPU to a task
+_only_ when the CPU would be otherwise idle. The idea behind this is to allow
+ultra low priority tasks to be run in the background that have virtually no
+effect on the foreground tasks. This is ideally suited to distributed computing
+clients (like setiathome, folding, mprime etc) but can also be used to start a
+video encode or so on without any slowdown of other tasks. To avoid this policy
+from grabbing shared resources and holding them indefinitely, if it detects a
+state where the task is waiting on I/O, the machine is about to suspend to ram
+and so on, it will transiently schedule them as SCHED_NORMAL. Once a task has
+been scheduled as IDLEPRIO, it cannot be put back to SCHED_NORMAL without
+superuser privileges since it is effectively a lower scheduling policy. Tasks
+can be set to start as SCHED_IDLEPRIO with the schedtool command like so:
+
+schedtool -D -e ./mprime
+
+Subtick accounting:
+
+It is surprisingly difficult to get accurate CPU accounting, and in many cases,
+the accounting is done by simply determining what is happening at the precise
+moment a timer tick fires off. This becomes increasingly inaccurate as the timer
+tick frequency (HZ) is lowered. It is possible to create an application which
+uses almost 100% CPU, yet by being descheduled at the right time, records zero
+CPU usage. While the main problem with this is that there are possible security
+implications, it is also difficult to determine how much CPU a task really does
+use. Mux uses sub-tick accounting from the TSC clock to determine real CPU
+usage. Thus, the amount of CPU reported as being used by MuQSS will more
+accurately represent how much CPU the task itself is using (as is shown for
+example by the 'time' application), so the reported values may be quite
+different to other schedulers. When comparing throughput of MuQSS to other
+designs, it is important to compare the actual completed work in terms of total
+wall clock time taken and total work done, rather than the reported "cpu usage".
+
+Symmetric MultiThreading (SMT) aware nice:
+
+SMT, a.k.a. hyperthreading, is a very common feature on modern CPUs. While the
+logical CPU count rises by adding thread units to each CPU core, allowing more
+than one task to be run simultaneously on the same core, the disadvantage of it
+is that the CPU power is shared between the tasks, not summating to the power
+of two CPUs. The practical upshot of this is that two tasks running on
+separate threads of the same core run significantly slower than if they had one
+core each to run on. While smart CPU selection allows each task to have a core
+to itself whenever available (as is done on MuQSS), it cannot offset the
+slowdown that occurs when the cores are all loaded and only a thread is left.
+Most of the time this is harmless as the CPU is effectively overloaded at this
+point and the extra thread is of benefit. However when running a niced task in
+the presence of an un-niced task (say nice 19 v nice 0), the nice task gets
+precisely the same amount of CPU power as the unniced one. MuQSS has an
+optional configuration feature known as SMT-NICE which selectively idles the
+secondary niced thread for a period proportional to the nice difference,
+allowing CPU distribution according to nice level to be maintained, at the
+expense of a small amount of extra overhead. If this is configured in on a
+machine without SMT threads, the overhead is minimal.
+
+
+Con Kolivas <kernel@kolivas.org> Sat, 29th October 2016
diff -Nur a/Documentation/sysctl/kernel.txt b/Documentation/sysctl/kernel.txt
--- a/Documentation/sysctl/kernel.txt 2018-11-03 16:00:51.893619657 +0000
+++ b/Documentation/sysctl/kernel.txt 2018-11-03 16:06:32.703528647 +0000
@@ -39,6 +39,7 @@
- hung_task_timeout_secs
- hung_task_warnings
- kexec_load_disabled
+- iso_cpu
- kptr_restrict
- l2cr [ PPC only ]
- modprobe ==> Documentation/debugging-modules.txt
@@ -73,6 +74,7 @@
- randomize_va_space
- real-root-dev ==> Documentation/admin-guide/initrd.rst
- reboot-cmd [ SPARC only ]
+- rr_interval
- rtsig-max
- rtsig-nr
- seccomp/ ==> Documentation/userspace-api/seccomp_filter.rst
@@ -95,6 +97,7 @@
- unknown_nmi_panic
- watchdog
- watchdog_thresh
+- yield_type
- version
==============================================================
@@ -397,6 +400,16 @@
==============================================================
+iso_cpu: (MuQSS CPU scheduler only).
+
+This sets the percentage cpu that the unprivileged SCHED_ISO tasks can
+run effectively at realtime priority, averaged over a rolling five
+seconds over the -whole- system, meaning all cpus.
+
+Set to 70 (percent) by default.
+
+==============================================================
+
l2cr: (PPC only)
This flag controls the L2 cache of G3 processor boards. If
@@ -823,6 +836,20 @@
==============================================================
+rr_interval: (MuQSS CPU scheduler only)
+
+This is the smallest duration that any cpu process scheduling unit
+will run for. Increasing this value can increase throughput of cpu
+bound tasks substantially but at the expense of increased latencies
+overall. Conversely decreasing it will decrease average and maximum
+latencies but at the expense of throughput. This value is in
+milliseconds and the default value chosen depends on the number of
+cpus available at scheduler initialisation with a minimum of 6.
+
+Valid values are from 1-1000.
+
+==============================================================
+
rtsig-max & rtsig-nr:
The file rtsig-max can be used to tune the maximum number
@@ -1081,3 +1108,13 @@
tunable to zero will disable lockup detection altogether.
==============================================================
+
+yield_type: (MuQSS CPU scheduler only)
+
+This determines what type of yield calls to sched_yield will perform.
+
+ 0: No yield.
+ 1: Yield only to better priority/deadline tasks. (default)
+ 2: Expire timeslice and recalculate deadline.
+
+==============================================================
diff -Nur a/fs/proc/base.c b/fs/proc/base.c
--- a/fs/proc/base.c 2018-10-10 07:54:28.000000000 +0100
+++ b/fs/proc/base.c 2018-11-03 16:06:32.706528743 +0000
@@ -481,7 +481,7 @@
seq_printf(m, "0 0 0\n");
else
seq_printf(m, "%llu %llu %lu\n",
- (unsigned long long)task->se.sum_exec_runtime,
+ (unsigned long long)tsk_seruntime(task),
(unsigned long long)task->sched_info.run_delay,
task->sched_info.pcount);
diff -Nur a/include/linux/init_task.h b/include/linux/init_task.h
--- a/include/linux/init_task.h 2018-10-10 07:54:28.000000000 +0100
+++ b/include/linux/init_task.h 2018-11-03 16:06:32.706528743 +0000
@@ -172,8 +172,6 @@
# define INIT_VTIME(tsk)
#endif
-#define INIT_TASK_COMM "swapper"
-
#ifdef CONFIG_RT_MUTEXES
# define INIT_RT_MUTEXES(tsk) \
.pi_waiters = RB_ROOT_CACHED, \
@@ -223,6 +221,80 @@
* INIT_TASK is used to set up the first task table, touch at
* your own risk!. Base=0, limit=0x1fffff (=2MB)
*/
+#ifdef CONFIG_SCHED_MUQSS
+#define INIT_TASK_COMM "MuQSS"
+#define INIT_TASK(tsk) \
+{ \
+ INIT_TASK_TI(tsk) \
+ .state = 0, \
+ .stack = init_stack, \
+ .usage = ATOMIC_INIT(2), \
+ .flags = PF_KTHREAD, \
+ .prio = NORMAL_PRIO, \
+ .static_prio = MAX_PRIO-20, \
+ .normal_prio = NORMAL_PRIO, \
+ .deadline = 0, \
+ .policy = SCHED_NORMAL, \
+ .cpus_allowed = CPU_MASK_ALL, \
+ .mm = NULL, \
+ .active_mm = &init_mm, \
+ .restart_block = { \
+ .fn = do_no_restart_syscall, \
+ }, \
+ .time_slice = 1000000, \
+ .tasks = LIST_HEAD_INIT(tsk.tasks), \
+ INIT_PUSHABLE_TASKS(tsk) \
+ .ptraced = LIST_HEAD_INIT(tsk.ptraced), \
+ .ptrace_entry = LIST_HEAD_INIT(tsk.ptrace_entry), \
+ .real_parent = &tsk, \
+ .parent = &tsk, \
+ .children = LIST_HEAD_INIT(tsk.children), \
+ .sibling = LIST_HEAD_INIT(tsk.sibling), \
+ .group_leader = &tsk, \
+ RCU_POINTER_INITIALIZER(real_cred, &init_cred), \
+ RCU_POINTER_INITIALIZER(cred, &init_cred), \
+ .comm = INIT_TASK_COMM, \
+ .thread = INIT_THREAD, \
+ .fs = &init_fs, \
+ .files = &init_files, \
+ .signal = &init_signals, \
+ .sighand = &init_sighand, \
+ .nsproxy = &init_nsproxy, \
+ .pending = { \
+ .list = LIST_HEAD_INIT(tsk.pending.list), \
+ .signal = {{0}}}, \
+ .blocked = {{0}}, \
+ .alloc_lock = __SPIN_LOCK_UNLOCKED(tsk.alloc_lock), \
+ .journal_info = NULL, \
+ INIT_CPU_TIMERS(tsk) \
+ .pi_lock = __RAW_SPIN_LOCK_UNLOCKED(tsk.pi_lock), \
+ .timer_slack_ns = 50000, /* 50 usec default slack */ \
+ .pids = { \
+ [PIDTYPE_PID] = INIT_PID_LINK(PIDTYPE_PID), \
+ [PIDTYPE_PGID] = INIT_PID_LINK(PIDTYPE_PGID), \
+ [PIDTYPE_SID] = INIT_PID_LINK(PIDTYPE_SID), \
+ }, \
+ .thread_group = LIST_HEAD_INIT(tsk.thread_group), \
+ .thread_node = LIST_HEAD_INIT(init_signals.thread_head), \
+ INIT_IDS \
+ INIT_PERF_EVENTS(tsk) \
+ INIT_TRACE_IRQFLAGS \
+ INIT_LOCKDEP \
+ INIT_FTRACE_GRAPH \
+ INIT_TRACE_RECURSION \
+ INIT_TASK_RCU_PREEMPT(tsk) \
+ INIT_TASK_RCU_TASKS(tsk) \
+ INIT_CPUSET_SEQ(tsk) \
+ INIT_RT_MUTEXES(tsk) \
+ INIT_PREV_CPUTIME(tsk) \
+ INIT_VTIME(tsk) \
+ INIT_NUMA_BALANCING(tsk) \
+ INIT_KASAN(tsk) \
+ INIT_LIVEPATCH(tsk) \
+ INIT_TASK_SECURITY \
+}
+#else /* CONFIG_SCHED_MUQSS */
+#define INIT_TASK_COMM "swapper"
#define INIT_TASK(tsk) \
{ \
INIT_TASK_TI(tsk) \
@@ -300,7 +372,7 @@
INIT_LIVEPATCH(tsk) \
INIT_TASK_SECURITY \
}
-
+#endif /* CONFIG_SCHED_MUQSS */
/* Attach to the init_task data structure for proper alignment */
#define __init_task_data __attribute__((__section__(".data..init_task")))
diff -Nur a/include/linux/ioprio.h b/include/linux/ioprio.h
--- a/include/linux/ioprio.h 2018-10-10 07:54:28.000000000 +0100
+++ b/include/linux/ioprio.h 2018-11-03 16:06:32.706528743 +0000
@@ -52,6 +52,8 @@
*/
static inline int task_nice_ioprio(struct task_struct *task)
{
+ if (iso_task(task))
+ return 0;
return (task_nice(task) + 20) / 5;
}
diff -Nur a/include/linux/sched/nohz.h b/include/linux/sched/nohz.h
--- a/include/linux/sched/nohz.h 2018-10-10 07:54:28.000000000 +0100
+++ b/include/linux/sched/nohz.h 2018-11-03 16:06:32.707528775 +0000
@@ -6,7 +6,7 @@
* This is the interface between the scheduler and nohz/dynticks:
*/
-#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
+#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) && !defined(CONFIG_SCHED_MUQSS)
extern void cpu_load_update_nohz_start(void);
extern void cpu_load_update_nohz_stop(void);
#else
@@ -23,7 +23,7 @@
static inline void set_cpu_sd_state_idle(void) { }
#endif
-#ifdef CONFIG_NO_HZ_COMMON
+#if defined(CONFIG_NO_HZ_COMMON) && !defined(CONFIG_SCHED_MUQSS)
void calc_load_nohz_start(void);
void calc_load_nohz_stop(void);
#else
diff -Nur a/include/linux/sched/prio.h b/include/linux/sched/prio.h
--- a/include/linux/sched/prio.h 2018-10-10 07:54:28.000000000 +0100
+++ b/include/linux/sched/prio.h 2018-11-03 16:06:32.707528775 +0000
@@ -20,8 +20,20 @@
*/
#define MAX_USER_RT_PRIO 100
+
+#ifdef CONFIG_SCHED_MUQSS
+/* Note different MAX_RT_PRIO */
+#define MAX_RT_PRIO (MAX_USER_RT_PRIO + 1)
+
+#define ISO_PRIO (MAX_RT_PRIO)
+#define NORMAL_PRIO (MAX_RT_PRIO + 1)
+#define IDLE_PRIO (MAX_RT_PRIO + 2)
+#define PRIO_LIMIT ((IDLE_PRIO) + 1)
+#else /* CONFIG_SCHED_MUQSS */
#define MAX_RT_PRIO MAX_USER_RT_PRIO
+#endif /* CONFIG_SCHED_MUQSS */
+
#define MAX_PRIO (MAX_RT_PRIO + NICE_WIDTH)
#define DEFAULT_PRIO (MAX_RT_PRIO + NICE_WIDTH / 2)
diff -Nur a/include/linux/sched/task.h b/include/linux/sched/task.h
--- a/include/linux/sched/task.h 2018-10-10 07:54:28.000000000 +0100
+++ b/include/linux/sched/task.h 2018-11-03 16:06:32.707528775 +0000
@@ -80,7 +80,7 @@
extern void free_task(struct task_struct *tsk);
/* sched_exec is called by processes performing an exec */
-#ifdef CONFIG_SMP
+#if defined(CONFIG_SMP) && !defined(CONFIG_SCHED_MUQSS)
extern void sched_exec(void);
#else
#define sched_exec() {}
diff -Nur a/include/linux/sched.h b/include/linux/sched.h
--- a/include/linux/sched.h 2018-10-10 07:54:28.000000000 +0100
+++ b/include/linux/sched.h 2018-11-03 16:06:32.707528775 +0000
@@ -27,6 +27,9 @@
#include <linux/signal_types.h>
#include <linux/mm_types_task.h>
#include <linux/task_io_accounting.h>
+#ifdef CONFIG_SCHED_MUQSS
+#include <linux/skip_list.h>
+#endif
/* task_struct member predeclarations (sorted alphabetically): */
struct audit_context;
@@ -579,9 +582,11 @@
unsigned int flags;
unsigned int ptrace;
+#if defined(CONFIG_SMP) || defined(CONFIG_SCHED_MUQSS)
+ int on_cpu;
+#endif
#ifdef CONFIG_SMP
struct llist_node wake_entry;
- int on_cpu;
#ifdef CONFIG_THREAD_INFO_IN_TASK
/* Current CPU: */
unsigned int cpu;
@@ -598,10 +603,25 @@
int static_prio;
int normal_prio;
unsigned int rt_priority;
+#ifdef CONFIG_SCHED_MUQSS
+ int time_slice;
+ u64 deadline;
+ skiplist_node node; /* Skip list node */
+ u64 last_ran;
+ u64 sched_time; /* sched_clock time spent running */
+#ifdef CONFIG_SMT_NICE
+ int smt_bias; /* Policy/nice level bias across smt siblings */
+#endif
+#ifdef CONFIG_HOTPLUG_CPU
+ bool zerobound; /* Bound to CPU0 for hotplug */
+#endif
+ unsigned long rt_timeout;
+#else /* CONFIG_SCHED_MUQSS */
const struct sched_class *sched_class;
struct sched_entity se;
struct sched_rt_entity rt;
+#endif
#ifdef CONFIG_CGROUP_SCHED
struct task_group *sched_task_group;
#endif
@@ -751,6 +771,10 @@
u64 utimescaled;
u64 stimescaled;
#endif
+#ifdef CONFIG_SCHED_MUQSS
+ /* Unbanked cpu time */
+ unsigned long utime_ns, stime_ns;
+#endif
u64 gtime;
struct prev_cputime prev_cputime;
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
@@ -1155,6 +1179,40 @@
*/
};
+#ifdef CONFIG_SCHED_MUQSS
+#define tsk_seruntime(t) ((t)->sched_time)
+#define tsk_rttimeout(t) ((t)->rt_timeout)
+
+static inline void tsk_cpus_current(struct task_struct *p)
+{
+}
+
+void print_scheduler_version(void);
+
+static inline bool iso_task(struct task_struct *p)
+{
+ return (p->policy == SCHED_ISO);
+}
+#else /* CFS */
+#define tsk_seruntime(t) ((t)->se.sum_exec_runtime)
+#define tsk_rttimeout(t) ((t)->rt.timeout)
+
+static inline void tsk_cpus_current(struct task_struct *p)
+{
+ p->nr_cpus_allowed = current->nr_cpus_allowed;
+}
+
+static inline void print_scheduler_version(void)
+{
+ printk(KERN_INFO "CFS CPU scheduler.\n");
+}
+
+static inline bool iso_task(struct task_struct *p)
+{
+ return false;
+}
+#endif /* CONFIG_SCHED_MUQSS */
+
static inline struct pid *task_pid(struct task_struct *task)
{
return task->pids[PIDTYPE_PID].pid;
diff -Nur a/include/linux/skip_list.h b/include/linux/skip_list.h
--- a/include/linux/skip_list.h 1970-01-01 01:00:00.000000000 +0100
+++ b/include/linux/skip_list.h 2018-11-03 16:06:32.708528807 +0000
@@ -0,0 +1,33 @@
+#ifndef _LINUX_SKIP_LISTS_H
+#define _LINUX_SKIP_LISTS_H
+typedef u64 keyType;
+typedef void *valueType;
+
+typedef struct nodeStructure skiplist_node;
+
+struct nodeStructure {
+ int level; /* Levels in this structure */
+ keyType key;
+ valueType value;
+ skiplist_node *next[8];
+ skiplist_node *prev[8];
+};
+
+typedef struct listStructure {
+ int entries;
+ int level; /* Maximum level of the list
+ (1 more than the number of levels in the list) */
+ skiplist_node *header; /* pointer to header */
+} skiplist;
+
+void skiplist_init(skiplist_node *slnode);
+skiplist *new_skiplist(skiplist_node *slnode);
+void free_skiplist(skiplist *l);
+void skiplist_node_init(skiplist_node *node);
+void skiplist_insert(skiplist *l, skiplist_node *node, keyType key, valueType value, unsigned int randseed);
+void skiplist_delete(skiplist *l, skiplist_node *node);
+
+static inline bool skiplist_node_empty(skiplist_node *node) {
+ return (!node->next[0]);
+}
+#endif /* _LINUX_SKIP_LISTS_H */
diff -Nur a/include/uapi/linux/sched.h b/include/uapi/linux/sched.h
--- a/include/uapi/linux/sched.h 2018-10-10 07:54:28.000000000 +0100
+++ b/include/uapi/linux/sched.h 2018-11-03 16:06:32.708528807 +0000
@@ -37,9 +37,16 @@
#define SCHED_FIFO 1
#define SCHED_RR 2
#define SCHED_BATCH 3
-/* SCHED_ISO: reserved but not implemented yet */
+/* SCHED_ISO: Implemented on MuQSS only */
#define SCHED_IDLE 5
+#ifdef CONFIG_SCHED_MUQSS
+#define SCHED_ISO 4
+#define SCHED_IDLEPRIO SCHED_IDLE
+#define SCHED_MAX (SCHED_IDLEPRIO)
+#define SCHED_RANGE(policy) ((policy) <= SCHED_MAX)
+#else /* CONFIG_SCHED_MUQSS */
#define SCHED_DEADLINE 6
+#endif /* CONFIG_SCHED_MUQSS */
/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
#define SCHED_RESET_ON_FORK 0x40000000
diff -Nur a/init/Kconfig b/init/Kconfig
--- a/init/Kconfig 2018-11-03 16:00:51.921620552 +0000
+++ b/init/Kconfig 2018-11-03 16:06:32.709528839 +0000
@@ -38,6 +38,18 @@
menu "General setup"
+config SCHED_MUQSS
+ bool "MuQSS cpu scheduler"
+ select HIGH_RES_TIMERS
+ ---help---
+ The Multiple Queue Skiplist Scheduler for excellent interactivity and
+ responsiveness on the desktop and highly scalable deterministic
+ low latency on any hardware.
+
+ Say Y here.
+ default y
+
+
config BROKEN
bool
@@ -621,6 +633,7 @@
depends on ARCH_SUPPORTS_NUMA_BALANCING
depends on !ARCH_WANT_NUMA_VARIABLE_LOCALITY
depends on SMP && NUMA && MIGRATION
+ depends on !SCHED_MUQSS
help
This option adds support for automatic NUMA aware memory/task placement.
The mechanism is quite primitive and is based on migrating memory when
@@ -723,9 +736,13 @@
help
This feature lets CPU scheduler recognize task groups and control CPU
bandwidth allocation to such task groups. It uses cgroups to group
- tasks.
+ tasks. In combination with MuQSS this is purely a STUB to create the
+ files associated with the CPU controller cgroup but most of the
+ controls do nothing. This is useful for working in environments and
+ with applications that will only work if this control group is
+ present.
-if CGROUP_SCHED
+if CGROUP_SCHED && !SCHED_MUQSS
config FAIR_GROUP_SCHED
bool "Group scheduling for SCHED_OTHER"
depends on CGROUP_SCHED
@@ -832,6 +849,7 @@
config CGROUP_CPUACCT
bool "Simple CPU accounting controller"
+ depends on !SCHED_MUQSS
help
Provides a simple controller for monitoring the
total CPU consumed by the tasks in a cgroup.
@@ -950,6 +968,7 @@
config SCHED_AUTOGROUP
bool "Automatic process group scheduling"
+ depends on !SCHED_MUQSS
select CGROUPS
select CGROUP_SCHED
select FAIR_GROUP_SCHED
diff -Nur a/init/main.c b/init/main.c
--- a/init/main.c 2018-10-10 07:54:28.000000000 +0100
+++ b/init/main.c 2018-11-03 16:06:32.709528839 +0000
@@ -841,7 +841,6 @@
return ret;
}
-
extern initcall_t __initcall_start[];
extern initcall_t __initcall0_start[];
extern initcall_t __initcall1_start[];
@@ -1008,6 +1007,8 @@
rcu_end_inkernel_boot();
+ print_scheduler_version();
+
if (ramdisk_execute_command) {
ret = run_init_process(ramdisk_execute_command);
if (!ret)
diff -Nur a/kernel/delayacct.c b/kernel/delayacct.c
--- a/kernel/delayacct.c 2018-10-10 07:54:28.000000000 +0100
+++ b/kernel/delayacct.c 2018-11-03 16:06:32.710528871 +0000
@@ -115,7 +115,7 @@
*/
t1 = tsk->sched_info.pcount;
t2 = tsk->sched_info.run_delay;
- t3 = tsk->se.sum_exec_runtime;
+ t3 = tsk_seruntime(tsk);
d->cpu_count += t1;
diff -Nur a/kernel/exit.c b/kernel/exit.c
--- a/kernel/exit.c 2018-10-10 07:54:28.000000000 +0100
+++ b/kernel/exit.c 2018-11-03 16:06:32.710528871 +0000
@@ -129,7 +129,7 @@
sig->curr_target = next_thread(tsk);
}
- add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
+ add_device_randomness((const void*) &tsk_seruntime(tsk),
sizeof(unsigned long long));
/*
@@ -150,7 +150,7 @@
sig->inblock += task_io_get_inblock(tsk);
sig->oublock += task_io_get_oublock(tsk);
task_io_accounting_add(&sig->ioac, &tsk->ioac);
- sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
+ sig->sum_sched_runtime += tsk_seruntime(tsk);
sig->nr_threads--;
__unhash_process(tsk, group_dead);
write_sequnlock(&sig->stats_lock);
diff -Nur a/kernel/kthread.c b/kernel/kthread.c
--- a/kernel/kthread.c 2018-10-10 07:54:28.000000000 +0100
+++ b/kernel/kthread.c 2018-11-03 16:06:32.711528903 +0000
@@ -410,6 +410,34 @@
}
EXPORT_SYMBOL(kthread_bind);
+#if defined(CONFIG_SCHED_MUQSS) && defined(CONFIG_SMP)
+extern void __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
+
+/*
+ * new_kthread_bind is a special variant of __kthread_bind_mask.
+ * For new threads to work on muqss we want to call do_set_cpus_allowed
+ * without the task_cpu being set and the task rescheduled until they're
+ * rescheduled on their own so we call __do_set_cpus_allowed directly which
+ * only changes the cpumask. This is particularly important for smpboot threads
+ * to work.
+ */
+static void new_kthread_bind(struct task_struct *p, unsigned int cpu)
+{
+ unsigned long flags;
+
+ if (WARN_ON(!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)))
+ return;
+
+ /* It's safe because the task is inactive. */
+ raw_spin_lock_irqsave(&p->pi_lock, flags);
+ __do_set_cpus_allowed(p, cpumask_of(cpu));
+ p->flags |= PF_NO_SETAFFINITY;
+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
+}
+#else
+#define new_kthread_bind(p, cpu) kthread_bind(p, cpu)
+#endif
+
/**
* kthread_create_on_cpu - Create a cpu bound kthread
* @threadfn: the function to run until signal_pending(current).
@@ -431,7 +459,7 @@
cpu);
if (IS_ERR(p))
return p;
- kthread_bind(p, cpu);
+ new_kthread_bind(p, cpu);
/* CPU hotplug need to bind once again when unparking the thread. */
set_bit(KTHREAD_IS_PER_CPU, &to_kthread(p)->flags);
to_kthread(p)->cpu = cpu;
diff -Nur a/kernel/livepatch/transition.c b/kernel/livepatch/transition.c
--- a/kernel/livepatch/transition.c 2018-10-10 07:54:28.000000000 +0100
+++ b/kernel/livepatch/transition.c 2018-11-03 16:06:32.711528903 +0000
@@ -277,6 +277,12 @@
return 0;
}
+#ifdef CONFIG_SCHED_MUQSS
+typedef unsigned long rq_flags_t;
+#else
+typedef struct rq_flags rq_flag_t;
+#endif
+
/*
* Try to safely switch a task to the target patch state. If it's currently
* running, or it's sleeping on a to-be-patched or to-be-unpatched function, or
@@ -285,7 +291,7 @@
static bool klp_try_switch_task(struct task_struct *task)
{
struct rq *rq;
- struct rq_flags flags;
+ rq_flags_t flags;
int ret;
bool success = false;
char err_buf[STACK_ERR_BUF_SIZE];
diff -Nur a/kernel/Makefile b/kernel/Makefile
--- a/kernel/Makefile 2018-10-10 07:54:28.000000000 +0100
+++ b/kernel/Makefile 2018-11-03 16:06:32.709528839 +0000
@@ -10,7 +10,7 @@
extable.o params.o \
kthread.o sys_ni.o nsproxy.o \
notifier.o ksysfs.o cred.o reboot.o \
- async.o range.o smpboot.o ucount.o
+ async.o range.o smpboot.o ucount.o skip_list.o
obj-$(CONFIG_MODULES) += kmod.o
obj-$(CONFIG_MULTIUSER) += groups.o
diff -Nur a/kernel/rcu/Kconfig b/kernel/rcu/Kconfig
--- a/kernel/rcu/Kconfig 2018-10-10 07:54:28.000000000 +0100
+++ b/kernel/rcu/Kconfig 2018-11-03 16:06:32.711528903 +0000
@@ -93,7 +93,7 @@
config CONTEXT_TRACKING_FORCE
bool "Force context tracking"
depends on CONTEXT_TRACKING
- default y if !NO_HZ_FULL
+ default y if !NO_HZ_FULL && !SCHED_MUQSS
help
The major pre-requirement for full dynticks to work is to
support the context tracking subsystem. But there are also
diff -Nur a/kernel/sched/cpufreq_schedutil.c b/kernel/sched/cpufreq_schedutil.c
--- a/kernel/sched/cpufreq_schedutil.c 2018-10-10 07:54:28.000000000 +0100
+++ b/kernel/sched/cpufreq_schedutil.c 2018-11-03 16:06:32.716529064 +0000
@@ -176,6 +176,17 @@
return cpufreq_driver_resolve_freq(policy, freq);
}
+#ifdef CONFIG_SCHED_MUQSS
+static void sugov_get_util(unsigned long *util, unsigned long *max, int cpu)
+{
+ struct rq *rq = cpu_rq(cpu);
+
+ *util = rq->load_avg;
+ if (*util > SCHED_CAPACITY_SCALE)
+ *util = SCHED_CAPACITY_SCALE;
+ *max = SCHED_CAPACITY_SCALE;
+}
+#else /* CONFIG_SCHED_MUQSS */
static void sugov_get_util(unsigned long *util, unsigned long *max, int cpu)
{
struct rq *rq = cpu_rq(cpu);
@@ -186,6 +197,7 @@
*util = min(rq->cfs.avg.util_avg, cfs_max);
*max = cfs_max;
}
+#endif /* CONFIG_SCHED_MUQSS */
static void sugov_set_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
unsigned int flags)
diff -Nur a/kernel/sched/cputime.c b/kernel/sched/cputime.c
--- a/kernel/sched/cputime.c 2018-10-10 07:54:28.000000000 +0100
+++ b/kernel/sched/cputime.c 2018-11-03 16:06:32.716529064 +0000
@@ -270,26 +270,6 @@
return accounted;
}
-#ifdef CONFIG_64BIT
-static inline u64 read_sum_exec_runtime(struct task_struct *t)
-{
- return t->se.sum_exec_runtime;
-}
-#else
-static u64 read_sum_exec_runtime(struct task_struct *t)
-{
- u64 ns;
- struct rq_flags rf;
- struct rq *rq;
-
- rq = task_rq_lock(t, &rf);
- ns = t->se.sum_exec_runtime;
- task_rq_unlock(rq, t, &rf);
-
- return ns;
-}
-#endif
-
/*
* Accumulate raw cputime values of dead tasks (sig->[us]time) and live
* tasks (sum on group iteration) belonging to @tsk's group.
@@ -661,7 +641,7 @@
void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
{
struct task_cputime cputime = {
- .sum_exec_runtime = p->se.sum_exec_runtime,
+ .sum_exec_runtime = tsk_seruntime(p),
};
task_cputime(p, &cputime.utime, &cputime.stime);
diff -Nur a/kernel/sched/idle.c b/kernel/sched/idle.c
--- a/kernel/sched/idle.c 2018-10-10 07:54:28.000000000 +0100
+++ b/kernel/sched/idle.c 2018-11-03 16:06:32.716529064 +0000
@@ -209,6 +209,9 @@
*/
static void do_idle(void)
{
+ int cpu = smp_processor_id();
+ bool pending = false;
+
/*
* If the arch has a polling bit, we maintain an invariant:
*
@@ -220,13 +223,16 @@
__current_set_polling();
quiet_vmstat();
- tick_nohz_idle_enter();
+ if (unlikely(softirq_pending(cpu)))
+ pending = true;
+ else
+ tick_nohz_idle_enter();
while (!need_resched()) {
check_pgt_cache();
rmb();
- if (cpu_is_offline(smp_processor_id())) {
+ if (cpu_is_offline(cpu)) {
cpuhp_report_idle_dead();
arch_cpu_idle_dead();
}
@@ -255,7 +261,8 @@
* an IPI to fold the state for us.
*/
preempt_set_need_resched();
- tick_nohz_idle_exit();
+ if (!pending)
+ tick_nohz_idle_exit();
__current_clr_polling();
/*
diff -Nur a/kernel/sched/Makefile b/kernel/sched/Makefile
--- a/kernel/sched/Makefile 2018-10-10 07:54:28.000000000 +0100
+++ b/kernel/sched/Makefile 2018-11-03 16:06:32.711528903 +0000
@@ -16,14 +16,20 @@
CFLAGS_core.o := $(PROFILING) -fno-omit-frame-pointer
endif
-obj-y += core.o loadavg.o clock.o cputime.o
+ifdef CONFIG_SCHED_MUQSS
+obj-y += MuQSS.o clock.o
+else
+obj-y += core.o loadavg.o clock.o
obj-y += idle_task.o fair.o rt.o deadline.o
-obj-y += wait.o wait_bit.o swait.o completion.o idle.o
-obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o topology.o stop_task.o
+obj-$(CONFIG_SMP) += cpudeadline.o stop_task.o
obj-$(CONFIG_SCHED_AUTOGROUP) += autogroup.o
-obj-$(CONFIG_SCHEDSTATS) += stats.o
obj-$(CONFIG_SCHED_DEBUG) += debug.o
obj-$(CONFIG_CGROUP_CPUACCT) += cpuacct.o
+endif
+obj-y += cputime.o
+obj-y += wait.o wait_bit.o swait.o completion.o idle.o
+obj-$(CONFIG_SMP) += cpupri.o topology.o
+obj-$(CONFIG_SCHEDSTATS) += stats.o
obj-$(CONFIG_CPU_FREQ) += cpufreq.o
obj-$(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) += cpufreq_schedutil.o
obj-$(CONFIG_MEMBARRIER) += membarrier.o
diff -Nur a/kernel/sched/MuQSS.c b/kernel/sched/MuQSS.c
--- a/kernel/sched/MuQSS.c 1970-01-01 01:00:00.000000000 +0100
+++ b/kernel/sched/MuQSS.c 2018-11-03 16:06:32.715529032 +0000
@@ -0,0 +1,6923 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * kernel/sched/MuQSS.c, was kernel/sched.c
+ *
+ * Kernel scheduler and related syscalls
+ *
+ * Copyright (C) 1991-2002 Linus Torvalds
+ *
+ * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
+ * make semaphores SMP safe
+ * 1998-11-19 Implemented schedule_timeout() and related stuff
+ * by Andrea Arcangeli
+ * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
+ * hybrid priority-list and round-robin design with
+ * an array-switch method of distributing timeslices
+ * and per-CPU runqueues. Cleanups and useful suggestions
+ * by Davide Libenzi, preemptible kernel bits by Robert Love.
+ * 2003-09-03 Interactivity tuning by Con Kolivas.
+ * 2004-04-02 Scheduler domains code by Nick Piggin
+ * 2007-04-15 Work begun on replacing all interactivity tuning with a
+ * fair scheduling design by Con Kolivas.
+ * 2007-05-05 Load balancing (smp-nice) and other improvements
+ * by Peter Williams
+ * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
+ * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
+ * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
+ * Thomas Gleixner, Mike Kravetz
+ * 2009-08-13 Brainfuck deadline scheduling policy by Con Kolivas deletes
+ * a whole lot of those previous things.
+ * 2016-10-01 Multiple Queue Skiplist Scheduler scalable evolution of BFS
+ * scheduler by Con Kolivas.
+ */
+
+#include <linux/sched.h>
+#include <linux/sched/clock.h>
+#include <uapi/linux/sched/types.h>
+#include <linux/sched/loadavg.h>
+#include <linux/sched/hotplug.h>
+#include <linux/wait_bit.h>
+#include <linux/cpuset.h>
+#include <linux/delayacct.h>
+#include <linux/init_task.h>
+#include <linux/binfmts.h>
+#include <linux/context_tracking.h>
+#include <linux/rcupdate_wait.h>
+#include <linux/skip_list.h>
+
+#include <linux/blkdev.h>
+#include <linux/kprobes.h>
+#include <linux/mmu_context.h>
+#include <linux/module.h>
+#include <linux/nmi.h>
+#include <linux/prefetch.h>
+#include <linux/profile.h>
+#include <linux/security.h>
+#include <linux/syscalls.h>
+#include <linux/tick.h>
+
+#include <asm/switch_to.h>
+#include <asm/tlb.h>
+#ifdef CONFIG_PARAVIRT
+#include <asm/paravirt.h>
+#endif
+
+#include "../workqueue_internal.h"
+#include "../smpboot.h"
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/sched.h>
+
+#include "MuQSS.h"
+
+#define rt_prio(prio) unlikely((prio) < MAX_RT_PRIO)
+#define rt_task(p) rt_prio((p)->prio)
+#define batch_task(p) (unlikely((p)->policy == SCHED_BATCH))
+#define is_rt_policy(policy) ((policy) == SCHED_FIFO || \
+ (policy) == SCHED_RR)
+#define has_rt_policy(p) unlikely(is_rt_policy((p)->policy))
+
+#define is_idle_policy(policy) ((policy) == SCHED_IDLEPRIO)
+#define idleprio_task(p) unlikely(is_idle_policy((p)->policy))
+#define task_running_idle(p) unlikely((p)->prio == IDLE_PRIO)
+
+#define is_iso_policy(policy) ((policy) == SCHED_ISO)
+#define iso_task(p) unlikely(is_iso_policy((p)->policy))
+#define task_running_iso(p) unlikely((p)->prio == ISO_PRIO)
+
+#define rq_idle(rq) ((rq)->rq_prio == PRIO_LIMIT)
+
+#define ISO_PERIOD (5 * HZ)
+
+#define STOP_PRIO (MAX_RT_PRIO - 1)
+
+/*
+ * Some helpers for converting to/from various scales. Use shifts to get
+ * approximate multiples of ten for less overhead.
+ */
+#define JIFFIES_TO_NS(TIME) ((TIME) * (1073741824 / HZ))
+#define JIFFY_NS (1073741824 / HZ)
+#define JIFFY_US (1048576 / HZ)
+#define NS_TO_JIFFIES(TIME) ((TIME) / JIFFY_NS)
+#define HALF_JIFFY_NS (1073741824 / HZ / 2)
+#define HALF_JIFFY_US (1048576 / HZ / 2)
+#define MS_TO_NS(TIME) ((TIME) << 20)
+#define MS_TO_US(TIME) ((TIME) << 10)
+#define NS_TO_MS(TIME) ((TIME) >> 20)
+#define NS_TO_US(TIME) ((TIME) >> 10)
+#define US_TO_NS(TIME) ((TIME) << 10)
+
+#define RESCHED_US (100) /* Reschedule if less than this many μs left */
+
+void print_scheduler_version(void)
+{
+ printk(KERN_INFO "MuQSS CPU scheduler v0.162 by Con Kolivas.\n");
+}
+
+/*
+ * This is the time all tasks within the same priority round robin.
+ * Value is in ms and set to a minimum of 6ms.
+ * Tunable via /proc interface.
+ */
+int rr_interval __read_mostly = 6;
+
+/*
+ * Tunable to choose whether to prioritise latency or throughput, simple
+ * binary yes or no
+ */
+int sched_interactive __read_mostly = 1;
+
+/*
+ * sched_iso_cpu - sysctl which determines the cpu percentage SCHED_ISO tasks
+ * are allowed to run five seconds as real time tasks. This is the total over
+ * all online cpus.
+ */
+int sched_iso_cpu __read_mostly = 70;
+
+/*
+ * sched_yield_type - Choose what sort of yield sched_yield will perform.
+ * 0: No yield.
+ * 1: Yield only to better priority/deadline tasks. (default)
+ * 2: Expire timeslice and recalculate deadline.
+ */
+int sched_yield_type __read_mostly = 1;
+
+/*
+ * The relative length of deadline for each priority(nice) level.
+ */
+static int prio_ratios[NICE_WIDTH] __read_mostly;
+
+/*
+ * The quota handed out to tasks of all priority levels when refilling their
+ * time_slice.
+ */
+static inline int timeslice(void)
+{
+ return MS_TO_US(rr_interval);
+}
+
+#ifdef CONFIG_SMP
+static cpumask_t cpu_idle_map ____cacheline_aligned_in_smp;
+#endif
+
+/* CPUs with isolated domains */
+cpumask_var_t cpu_isolated_map;
+
+DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
+#ifdef CONFIG_SMP
+struct rq *cpu_rq(int cpu)
+{
+ return &per_cpu(runqueues, (cpu));
+}
+#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
+
+/*
+ * For asym packing, by default the lower numbered cpu has higher priority.
+ */
+int __weak arch_asym_cpu_priority(int cpu)
+{
+ return -cpu;
+}
+
+int __weak arch_sd_sibling_asym_packing(void)
+{
+ return 0*SD_ASYM_PACKING;
+}
+#else
+struct rq *uprq;
+#endif /* CONFIG_SMP */
+
+#include "stats.h"
+
+#ifndef prepare_arch_switch
+# define prepare_arch_switch(next) do { } while (0)
+#endif
+#ifndef finish_arch_switch
+# define finish_arch_switch(prev) do { } while (0)
+#endif
+#ifndef finish_arch_post_lock_switch
+# define finish_arch_post_lock_switch() do { } while (0)
+#endif
+
+/*
+ * All common locking functions performed on rq->lock. rq->clock is local to
+ * the CPU accessing it so it can be modified just with interrupts disabled
+ * when we're not updating niffies.
+ * Looking up task_rq must be done under rq->lock to be safe.
+ */
+
+/*
+ * RQ-clock updating methods:
+ */
+
+static void update_rq_clock_task(struct rq *rq, s64 delta)
+{
+/*
+ * In theory, the compile should just see 0 here, and optimize out the call
+ * to sched_rt_avg_update. But I don't trust it...
+ */
+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
+ s64 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
+
+ /*
+ * Since irq_time is only updated on {soft,}irq_exit, we might run into
+ * this case when a previous update_rq_clock() happened inside a
+ * {soft,}irq region.
+ *
+ * When this happens, we stop ->clock_task and only update the
+ * prev_irq_time stamp to account for the part that fit, so that a next
+ * update will consume the rest. This ensures ->clock_task is
+ * monotonic.
+ *
+ * It does however cause some slight miss-attribution of {soft,}irq
+ * time, a more accurate solution would be to update the irq_time using
+ * the current rq->clock timestamp, except that would require using
+ * atomic ops.
+ */
+ if (irq_delta > delta)
+ irq_delta = delta;
+
+ rq->prev_irq_time += irq_delta;
+ delta -= irq_delta;
+#endif
+#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
+ if (static_key_false((¶virt_steal_rq_enabled))) {
+ s64 steal = paravirt_steal_clock(cpu_of(rq));
+
+ steal -= rq->prev_steal_time_rq;
+
+ if (unlikely(steal > delta))
+ steal = delta;
+
+ rq->prev_steal_time_rq += steal;
+
+ delta -= steal;
+ }
+#endif
+ rq->clock_task += delta;
+}
+
+static inline void update_rq_clock(struct rq *rq)
+{
+ s64 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
+
+ if (unlikely(delta < 0))
+ return;
+ rq->clock += delta;
+ update_rq_clock_task(rq, delta);
+}
+
+/*
+ * Niffies are a globally increasing nanosecond counter. They're only used by
+ * update_load_avg and time_slice_expired, however deadlines are based on them
+ * across CPUs. Update them whenever we will call one of those functions, and
+ * synchronise them across CPUs whenever we hold both runqueue locks.
+ */
+static inline void update_clocks(struct rq *rq)
+{
+ s64 ndiff, minndiff;
+ long jdiff;
+
+ update_rq_clock(rq);
+ ndiff = rq->clock - rq->old_clock;
+ rq->old_clock = rq->clock;
+ jdiff = jiffies - rq->last_jiffy;
+
+ /* Subtract any niffies added by balancing with other rqs */
+ ndiff -= rq->niffies - rq->last_niffy;
+ minndiff = JIFFIES_TO_NS(jdiff) - rq->niffies + rq->last_jiffy_niffies;
+ if (minndiff < 0)
+ minndiff = 0;
+ ndiff = max(ndiff, minndiff);
+ rq->niffies += ndiff;
+ rq->last_niffy = rq->niffies;
+ if (jdiff) {
+ rq->last_jiffy += jdiff;
+ rq->last_jiffy_niffies = rq->niffies;
+ }
+}
+
+static inline int task_on_rq_queued(struct task_struct *p)
+{
+ return p->on_rq == TASK_ON_RQ_QUEUED;
+}
+
+static inline int task_on_rq_migrating(struct task_struct *p)
+{
+ return p->on_rq == TASK_ON_RQ_MIGRATING;
+}
+
+static inline int rq_trylock(struct rq *rq)
+ __acquires(rq->lock)
+{
+ return raw_spin_trylock(&rq->lock);
+}
+
+/*
+ * Any time we have two runqueues locked we use that as an opportunity to
+ * synchronise niffies to the highest value as idle ticks may have artificially
+ * kept niffies low on one CPU and the truth can only be later.
+ */
+static inline void synchronise_niffies(struct rq *rq1, struct rq *rq2)
+{
+ if (rq1->niffies > rq2->niffies)
+ rq2->niffies = rq1->niffies;
+ else
+ rq1->niffies = rq2->niffies;
+}
+
+/*
+ * double_rq_lock - safely lock two runqueues
+ *
+ * Note this does not disable interrupts like task_rq_lock,
+ * you need to do so manually before calling.
+ */
+
+/* For when we know rq1 != rq2 */
+static inline void __double_rq_lock(struct rq *rq1, struct rq *rq2)
+ __acquires(rq1->lock)
+ __acquires(rq2->lock)
+{
+ if (rq1 < rq2) {
+ raw_spin_lock(&rq1->lock);
+ raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
+ } else {
+ raw_spin_lock(&rq2->lock);
+ raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
+ }
+}
+
+static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
+ __acquires(rq1->lock)
+ __acquires(rq2->lock)
+{
+ BUG_ON(!irqs_disabled());
+ if (rq1 == rq2) {
+ raw_spin_lock(&rq1->lock);
+ __acquire(rq2->lock); /* Fake it out ;) */
+ } else
+ __double_rq_lock(rq1, rq2);
+ synchronise_niffies(rq1, rq2);
+}
+
+/*
+ * double_rq_unlock - safely unlock two runqueues
+ *
+ * Note this does not restore interrupts like task_rq_unlock,
+ * you need to do so manually after calling.
+ */
+static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
+ __releases(rq1->lock)
+ __releases(rq2->lock)
+{
+ raw_spin_unlock(&rq1->lock);
+ if (rq1 != rq2)
+ raw_spin_unlock(&rq2->lock);
+ else
+ __release(rq2->lock);
+}
+
+static inline void lock_all_rqs(void)
+{
+ int cpu;
+
+ preempt_disable();
+ for_each_possible_cpu(cpu) {
+ struct rq *rq = cpu_rq(cpu);
+
+ do_raw_spin_lock(&rq->lock);
+ }
+}
+
+static inline void unlock_all_rqs(void)
+{
+ int cpu;
+
+ for_each_possible_cpu(cpu) {
+ struct rq *rq = cpu_rq(cpu);
+
+ do_raw_spin_unlock(&rq->lock);
+ }
+ preempt_enable();
+}
+
+/* Specially nest trylock an rq */
+static inline bool trylock_rq(struct rq *this_rq, struct rq *rq)
+{
+ if (unlikely(!do_raw_spin_trylock(&rq->lock)))
+ return false;
+ spin_acquire(&rq->lock.dep_map, SINGLE_DEPTH_NESTING, 1, _RET_IP_);
+ synchronise_niffies(this_rq, rq);
+ return true;
+}
+
+/* Unlock a specially nested trylocked rq */
+static inline void unlock_rq(struct rq *rq)
+{
+ spin_release(&rq->lock.dep_map, 1, _RET_IP_);
+ do_raw_spin_unlock(&rq->lock);
+}
+
+/*
+ * cmpxchg based fetch_or, macro so it works for different integer types
+ */
+#define fetch_or(ptr, mask) \
+ ({ \
+ typeof(ptr) _ptr = (ptr); \
+ typeof(mask) _mask = (mask); \
+ typeof(*_ptr) _old, _val = *_ptr; \
+ \
+ for (;;) { \
+ _old = cmpxchg(_ptr, _val, _val | _mask); \
+ if (_old == _val) \
+ break; \
+ _val = _old; \
+ } \
+ _old; \
+})
+
+#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
+/*
+ * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
+ * this avoids any races wrt polling state changes and thereby avoids
+ * spurious IPIs.
+ */
+static bool set_nr_and_not_polling(struct task_struct *p)
+{
+ struct thread_info *ti = task_thread_info(p);
+ return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
+}
+
+/*
+ * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
+ *
+ * If this returns true, then the idle task promises to call
+ * sched_ttwu_pending() and reschedule soon.
+ */
+static bool set_nr_if_polling(struct task_struct *p)
+{
+ struct thread_info *ti = task_thread_info(p);
+ typeof(ti->flags) old, val = READ_ONCE(ti->flags);
+
+ for (;;) {
+ if (!(val & _TIF_POLLING_NRFLAG))
+ return false;
+ if (val & _TIF_NEED_RESCHED)
+ return true;
+ old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
+ if (old == val)
+ break;
+ val = old;
+ }
+ return true;
+}
+
+#else
+static bool set_nr_and_not_polling(struct task_struct *p)
+{
+ set_tsk_need_resched(p);
+ return true;
+}
+
+#ifdef CONFIG_SMP
+static bool set_nr_if_polling(struct task_struct *p)
+{
+ return false;
+}
+#endif
+#endif
+
+void wake_q_add(struct wake_q_head *head, struct task_struct *task)
+{
+ struct wake_q_node *node = &task->wake_q;
+
+ /*
+ * Atomically grab the task, if ->wake_q is !nil already it means
+ * its already queued (either by us or someone else) and will get the
+ * wakeup due to that.
+ *
+ * This cmpxchg() implies a full barrier, which pairs with the write
+ * barrier implied by the wakeup in wake_up_q().
+ */
+ if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
+ return;
+
+ get_task_struct(task);
+
+ /*
+ * The head is context local, there can be no concurrency.
+ */
+ *head->lastp = node;
+ head->lastp = &node->next;
+}
+
+void wake_up_q(struct wake_q_head *head)
+{
+ struct wake_q_node *node = head->first;
+
+ while (node != WAKE_Q_TAIL) {
+ struct task_struct *task;
+
+ task = container_of(node, struct task_struct, wake_q);
+ BUG_ON(!task);
+ /* Task can safely be re-inserted now */
+ node = node->next;
+ task->wake_q.next = NULL;
+
+ /*
+ * wake_up_process() implies a wmb() to pair with the queueing
+ * in wake_q_add() so as not to miss wakeups.
+ */
+ wake_up_process(task);
+ put_task_struct(task);
+ }
+}
+
+static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
+{
+ next->on_cpu = 1;
+}
+
+static inline void smp_sched_reschedule(int cpu)
+{
+ if (likely(cpu_online(cpu)))
+ smp_send_reschedule(cpu);
+}
+
+/*
+ * resched_task - mark a task 'to be rescheduled now'.
+ *
+ * On UP this means the setting of the need_resched flag, on SMP it
+ * might also involve a cross-CPU call to trigger the scheduler on
+ * the target CPU.
+ */
+void resched_task(struct task_struct *p)
+{
+ int cpu;
+#ifdef CONFIG_LOCKDEP
+ /* Kernel threads call this when creating workqueues while still
+ * inactive from __kthread_bind_mask, holding only the pi_lock */
+ if (!(p->flags & PF_KTHREAD)) {
+ struct rq *rq = task_rq(p);
+
+ lockdep_assert_held(&rq->lock);
+ }
+#endif
+ if (test_tsk_need_resched(p))
+ return;
+
+ cpu = task_cpu(p);
+ if (cpu == smp_processor_id()) {
+ set_tsk_need_resched(p);
+ set_preempt_need_resched();
+ return;
+ }
+
+ if (set_nr_and_not_polling(p))
+ smp_sched_reschedule(cpu);
+ else
+ trace_sched_wake_idle_without_ipi(cpu);
+}
+
+/*
+ * A task that is not running or queued will not have a node set.
+ * A task that is queued but not running will have a node set.
+ * A task that is currently running will have ->on_cpu set but no node set.
+ */
+static inline bool task_queued(struct task_struct *p)
+{
+ return !skiplist_node_empty(&p->node);
+}
+
+static void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
+static inline void resched_if_idle(struct rq *rq);
+
+/* Dodgy workaround till we figure out where the softirqs are going */
+static inline void do_pending_softirq(struct rq *rq, struct task_struct *next)
+{
+ if (unlikely(next == rq->idle && local_softirq_pending() && !in_interrupt()))
+ do_softirq_own_stack();
+}
+
+static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
+{
+#ifdef CONFIG_SMP
+ /*
+ * After ->on_cpu is cleared, the task can be moved to a different CPU.
+ * We must ensure this doesn't happen until the switch is completely
+ * finished.
+ *
+ * In particular, the load of prev->state in finish_task_switch() must
+ * happen before this.
+ *
+ * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
+ */
+ smp_store_release(&prev->on_cpu, 0);
+#endif
+#ifdef CONFIG_DEBUG_SPINLOCK
+ /* this is a valid case when another task releases the spinlock */
+ rq->lock.owner = current;
+#endif
+ /*
+ * If we are tracking spinlock dependencies then we have to
+ * fix up the runqueue lock - which gets 'carried over' from
+ * prev into current:
+ */
+ spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
+
+#ifdef CONFIG_SMP
+ /*
+ * If prev was marked as migrating to another CPU in return_task, drop
+ * the local runqueue lock but leave interrupts disabled and grab the
+ * remote lock we're migrating it to before enabling them.
+ */
+ if (unlikely(task_on_rq_migrating(prev))) {
+ sched_info_dequeued(rq, prev);
+ /*
+ * We move the ownership of prev to the new cpu now. ttwu can't
+ * activate prev to the wrong cpu since it has to grab this
+ * runqueue in ttwu_remote.
+ */
+#ifdef CONFIG_THREAD_INFO_IN_TASK
+ prev->cpu = prev->wake_cpu;
+#else
+ task_thread_info(prev)->cpu = prev->wake_cpu;
+#endif
+ raw_spin_unlock(&rq->lock);
+
+ raw_spin_lock(&prev->pi_lock);
+ rq = __task_rq_lock(prev);
+ /* Check that someone else hasn't already queued prev */
+ if (likely(!task_queued(prev))) {
+ enqueue_task(rq, prev, 0);
+ prev->on_rq = TASK_ON_RQ_QUEUED;
+ /* Wake up the CPU if it's not already running */
+ resched_if_idle(rq);
+ }
+ raw_spin_unlock(&prev->pi_lock);
+ }
+#endif
+ /* Accurately set nr_running here for load average calculations */
+ rq->nr_running = rq->sl->entries + !rq_idle(rq);
+ rq_unlock(rq);
+
+ do_pending_softirq(rq, current);
+
+ local_irq_enable();
+}
+
+static inline bool deadline_before(u64 deadline, u64 time)
+{
+ return (deadline < time);
+}
+
+/*
+ * Deadline is "now" in niffies + (offset by priority). Setting the deadline
+ * is the key to everything. It distributes cpu fairly amongst tasks of the
+ * same nice value, it proportions cpu according to nice level, it means the
+ * task that last woke up the longest ago has the earliest deadline, thus
+ * ensuring that interactive tasks get low latency on wake up. The CPU
+ * proportion works out to the square of the virtual deadline difference, so
+ * this equation will give nice 19 3% CPU compared to nice 0.
+ */
+static inline u64 prio_deadline_diff(int user_prio)
+{
+ return (prio_ratios[user_prio] * rr_interval * (MS_TO_NS(1) / 128));
+}
+
+static inline u64 task_deadline_diff(struct task_struct *p)
+{
+ return prio_deadline_diff(TASK_USER_PRIO(p));
+}
+
+static inline u64 static_deadline_diff(int static_prio)
+{
+ return prio_deadline_diff(USER_PRIO(static_prio));
+}
+
+static inline int longest_deadline_diff(void)
+{
+ return prio_deadline_diff(39);
+}
+
+static inline int ms_longest_deadline_diff(void)
+{
+ return NS_TO_MS(longest_deadline_diff());
+}
+
+static inline bool rq_local(struct rq *rq);
+
+#ifndef SCHED_CAPACITY_SCALE
+#define SCHED_CAPACITY_SCALE 1024
+#endif
+
+static inline int rq_load(struct rq *rq)
+{
+ return rq->nr_running;
+}
+
+/*
+ * Update the load average for feeding into cpu frequency governors. Use a
+ * rough estimate of a rolling average with ~ time constant of 32ms.
+ * 80/128 ~ 0.63. * 80 / 32768 / 128 == * 5 / 262144
+ * Make sure a call to update_clocks has been made before calling this to get
+ * an updated rq->niffies.
+ */
+static void update_load_avg(struct rq *rq, unsigned int flags)
+{
+ unsigned long us_interval, curload;
+ long load;
+
+ if (unlikely(rq->niffies <= rq->load_update))
+ return;
+
+ us_interval = NS_TO_US(rq->niffies - rq->load_update);
+ curload = rq_load(rq);
+ load = rq->load_avg - (rq->load_avg * us_interval * 5 / 262144);
+ if (unlikely(load < 0))
+ load = 0;
+ load += curload * curload * SCHED_CAPACITY_SCALE * us_interval * 5 / 262144;
+ rq->load_avg = load;
+
+ rq->load_update = rq->niffies;
+ if (likely(rq_local(rq)))
+ cpufreq_trigger(rq, flags);
+}
+
+/*
+ * Removing from the runqueue. Enter with rq locked. Deleting a task
+ * from the skip list is done via the stored node reference in the task struct
+ * and does not require a full look up. Thus it occurs in O(k) time where k
+ * is the "level" of the list the task was stored at - usually < 4, max 8.
+ */
+static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
+{
+ skiplist_delete(rq->sl, &p->node);
+ rq->best_key = rq->node.next[0]->key;
+ update_clocks(rq);
+
+ if (!(flags & DEQUEUE_SAVE))
+ sched_info_dequeued(task_rq(p), p);
+ update_load_avg(rq, flags);
+}
+
+#ifdef CONFIG_PREEMPT_RCU
+static bool rcu_read_critical(struct task_struct *p)
+{
+ return p->rcu_read_unlock_special.b.blocked;
+}
+#else /* CONFIG_PREEMPT_RCU */
+#define rcu_read_critical(p) (false)
+#endif /* CONFIG_PREEMPT_RCU */
+
+/*
+ * To determine if it's safe for a task of SCHED_IDLEPRIO to actually run as
+ * an idle task, we ensure none of the following conditions are met.
+ */
+static bool idleprio_suitable(struct task_struct *p)
+{
+ return (!(task_contributes_to_load(p)) && !(p->flags & (PF_EXITING)) &&
+ !signal_pending(p) && !rcu_read_critical(p) && !freezing(p));
+}
+
+/*
+ * To determine if a task of SCHED_ISO can run in pseudo-realtime, we check
+ * that the iso_refractory flag is not set.
+ */
+static inline bool isoprio_suitable(struct rq *rq)
+{
+ return !rq->iso_refractory;
+}
+
+/*
+ * Adding to the runqueue. Enter with rq locked.
+ */
+static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
+{
+ unsigned int randseed, cflags = 0;
+ u64 sl_id;
+
+ if (!rt_task(p)) {
+ /* Check it hasn't gotten rt from PI */
+ if ((idleprio_task(p) && idleprio_suitable(p)) ||
+ (iso_task(p) && isoprio_suitable(rq)))
+ p->prio = p->normal_prio;
+ else
+ p->prio = NORMAL_PRIO;
+ }
+ /*
+ * The sl_id key passed to the skiplist generates a sorted list.
+ * Realtime and sched iso tasks run FIFO so they only need be sorted
+ * according to priority. The skiplist will put tasks of the same
+ * key inserted later in FIFO order. Tasks of sched normal, batch
+ * and idleprio are sorted according to their deadlines. Idleprio
+ * tasks are offset by an impossibly large deadline value ensuring
+ * they get sorted into last positions, but still according to their
+ * own deadlines. This creates a "landscape" of skiplists running
+ * from priority 0 realtime in first place to the lowest priority
+ * idleprio tasks last. Skiplist insertion is an O(log n) process.
+ */
+ if (p->prio <= ISO_PRIO) {
+ sl_id = p->prio;
+ cflags = SCHED_CPUFREQ_RT;
+ } else {
+ sl_id = p->deadline;
+ if (idleprio_task(p)) {
+ if (p->prio == IDLE_PRIO)
+ sl_id |= 0xF000000000000000;
+ else
+ sl_id += longest_deadline_diff();
+ }
+ }
+ /*
+ * Some architectures don't have better than microsecond resolution
+ * so mask out ~microseconds as the random seed for skiplist insertion.
+ */
+ update_clocks(rq);
+ if (!(flags & ENQUEUE_RESTORE))
+ sched_info_queued(rq, p);
+ randseed = (rq->niffies >> 10) & 0xFFFFFFFF;
+ skiplist_insert(rq->sl, &p->node, sl_id, p, randseed);
+ rq->best_key = rq->node.next[0]->key;
+ if (p->in_iowait)
+ cflags |= SCHED_CPUFREQ_IOWAIT;
+ update_load_avg(rq, cflags);
+}
+
+/*
+ * Returns the relative length of deadline all compared to the shortest
+ * deadline which is that of nice -20.
+ */
+static inline int task_prio_ratio(struct task_struct *p)
+{
+ return prio_ratios[TASK_USER_PRIO(p)];
+}
+
+/*
+ * task_timeslice - all tasks of all priorities get the exact same timeslice
+ * length. CPU distribution is handled by giving different deadlines to
+ * tasks of different priorities. Use 128 as the base value for fast shifts.
+ */
+static inline int task_timeslice(struct task_struct *p)
+{
+ return (rr_interval * task_prio_ratio(p) / 128);
+}
+
+#ifdef CONFIG_SMP
+/* Entered with rq locked */
+static inline void resched_if_idle(struct rq *rq)
+{
+ if (rq_idle(rq))
+ resched_task(rq->curr);
+}
+
+static inline bool rq_local(struct rq *rq)
+{
+ return (rq->cpu == smp_processor_id());
+}
+#ifdef CONFIG_SMT_NICE
+static const cpumask_t *thread_cpumask(int cpu);
+
+/* Find the best real time priority running on any SMT siblings of cpu and if
+ * none are running, the static priority of the best deadline task running.
+ * The lookups to the other runqueues is done lockless as the occasional wrong
+ * value would be harmless. */
+static int best_smt_bias(struct rq *this_rq)
+{
+ int other_cpu, best_bias = 0;
+
+ for_each_cpu(other_cpu, &this_rq->thread_mask) {
+ struct rq *rq = cpu_rq(other_cpu);
+
+ if (rq_idle(rq))
+ continue;
+ if (unlikely(!rq->online))
+ continue;
+ if (!rq->rq_mm)
+ continue;
+ if (likely(rq->rq_smt_bias > best_bias))
+ best_bias = rq->rq_smt_bias;
+ }
+ return best_bias;
+}
+
+static int task_prio_bias(struct task_struct *p)
+{
+ if (rt_task(p))
+ return 1 << 30;
+ else if (task_running_iso(p))
+ return 1 << 29;
+ else if (task_running_idle(p))
+ return 0;
+ return MAX_PRIO - p->static_prio;
+}
+
+static bool smt_always_schedule(struct task_struct __maybe_unused *p, struct rq __maybe_unused *this_rq)
+{
+ return true;
+}
+
+static bool (*smt_schedule)(struct task_struct *p, struct rq *this_rq) = &smt_always_schedule;
+
+/* We've already decided p can run on CPU, now test if it shouldn't for SMT
+ * nice reasons. */
+static bool smt_should_schedule(struct task_struct *p, struct rq *this_rq)
+{
+ int best_bias, task_bias;
+
+ /* Kernel threads always run */
+ if (unlikely(!p->mm))
+ return true;
+ if (rt_task(p))
+ return true;
+ if (!idleprio_suitable(p))
+ return true;
+ best_bias = best_smt_bias(this_rq);
+ /* The smt siblings are all idle or running IDLEPRIO */
+ if (best_bias < 1)
+ return true;
+ task_bias = task_prio_bias(p);
+ if (task_bias < 1)
+ return false;
+ if (task_bias >= best_bias)
+ return true;
+ /* Dither 25% cpu of normal tasks regardless of nice difference */
+ if (best_bias % 4 == 1)
+ return true;
+ /* Sorry, you lose */
+ return false;
+}
+#else /* CONFIG_SMT_NICE */
+#define smt_schedule(p, this_rq) (true)
+#endif /* CONFIG_SMT_NICE */
+
+static inline void atomic_set_cpu(int cpu, cpumask_t *cpumask)
+{
+ set_bit(cpu, (volatile unsigned long *)cpumask);
+}
+
+/*
+ * The cpu_idle_map stores a bitmap of all the CPUs currently idle to
+ * allow easy lookup of whether any suitable idle CPUs are available.
+ * It's cheaper to maintain a binary yes/no if there are any idle CPUs on the
+ * idle_cpus variable than to do a full bitmask check when we are busy. The
+ * bits are set atomically but read locklessly as occasional false positive /
+ * negative is harmless.
+ */
+static inline void set_cpuidle_map(int cpu)
+{
+ if (likely(cpu_online(cpu)))
+ atomic_set_cpu(cpu, &cpu_idle_map);
+}
+
+static inline void atomic_clear_cpu(int cpu, cpumask_t *cpumask)
+{
+ clear_bit(cpu, (volatile unsigned long *)cpumask);
+}
+
+static inline void clear_cpuidle_map(int cpu)
+{
+ atomic_clear_cpu(cpu, &cpu_idle_map);
+}
+
+static bool suitable_idle_cpus(struct task_struct *p)
+{
+ return (cpumask_intersects(&p->cpus_allowed, &cpu_idle_map));
+}
+
+/*
+ * Resched current on rq. We don't know if rq is local to this CPU nor if it
+ * is locked so we do not use an intermediate variable for the task to avoid
+ * having it dereferenced.
+ */
+static void resched_curr(struct rq *rq)
+{
+ int cpu;
+
+ if (test_tsk_need_resched(rq->curr))
+ return;
+
+ rq->preempt = rq->curr;
+ cpu = rq->cpu;
+
+ /* We're doing this without holding the rq lock if it's not task_rq */
+
+ if (cpu == smp_processor_id()) {
+ set_tsk_need_resched(rq->curr);
+ set_preempt_need_resched();
+ return;
+ }
+
+ if (set_nr_and_not_polling(rq->curr))
+ smp_sched_reschedule(cpu);
+ else
+ trace_sched_wake_idle_without_ipi(cpu);
+}
+
+#define CPUIDLE_DIFF_THREAD (1)
+#define CPUIDLE_DIFF_CORE (2)
+#define CPUIDLE_CACHE_BUSY (4)
+#define CPUIDLE_DIFF_CPU (8)
+#define CPUIDLE_THREAD_BUSY (16)
+#define CPUIDLE_DIFF_NODE (32)
+
+/*
+ * The best idle CPU is chosen according to the CPUIDLE ranking above where the
+ * lowest value would give the most suitable CPU to schedule p onto next. The
+ * order works out to be the following:
+ *
+ * Same thread, idle or busy cache, idle or busy threads
+ * Other core, same cache, idle or busy cache, idle threads.
+ * Same node, other CPU, idle cache, idle threads.
+ * Same node, other CPU, busy cache, idle threads.
+ * Other core, same cache, busy threads.
+ * Same node, other CPU, busy threads.
+ * Other node, other CPU, idle cache, idle threads.
+ * Other node, other CPU, busy cache, idle threads.
+ * Other node, other CPU, busy threads.
+ */
+static int best_mask_cpu(int best_cpu, struct rq *rq, cpumask_t *tmpmask)
+{
+ int best_ranking = CPUIDLE_DIFF_NODE | CPUIDLE_THREAD_BUSY |
+ CPUIDLE_DIFF_CPU | CPUIDLE_CACHE_BUSY | CPUIDLE_DIFF_CORE |
+ CPUIDLE_DIFF_THREAD;
+ int cpu_tmp;
+
+ if (cpumask_test_cpu(best_cpu, tmpmask))
+ goto out;
+
+ for_each_cpu(cpu_tmp, tmpmask) {
+ int ranking, locality;
+ struct rq *tmp_rq;
+
+ ranking = 0;
+ tmp_rq = cpu_rq(cpu_tmp);
+
+ locality = rq->cpu_locality[cpu_tmp];
+#ifdef CONFIG_NUMA
+ if (locality > 3)
+ ranking |= CPUIDLE_DIFF_NODE;
+ else
+#endif
+ if (locality > 2)
+ ranking |= CPUIDLE_DIFF_CPU;
+#ifdef CONFIG_SCHED_MC
+ else if (locality == 2)
+ ranking |= CPUIDLE_DIFF_CORE;
+ else if (!(tmp_rq->cache_idle(tmp_rq)))
+ ranking |= CPUIDLE_CACHE_BUSY;
+#endif
+#ifdef CONFIG_SCHED_SMT
+ if (locality == 1)
+ ranking |= CPUIDLE_DIFF_THREAD;
+ if (!(tmp_rq->siblings_idle(tmp_rq)))
+ ranking |= CPUIDLE_THREAD_BUSY;
+#endif
+ if (ranking < best_ranking) {
+ best_cpu = cpu_tmp;
+ best_ranking = ranking;
+ }
+ }
+out:
+ return best_cpu;
+}
+
+bool cpus_share_cache(int this_cpu, int that_cpu)
+{
+ struct rq *this_rq = cpu_rq(this_cpu);
+
+ return (this_rq->cpu_locality[that_cpu] < 3);
+}
+
+/* As per resched_curr but only will resched idle task */
+static inline void resched_idle(struct rq *rq)
+{
+ if (test_tsk_need_resched(rq->idle))
+ return;
+
+ rq->preempt = rq->idle;
+
+ set_tsk_need_resched(rq->idle);
+
+ if (rq_local(rq)) {
+ set_preempt_need_resched();
+ return;
+ }
+
+ smp_sched_reschedule(rq->cpu);
+}
+
+static struct rq *resched_best_idle(struct task_struct *p, int cpu)
+{
+ cpumask_t tmpmask;
+ struct rq *rq;
+ int best_cpu;
+
+ cpumask_and(&tmpmask, &p->cpus_allowed, &cpu_idle_map);
+ best_cpu = best_mask_cpu(cpu, task_rq(p), &tmpmask);
+ rq = cpu_rq(best_cpu);
+ if (!smt_schedule(p, rq))
+ return NULL;
+ rq->preempt = p;
+ resched_idle(rq);
+ return rq;
+}
+
+static inline void resched_suitable_idle(struct task_struct *p)
+{
+ if (suitable_idle_cpus(p))
+ resched_best_idle(p, task_cpu(p));
+}
+
+static inline struct rq *rq_order(struct rq *rq, int cpu)
+{
+ return rq->rq_order[cpu];
+}
+#else /* CONFIG_SMP */
+static inline void set_cpuidle_map(int cpu)
+{
+}
+
+static inline void clear_cpuidle_map(int cpu)
+{
+}
+
+static inline bool suitable_idle_cpus(struct task_struct *p)
+{
+ return uprq->curr == uprq->idle;
+}
+
+static inline void resched_suitable_idle(struct task_struct *p)
+{
+}
+
+static inline void resched_curr(struct rq *rq)
+{
+ resched_task(rq->curr);
+}
+
+static inline void resched_if_idle(struct rq *rq)
+{
+}
+
+static inline bool rq_local(struct rq *rq)
+{
+ return true;
+}
+
+static inline struct rq *rq_order(struct rq *rq, int cpu)
+{
+ return rq;
+}
+
+static inline bool smt_schedule(struct task_struct *p, struct rq *rq)
+{
+ return true;
+}
+#endif /* CONFIG_SMP */
+
+static inline int normal_prio(struct task_struct *p)
+{
+ if (has_rt_policy(p))
+ return MAX_RT_PRIO - 1 - p->rt_priority;
+ if (idleprio_task(p))
+ return IDLE_PRIO;
+ if (iso_task(p))
+ return ISO_PRIO;
+ return NORMAL_PRIO;
+}
+
+/*
+ * Calculate the current priority, i.e. the priority
+ * taken into account by the scheduler. This value might
+ * be boosted by RT tasks as it will be RT if the task got
+ * RT-boosted. If not then it returns p->normal_prio.
+ */
+static int effective_prio(struct task_struct *p)
+{
+ p->normal_prio = normal_prio(p);
+ /*
+ * If we are RT tasks or we were boosted to RT priority,
+ * keep the priority unchanged. Otherwise, update priority
+ * to the normal priority:
+ */
+ if (!rt_prio(p->prio))
+ return p->normal_prio;
+ return p->prio;
+}
+
+/*
+ * activate_task - move a task to the runqueue. Enter with rq locked.
+ */
+static void activate_task(struct task_struct *p, struct rq *rq)
+{
+ resched_if_idle(rq);
+
+ /*
+ * Sleep time is in units of nanosecs, so shift by 20 to get a
+ * milliseconds-range estimation of the amount of time that the task
+ * spent sleeping:
+ */
+ if (unlikely(prof_on == SLEEP_PROFILING)) {
+ if (p->state == TASK_UNINTERRUPTIBLE)
+ profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
+ (rq->niffies - p->last_ran) >> 20);
+ }
+
+ p->prio = effective_prio(p);
+ if (task_contributes_to_load(p))
+ rq->nr_uninterruptible--;
+
+ enqueue_task(rq, p, 0);
+ p->on_rq = TASK_ON_RQ_QUEUED;
+}
+
+/*
+ * deactivate_task - If it's running, it's not on the runqueue and we can just
+ * decrement the nr_running. Enter with rq locked.
+ */
+static inline void deactivate_task(struct task_struct *p, struct rq *rq)
+{
+ if (task_contributes_to_load(p))
+ rq->nr_uninterruptible++;
+
+ p->on_rq = 0;
+ sched_info_dequeued(rq, p);
+}
+
+#ifdef CONFIG_SMP
+void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
+{
+ struct rq *rq;
+
+ if (task_cpu(p) == new_cpu)
+ return;
+
+ /* Do NOT call set_task_cpu on a currently queued task as we will not
+ * be reliably holding the rq lock after changing CPU. */
+ BUG_ON(task_queued(p));
+ rq = task_rq(p);
+
+#ifdef CONFIG_LOCKDEP
+ /*
+ * The caller should hold either p->pi_lock or rq->lock, when changing
+ * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
+ *
+ * Furthermore, all task_rq users should acquire both locks, see
+ * task_rq_lock().
+ */
+ WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
+ lockdep_is_held(&rq->lock)));
+#endif
+
+ trace_sched_migrate_task(p, new_cpu);
+ perf_event_task_migrate(p);
+
+ /*
+ * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
+ * successfully executed on another CPU. We must ensure that updates of
+ * per-task data have been completed by this moment.
+ */
+ smp_wmb();
+
+ p->wake_cpu = new_cpu;
+
+ if (task_running(rq, p)) {
+ /*
+ * We should only be calling this on a running task if we're
+ * holding rq lock.
+ */
+ lockdep_assert_held(&rq->lock);
+
+ /*
+ * We can't change the task_thread_info CPU on a running task
+ * as p will still be protected by the rq lock of the CPU it
+ * is still running on so we only set the wake_cpu for it to be
+ * lazily updated once off the CPU.
+ */
+ return;
+ }
+
+#ifdef CONFIG_THREAD_INFO_IN_TASK
+ p->cpu = new_cpu;
+#else
+ task_thread_info(p)->cpu = new_cpu;
+#endif
+ /* We're no longer protecting p after this point since we're holding
+ * the wrong runqueue lock. */
+}
+#endif /* CONFIG_SMP */
+
+/*
+ * Move a task off the runqueue and take it to a cpu for it will
+ * become the running task.
+ */
+static inline void take_task(struct rq *rq, int cpu, struct task_struct *p)
+{
+ struct rq *p_rq = task_rq(p);
+
+ dequeue_task(p_rq, p, DEQUEUE_SAVE);
+ if (p_rq != rq) {
+ sched_info_dequeued(p_rq, p);
+ sched_info_queued(rq, p);
+ }
+ set_task_cpu(p, cpu);
+}
+
+/*
+ * Returns a descheduling task to the runqueue unless it is being
+ * deactivated.
+ */
+static inline void return_task(struct task_struct *p, struct rq *rq,
+ int cpu, bool deactivate)
+{
+ if (deactivate)
+ deactivate_task(p, rq);
+ else {
+#ifdef CONFIG_SMP
+ /*
+ * set_task_cpu was called on the running task that doesn't
+ * want to deactivate so it has to be enqueued to a different
+ * CPU and we need its lock. Tag it to be moved with as the
+ * lock is dropped in finish_lock_switch.
+ */
+ if (unlikely(p->wake_cpu != cpu))
+ p->on_rq = TASK_ON_RQ_MIGRATING;
+ else
+#endif
+ enqueue_task(rq, p, ENQUEUE_RESTORE);
+ }
+}
+
+/* Enter with rq lock held. We know p is on the local cpu */
+static inline void __set_tsk_resched(struct task_struct *p)
+{
+ set_tsk_need_resched(p);
+ set_preempt_need_resched();
+}
+
+/**
+ * task_curr - is this task currently executing on a CPU?
+ * @p: the task in question.
+ *
+ * Return: 1 if the task is currently executing. 0 otherwise.
+ */
+inline int task_curr(const struct task_struct *p)
+{
+ return cpu_curr(task_cpu(p)) == p;
+}
+
+#ifdef CONFIG_SMP
+/*
+ * wait_task_inactive - wait for a thread to unschedule.
+ *
+ * If @match_state is nonzero, it's the @p->state value just checked and
+ * not expected to change. If it changes, i.e. @p might have woken up,
+ * then return zero. When we succeed in waiting for @p to be off its CPU,
+ * we return a positive number (its total switch count). If a second call
+ * a short while later returns the same number, the caller can be sure that
+ * @p has remained unscheduled the whole time.
+ *
+ * The caller must ensure that the task *will* unschedule sometime soon,
+ * else this function might spin for a *long* time. This function can't
+ * be called with interrupts off, or it may introduce deadlock with
+ * smp_call_function() if an IPI is sent by the same process we are
+ * waiting to become inactive.
+ */
+unsigned long wait_task_inactive(struct task_struct *p, long match_state)
+{
+ int running, queued;
+ unsigned long flags;
+ unsigned long ncsw;
+ struct rq *rq;
+
+ for (;;) {
+ rq = task_rq(p);
+
+ /*
+ * If the task is actively running on another CPU
+ * still, just relax and busy-wait without holding
+ * any locks.
+ *
+ * NOTE! Since we don't hold any locks, it's not
+ * even sure that "rq" stays as the right runqueue!
+ * But we don't care, since this will return false
+ * if the runqueue has changed and p is actually now
+ * running somewhere else!
+ */
+ while (task_running(rq, p)) {
+ if (match_state && unlikely(p->state != match_state))
+ return 0;
+ cpu_relax();
+ }
+
+ /*
+ * Ok, time to look more closely! We need the rq
+ * lock now, to be *sure*. If we're wrong, we'll
+ * just go back and repeat.
+ */
+ rq = task_rq_lock(p, &flags);
+ trace_sched_wait_task(p);
+ running = task_running(rq, p);
+ queued = task_on_rq_queued(p);
+ ncsw = 0;
+ if (!match_state || p->state == match_state)
+ ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
+ task_rq_unlock(rq, p, &flags);
+
+ /*
+ * If it changed from the expected state, bail out now.
+ */
+ if (unlikely(!ncsw))
+ break;
+
+ /*
+ * Was it really running after all now that we
+ * checked with the proper locks actually held?
+ *
+ * Oops. Go back and try again..
+ */
+ if (unlikely(running)) {
+ cpu_relax();
+ continue;
+ }
+
+ /*
+ * It's not enough that it's not actively running,
+ * it must be off the runqueue _entirely_, and not
+ * preempted!
+ *
+ * So if it was still runnable (but just not actively
+ * running right now), it's preempted, and we should
+ * yield - it could be a while.
+ */
+ if (unlikely(queued)) {
+ ktime_t to = NSEC_PER_SEC / HZ;
+
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ schedule_hrtimeout(&to, HRTIMER_MODE_REL);
+ continue;
+ }
+
+ /*
+ * Ahh, all good. It wasn't running, and it wasn't
+ * runnable, which means that it will never become
+ * running in the future either. We're all done!
+ */
+ break;
+ }
+
+ return ncsw;
+}
+
+/***
+ * kick_process - kick a running thread to enter/exit the kernel
+ * @p: the to-be-kicked thread
+ *
+ * Cause a process which is running on another CPU to enter
+ * kernel-mode, without any delay. (to get signals handled.)
+ *
+ * NOTE: this function doesn't have to take the runqueue lock,
+ * because all it wants to ensure is that the remote task enters
+ * the kernel. If the IPI races and the task has been migrated
+ * to another CPU then no harm is done and the purpose has been
+ * achieved as well.
+ */
+void kick_process(struct task_struct *p)
+{
+ int cpu;
+
+ preempt_disable();
+ cpu = task_cpu(p);
+ if ((cpu != smp_processor_id()) && task_curr(p))
+ smp_sched_reschedule(cpu);
+ preempt_enable();
+}
+EXPORT_SYMBOL_GPL(kick_process);
+#endif
+
+/*
+ * RT tasks preempt purely on priority. SCHED_NORMAL tasks preempt on the
+ * basis of earlier deadlines. SCHED_IDLEPRIO don't preempt anything else or
+ * between themselves, they cooperatively multitask. An idle rq scores as
+ * prio PRIO_LIMIT so it is always preempted.
+ */
+static inline bool
+can_preempt(struct task_struct *p, int prio, u64 deadline)
+{
+ /* Better static priority RT task or better policy preemption */
+ if (p->prio < prio)
+ return true;
+ if (p->prio > prio)
+ return false;
+ if (p->policy == SCHED_BATCH)
+ return false;
+ /* SCHED_NORMAL and ISO will preempt based on deadline */
+ if (!deadline_before(p->deadline, deadline))
+ return false;
+ return true;
+}
+
+#ifdef CONFIG_SMP
+/*
+ * Check to see if p can run on cpu, and if not, whether there are any online
+ * CPUs it can run on instead.
+ */
+static inline bool needs_other_cpu(struct task_struct *p, int cpu)
+{
+ if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed)))
+ return true;
+ return false;
+}
+#define cpu_online_map (*(cpumask_t *)cpu_online_mask)
+
+static void try_preempt(struct task_struct *p, struct rq *this_rq)
+{
+ int i, this_entries = rq_load(this_rq);
+ cpumask_t tmp;
+
+ if (suitable_idle_cpus(p) && resched_best_idle(p, task_cpu(p)))
+ return;
+
+ /* IDLEPRIO tasks never preempt anything but idle */
+ if (p->policy == SCHED_IDLEPRIO)
+ return;
+
+ cpumask_and(&tmp, &cpu_online_map, &p->cpus_allowed);
+
+ for (i = 0; i < num_possible_cpus(); i++) {
+ struct rq *rq = this_rq->rq_order[i];
+
+ if (!cpumask_test_cpu(rq->cpu, &tmp))
+ continue;
+
+ if (!sched_interactive && rq != this_rq && rq_load(rq) <= this_entries)
+ continue;
+ if (smt_schedule(p, rq) && can_preempt(p, rq->rq_prio, rq->rq_deadline)) {
+ /* We set rq->preempting lockless, it's a hint only */
+ rq->preempting = p;
+ resched_curr(rq);
+ return;
+ }
+ }
+}
+
+static int __set_cpus_allowed_ptr(struct task_struct *p,
+ const struct cpumask *new_mask, bool check);
+#else /* CONFIG_SMP */
+static inline bool needs_other_cpu(struct task_struct *p, int cpu)
+{
+ return false;
+}
+
+static void try_preempt(struct task_struct *p, struct rq *this_rq)
+{
+ if (p->policy == SCHED_IDLEPRIO)
+ return;
+ if (can_preempt(p, uprq->rq_prio, uprq->rq_deadline))
+ resched_curr(uprq);
+}
+
+static inline int __set_cpus_allowed_ptr(struct task_struct *p,
+ const struct cpumask *new_mask, bool check)
+{
+ return set_cpus_allowed_ptr(p, new_mask);
+}
+#endif /* CONFIG_SMP */
+
+/*
+ * wake flags
+ */
+#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
+#define WF_FORK 0x02 /* child wakeup after fork */
+#define WF_MIGRATED 0x04 /* internal use, task got migrated */
+
+static void
+ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
+{
+ struct rq *rq;
+
+ if (!schedstat_enabled())
+ return;
+
+ rq = this_rq();
+
+#ifdef CONFIG_SMP
+ if (cpu == rq->cpu)
+ schedstat_inc(rq->ttwu_local);
+ else {
+ struct sched_domain *sd;
+
+ rcu_read_lock();
+ for_each_domain(rq->cpu, sd) {
+ if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
+ schedstat_inc(sd->ttwu_wake_remote);
+ break;
+ }
+ }
+ rcu_read_unlock();
+ }
+
+#endif /* CONFIG_SMP */
+
+ schedstat_inc(rq->ttwu_count);
+}
+
+static inline void ttwu_activate(struct rq *rq, struct task_struct *p)
+{
+ activate_task(p, rq);
+
+ /* if a worker is waking up, notify the workqueue */
+ if (p->flags & PF_WQ_WORKER)
+ wq_worker_waking_up(p, cpu_of(rq));
+}
+
+/*
+ * Mark the task runnable and perform wakeup-preemption.
+ */
+static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
+{
+ /*
+ * Sync wakeups (i.e. those types of wakeups where the waker
+ * has indicated that it will leave the CPU in short order)
+ * don't trigger a preemption if there are no idle cpus,
+ * instead waiting for current to deschedule.
+ */
+ if (wake_flags & WF_SYNC)
+ resched_suitable_idle(p);
+ else
+ try_preempt(p, rq);
+ p->state = TASK_RUNNING;
+ trace_sched_wakeup(p);
+}
+
+static void
+ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
+{
+ lockdep_assert_held(&rq->lock);
+
+#ifdef CONFIG_SMP
+ if (p->sched_contributes_to_load)
+ rq->nr_uninterruptible--;
+#endif
+
+ ttwu_activate(rq, p);
+ ttwu_do_wakeup(rq, p, wake_flags);
+}
+
+/*
+ * Called in case the task @p isn't fully descheduled from its runqueue,
+ * in this case we must do a remote wakeup. Its a 'light' wakeup though,
+ * since all we need to do is flip p->state to TASK_RUNNING, since
+ * the task is still ->on_rq.
+ */
+static int ttwu_remote(struct task_struct *p, int wake_flags)
+{
+ struct rq *rq;
+ int ret = 0;
+
+ rq = __task_rq_lock(p);
+ if (likely(task_on_rq_queued(p))) {
+ ttwu_do_wakeup(rq, p, wake_flags);
+ ret = 1;
+ }
+ __task_rq_unlock(rq);
+
+ return ret;
+}
+
+#ifdef CONFIG_SMP
+void sched_ttwu_pending(void)
+{
+ struct rq *rq = this_rq();
+ struct llist_node *llist = llist_del_all(&rq->wake_list);
+ struct task_struct *p, *t;
+ unsigned long flags;
+
+ if (!llist)
+ return;
+
+ rq_lock_irqsave(rq, &flags);
+
+ llist_for_each_entry_safe(p, t, llist, wake_entry)
+ ttwu_do_activate(rq, p, 0);
+
+ rq_unlock_irqrestore(rq, &flags);
+}
+
+void scheduler_ipi(void)
+{
+ /*
+ * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
+ * TIF_NEED_RESCHED remotely (for the first time) will also send
+ * this IPI.
+ */
+ preempt_fold_need_resched();
+
+ if (llist_empty(&this_rq()->wake_list) && (!idle_cpu(smp_processor_id()) || need_resched()))
+ return;
+
+ /*
+ * Not all reschedule IPI handlers call irq_enter/irq_exit, since
+ * traditionally all their work was done from the interrupt return
+ * path. Now that we actually do some work, we need to make sure
+ * we do call them.
+ *
+ * Some archs already do call them, luckily irq_enter/exit nest
+ * properly.
+ *
+ * Arguably we should visit all archs and update all handlers,
+ * however a fair share of IPIs are still resched only so this would
+ * somewhat pessimize the simple resched case.
+ */
+ irq_enter();
+ sched_ttwu_pending();
+ irq_exit();
+}
+
+static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
+{
+ struct rq *rq = cpu_rq(cpu);
+
+ if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
+ if (!set_nr_if_polling(rq->idle))
+ smp_sched_reschedule(cpu);
+ else
+ trace_sched_wake_idle_without_ipi(cpu);
+ }
+}
+
+void wake_up_if_idle(int cpu)
+{
+ struct rq *rq = cpu_rq(cpu);
+ unsigned long flags;
+
+ rcu_read_lock();
+
+ if (!is_idle_task(rcu_dereference(rq->curr)))
+ goto out;
+
+ if (set_nr_if_polling(rq->idle)) {
+ trace_sched_wake_idle_without_ipi(cpu);
+ } else {
+ rq_lock_irqsave(rq, &flags);
+ if (likely(is_idle_task(rq->curr)))
+ smp_sched_reschedule(cpu);
+ /* Else cpu is not in idle, do nothing here */
+ rq_unlock_irqrestore(rq, &flags);
+ }
+
+out:
+ rcu_read_unlock();
+}
+
+static int valid_task_cpu(struct task_struct *p)
+{
+ cpumask_t valid_mask;
+
+ if (p->flags & PF_KTHREAD)
+ cpumask_and(&valid_mask, &p->cpus_allowed, cpu_online_mask);
+ else
+ cpumask_and(&valid_mask, &p->cpus_allowed, cpu_active_mask);
+
+ if (unlikely(!cpumask_weight(&valid_mask))) {
+ /* Hotplug boot threads do this before the CPU is up */
+ printk(KERN_INFO "SCHED: No cpumask for %s/%d weight %d\n", p->comm, p->pid, cpumask_weight(&p->cpus_allowed));
+ return cpumask_any(&p->cpus_allowed);
+ }
+ return cpumask_any(&valid_mask);
+}
+
+/*
+ * For a task that's just being woken up we have a valuable balancing
+ * opportunity so choose the nearest cache most lightly loaded runqueue.
+ * Entered with rq locked and returns with the chosen runqueue locked.
+ */
+static inline int select_best_cpu(struct task_struct *p)
+{
+ unsigned int idlest = ~0U;
+ struct rq *rq = NULL;
+ int i;
+
+ if (suitable_idle_cpus(p)) {
+ int cpu = task_cpu(p);
+
+ if (unlikely(needs_other_cpu(p, cpu)))
+ cpu = valid_task_cpu(p);
+ rq = resched_best_idle(p, cpu);
+ if (likely(rq))
+ return rq->cpu;
+ }
+
+ for (i = 0; i < num_possible_cpus(); i++) {
+ struct rq *other_rq = task_rq(p)->rq_order[i];
+ int entries;
+
+ if (!other_rq->online)
+ continue;
+ if (needs_other_cpu(p, other_rq->cpu))
+ continue;
+ entries = rq_load(other_rq);
+ if (entries >= idlest)
+ continue;
+ idlest = entries;
+ rq = other_rq;
+ }
+ if (unlikely(!rq))
+ return task_cpu(p);
+ return rq->cpu;
+}
+#else /* CONFIG_SMP */
+static int valid_task_cpu(struct task_struct *p)
+{
+ return 0;
+}
+
+static inline int select_best_cpu(struct task_struct *p)
+{
+ return 0;
+}
+
+static struct rq *resched_best_idle(struct task_struct *p, int cpu)
+{
+ return NULL;
+}
+#endif /* CONFIG_SMP */
+
+static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
+{
+ struct rq *rq = cpu_rq(cpu);
+
+#if defined(CONFIG_SMP)
+ if (!cpus_share_cache(smp_processor_id(), cpu)) {
+ sched_clock_cpu(cpu); /* Sync clocks across CPUs */
+ ttwu_queue_remote(p, cpu, wake_flags);
+ return;
+ }
+#endif
+ rq_lock(rq);
+ ttwu_do_activate(rq, p, wake_flags);
+ rq_unlock(rq);
+}
+
+/***
+ * try_to_wake_up - wake up a thread
+ * @p: the thread to be awakened
+ * @state: the mask of task states that can be woken
+ * @wake_flags: wake modifier flags (WF_*)
+ *
+ * Put it on the run-queue if it's not already there. The "current"
+ * thread is always on the run-queue (except when the actual
+ * re-schedule is in progress), and as such you're allowed to do
+ * the simpler "current->state = TASK_RUNNING" to mark yourself
+ * runnable without the overhead of this.
+ *
+ * Return: %true if @p was woken up, %false if it was already running.
+ * or @state didn't match @p's state.
+ */
+static int
+try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
+{
+ unsigned long flags;
+ int cpu, success = 0;
+
+ /*
+ * If we are going to wake up a thread waiting for CONDITION we
+ * need to ensure that CONDITION=1 done by the caller can not be
+ * reordered with p->state check below. This pairs with mb() in
+ * set_current_state() the waiting thread does.
+ */
+ raw_spin_lock_irqsave(&p->pi_lock, flags);
+ smp_mb__after_spinlock();
+ /* state is a volatile long, どうして、分からない */
+ if (!((unsigned int)p->state & state))
+ goto out;
+
+ trace_sched_waking(p);
+
+ /* We're going to change ->state: */
+ success = 1;
+ cpu = task_cpu(p);
+
+ /*
+ * Ensure we load p->on_rq _after_ p->state, otherwise it would
+ * be possible to, falsely, observe p->on_rq == 0 and get stuck
+ * in smp_cond_load_acquire() below.
+ *
+ * sched_ttwu_pending() try_to_wake_up()
+ * [S] p->on_rq = 1; [L] P->state
+ * UNLOCK rq->lock -----.
+ * \
+ * +--- RMB
+ * schedule() /
+ * LOCK rq->lock -----'
+ * UNLOCK rq->lock
+ *
+ * [task p]
+ * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
+ *
+ * Pairs with the UNLOCK+LOCK on rq->lock from the
+ * last wakeup of our task and the schedule that got our task
+ * current.
+ */
+ smp_rmb();
+ if (p->on_rq && ttwu_remote(p, wake_flags))
+ goto stat;
+
+#ifdef CONFIG_SMP
+ /*
+ * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
+ * possible to, falsely, observe p->on_cpu == 0.
+ *
+ * One must be running (->on_cpu == 1) in order to remove oneself
+ * from the runqueue.
+ *
+ * [S] ->on_cpu = 1; [L] ->on_rq
+ * UNLOCK rq->lock
+ * RMB
+ * LOCK rq->lock
+ * [S] ->on_rq = 0; [L] ->on_cpu
+ *
+ * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
+ * from the consecutive calls to schedule(); the first switching to our
+ * task, the second putting it to sleep.
+ */
+ smp_rmb();
+
+ /*
+ * If the owning (remote) CPU is still in the middle of schedule() with
+ * this task as prev, wait until its done referencing the task.
+ *
+ * Pairs with the smp_store_release() in finish_lock_switch().
+ *
+ * This ensures that tasks getting woken will be fully ordered against
+ * their previous state and preserve Program Order.
+ */
+ smp_cond_load_acquire(&p->on_cpu, !VAL);
+
+ p->sched_contributes_to_load = !!task_contributes_to_load(p);
+ p->state = TASK_WAKING;
+
+ if (p->in_iowait) {
+ delayacct_blkio_end();
+ atomic_dec(&task_rq(p)->nr_iowait);
+ }
+
+ cpu = select_best_cpu(p);
+ if (task_cpu(p) != cpu)
+ set_task_cpu(p, cpu);
+
+#else /* CONFIG_SMP */
+
+ if (p->in_iowait) {
+ delayacct_blkio_end();
+ atomic_dec(&task_rq(p)->nr_iowait);
+ }
+
+#endif /* CONFIG_SMP */
+
+ ttwu_queue(p, cpu, wake_flags);
+stat:
+ ttwu_stat(p, cpu, wake_flags);
+out:
+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
+
+ return success;
+}
+
+/**
+ * try_to_wake_up_local - try to wake up a local task with rq lock held
+ * @p: the thread to be awakened
+ *
+ * Put @p on the run-queue if it's not already there. The caller must
+ * ensure that rq is locked and, @p is not the current task.
+ * rq stays locked over invocation.
+ */
+static void try_to_wake_up_local(struct task_struct *p)
+{
+ struct rq *rq = task_rq(p);
+
+ if (WARN_ON_ONCE(rq != this_rq()) ||
+ WARN_ON_ONCE(p == current))
+ return;
+
+ lockdep_assert_held(&rq->lock);
+
+ if (!raw_spin_trylock(&p->pi_lock)) {
+ /*
+ * This is OK, because current is on_cpu, which avoids it being
+ * picked for load-balance and preemption/IRQs are still
+ * disabled avoiding further scheduler activity on it and we've
+ * not yet picked a replacement task.
+ */
+ rq_unlock(rq);
+ raw_spin_lock(&p->pi_lock);
+ rq_lock(rq);
+ }
+
+ if (!(p->state & TASK_NORMAL))
+ goto out;
+
+ trace_sched_waking(p);
+
+ if (!task_on_rq_queued(p)) {
+ if (p->in_iowait) {
+ delayacct_blkio_end();
+ atomic_dec(&rq->nr_iowait);
+ }
+ ttwu_activate(rq, p);
+ }
+
+ ttwu_do_wakeup(rq, p, 0);
+ ttwu_stat(p, smp_processor_id(), 0);
+out:
+ raw_spin_unlock(&p->pi_lock);
+}
+
+/**
+ * wake_up_process - Wake up a specific process
+ * @p: The process to be woken up.
+ *
+ * Attempt to wake up the nominated process and move it to the set of runnable
+ * processes.
+ *
+ * Return: 1 if the process was woken up, 0 if it was already running.
+ *
+ * It may be assumed that this function implies a write memory barrier before
+ * changing the task state if and only if any tasks are woken up.
+ */
+int wake_up_process(struct task_struct *p)
+{
+ return try_to_wake_up(p, TASK_NORMAL, 0);
+}
+EXPORT_SYMBOL(wake_up_process);
+
+int wake_up_state(struct task_struct *p, unsigned int state)
+{
+ return try_to_wake_up(p, state, 0);
+}
+
+static void time_slice_expired(struct task_struct *p, struct rq *rq);
+
+/*
+ * Perform scheduler related setup for a newly forked process p.
+ * p is forked by current.
+ */
+int sched_fork(unsigned long __maybe_unused clone_flags, struct task_struct *p)
+{
+ unsigned long flags;
+ int cpu = get_cpu();
+
+#ifdef CONFIG_PREEMPT_NOTIFIERS
+ INIT_HLIST_HEAD(&p->preempt_notifiers);
+#endif
+ /*
+ * We mark the process as NEW here. This guarantees that
+ * nobody will actually run it, and a signal or other external
+ * event cannot wake it up and insert it on the runqueue either.
+ */
+ p->state = TASK_NEW;
+
+ /*
+ * The process state is set to the same value of the process executing
+ * do_fork() code. That is running. This guarantees that nobody will
+ * actually run it, and a signal or other external event cannot wake
+ * it up and insert it on the runqueue either.
+ */
+
+ /* Should be reset in fork.c but done here for ease of MuQSS patching */
+ p->on_cpu =
+ p->on_rq =
+ p->utime =
+ p->stime =
+ p->sched_time =
+ p->stime_ns =
+ p->utime_ns = 0;
+ skiplist_node_init(&p->node);
+
+ /*
+ * Revert to default priority/policy on fork if requested.
+ */
+ if (unlikely(p->sched_reset_on_fork)) {
+ if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
+ p->policy = SCHED_NORMAL;
+ p->normal_prio = normal_prio(p);
+ }
+
+ if (PRIO_TO_NICE(p->static_prio) < 0) {
+ p->static_prio = NICE_TO_PRIO(0);
+ p->normal_prio = p->static_prio;
+ }
+
+ /*
+ * We don't need the reset flag anymore after the fork. It has
+ * fulfilled its duty:
+ */
+ p->sched_reset_on_fork = 0;
+ }
+
+ /*
+ * Silence PROVE_RCU.
+ */
+ raw_spin_lock_irqsave(&p->pi_lock, flags);
+ set_task_cpu(p, cpu);
+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
+
+#ifdef CONFIG_SCHED_INFO
+ if (unlikely(sched_info_on()))
+ memset(&p->sched_info, 0, sizeof(p->sched_info));
+#endif
+ init_task_preempt_count(p);
+
+ put_cpu();
+ return 0;
+}
+
+#ifdef CONFIG_SCHEDSTATS
+
+DEFINE_STATIC_KEY_FALSE(sched_schedstats);
+static bool __initdata __sched_schedstats = false;
+
+static void set_schedstats(bool enabled)
+{
+ if (enabled)
+ static_branch_enable(&sched_schedstats);
+ else
+ static_branch_disable(&sched_schedstats);
+}
+
+void force_schedstat_enabled(void)
+{
+ if (!schedstat_enabled()) {
+ pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
+ static_branch_enable(&sched_schedstats);
+ }
+}
+
+static int __init setup_schedstats(char *str)
+{
+ int ret = 0;
+ if (!str)
+ goto out;
+
+ /*
+ * This code is called before jump labels have been set up, so we can't
+ * change the static branch directly just yet. Instead set a temporary
+ * variable so init_schedstats() can do it later.
+ */
+ if (!strcmp(str, "enable")) {
+ __sched_schedstats = true;
+ ret = 1;
+ } else if (!strcmp(str, "disable")) {
+ __sched_schedstats = false;
+ ret = 1;
+ }
+out:
+ if (!ret)
+ pr_warn("Unable to parse schedstats=\n");
+
+ return ret;
+}
+__setup("schedstats=", setup_schedstats);
+
+static void __init init_schedstats(void)
+{
+ set_schedstats(__sched_schedstats);
+}
+
+#ifdef CONFIG_PROC_SYSCTL
+int sysctl_schedstats(struct ctl_table *table, int write,
+ void __user *buffer, size_t *lenp, loff_t *ppos)
+{
+ struct ctl_table t;
+ int err;
+ int state = static_branch_likely(&sched_schedstats);
+
+ if (write && !capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ t = *table;
+ t.data = &state;
+ err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
+ if (err < 0)
+ return err;
+ if (write)
+ set_schedstats(state);
+ return err;
+}
+#endif /* CONFIG_PROC_SYSCTL */
+#else /* !CONFIG_SCHEDSTATS */
+static inline void init_schedstats(void) {}
+#endif /* CONFIG_SCHEDSTATS */
+
+static void update_cpu_clock_switch(struct rq *rq, struct task_struct *p);
+
+static void account_task_cpu(struct rq *rq, struct task_struct *p)
+{
+ update_clocks(rq);
+ /* This isn't really a context switch but accounting is the same */
+ update_cpu_clock_switch(rq, p);
+ p->last_ran = rq->niffies;
+}
+
+bool sched_smp_initialized __read_mostly;
+
+static inline int hrexpiry_enabled(struct rq *rq)
+{
+ if (unlikely(!cpu_active(cpu_of(rq)) || !sched_smp_initialized))
+ return 0;
+ return hrtimer_is_hres_active(&rq->hrexpiry_timer);
+}
+
+/*
+ * Use HR-timers to deliver accurate preemption points.
+ */
+static inline void hrexpiry_clear(struct rq *rq)
+{
+ if (!hrexpiry_enabled(rq))
+ return;
+ if (hrtimer_active(&rq->hrexpiry_timer))
+ hrtimer_cancel(&rq->hrexpiry_timer);
+}
+
+/*
+ * High-resolution time_slice expiry.
+ * Runs from hardirq context with interrupts disabled.
+ */
+static enum hrtimer_restart hrexpiry(struct hrtimer *timer)
+{
+ struct rq *rq = container_of(timer, struct rq, hrexpiry_timer);
+ struct task_struct *p;
+
+ /* This can happen during CPU hotplug / resume */
+ if (unlikely(cpu_of(rq) != smp_processor_id()))
+ goto out;
+
+ /*
+ * We're doing this without the runqueue lock but this should always
+ * be run on the local CPU. Time slice should run out in __schedule
+ * but we set it to zero here in case niffies is slightly less.
+ */
+ p = rq->curr;
+ p->time_slice = 0;
+ __set_tsk_resched(p);
+out:
+ return HRTIMER_NORESTART;
+}
+
+/*
+ * Called to set the hrexpiry timer state.
+ *
+ * called with irqs disabled from the local CPU only
+ */
+static void hrexpiry_start(struct rq *rq, u64 delay)
+{
+ if (!hrexpiry_enabled(rq))
+ return;
+
+ hrtimer_start(&rq->hrexpiry_timer, ns_to_ktime(delay),
+ HRTIMER_MODE_REL_PINNED);
+}
+
+static void init_rq_hrexpiry(struct rq *rq)
+{
+ hrtimer_init(&rq->hrexpiry_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+ rq->hrexpiry_timer.function = hrexpiry;
+}
+
+static inline int rq_dither(struct rq *rq)
+{
+ if (!hrexpiry_enabled(rq))
+ return HALF_JIFFY_US;
+ return 0;
+}
+
+/*
+ * wake_up_new_task - wake up a newly created task for the first time.
+ *
+ * This function will do some initial scheduler statistics housekeeping
+ * that must be done for every newly created context, then puts the task
+ * on the runqueue and wakes it.
+ */
+void wake_up_new_task(struct task_struct *p)
+{
+ struct task_struct *parent, *rq_curr;
+ struct rq *rq, *new_rq;
+ unsigned long flags;
+
+ parent = p->parent;
+
+ raw_spin_lock_irqsave(&p->pi_lock, flags);
+ p->state = TASK_RUNNING;
+ /* Task_rq can't change yet on a new task */
+ new_rq = rq = task_rq(p);
+ if (unlikely(needs_other_cpu(p, task_cpu(p)))) {
+ set_task_cpu(p, valid_task_cpu(p));
+ new_rq = task_rq(p);
+ }
+
+ double_rq_lock(rq, new_rq);
+ rq_curr = rq->curr;
+
+ /*
+ * Make sure we do not leak PI boosting priority to the child.
+ */
+ p->prio = rq_curr->normal_prio;
+
+ trace_sched_wakeup_new(p);
+
+ /*
+ * Share the timeslice between parent and child, thus the
+ * total amount of pending timeslices in the system doesn't change,
+ * resulting in more scheduling fairness. If it's negative, it won't
+ * matter since that's the same as being 0. rq->rq_deadline is only
+ * modified within schedule() so it is always equal to
+ * current->deadline.
+ */
+ account_task_cpu(rq, rq_curr);
+ p->last_ran = rq_curr->last_ran;
+ if (likely(rq_curr->policy != SCHED_FIFO)) {
+ rq_curr->time_slice /= 2;
+ if (rq_curr->time_slice < RESCHED_US) {
+ /*
+ * Forking task has run out of timeslice. Reschedule it and
+ * start its child with a new time slice and deadline. The
+ * child will end up running first because its deadline will
+ * be slightly earlier.
+ */
+ __set_tsk_resched(rq_curr);
+ time_slice_expired(p, new_rq);
+ if (suitable_idle_cpus(p))
+ resched_best_idle(p, task_cpu(p));
+ else if (unlikely(rq != new_rq))
+ try_preempt(p, new_rq);
+ } else {
+ p->time_slice = rq_curr->time_slice;
+ if (rq_curr == parent && rq == new_rq && !suitable_idle_cpus(p)) {
+ /*
+ * The VM isn't cloned, so we're in a good position to
+ * do child-runs-first in anticipation of an exec. This
+ * usually avoids a lot of COW overhead.
+ */
+ __set_tsk_resched(rq_curr);
+ } else {
+ /*
+ * Adjust the hrexpiry since rq_curr will keep
+ * running and its timeslice has been shortened.
+ */
+ hrexpiry_start(rq, US_TO_NS(rq_curr->time_slice));
+ try_preempt(p, new_rq);
+ }
+ }
+ } else {
+ time_slice_expired(p, new_rq);
+ try_preempt(p, new_rq);
+ }
+ activate_task(p, new_rq);
+ double_rq_unlock(rq, new_rq);
+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
+}
+
+#ifdef CONFIG_PREEMPT_NOTIFIERS
+
+static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
+
+void preempt_notifier_inc(void)
+{
+ static_key_slow_inc(&preempt_notifier_key);
+}
+EXPORT_SYMBOL_GPL(preempt_notifier_inc);
+
+void preempt_notifier_dec(void)
+{
+ static_key_slow_dec(&preempt_notifier_key);
+}
+EXPORT_SYMBOL_GPL(preempt_notifier_dec);
+
+/**
+ * preempt_notifier_register - tell me when current is being preempted & rescheduled
+ * @notifier: notifier struct to register
+ */
+void preempt_notifier_register(struct preempt_notifier *notifier)
+{
+ if (!static_key_false(&preempt_notifier_key))
+ WARN(1, "registering preempt_notifier while notifiers disabled\n");
+
+ hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
+}
+EXPORT_SYMBOL_GPL(preempt_notifier_register);
+
+/**
+ * preempt_notifier_unregister - no longer interested in preemption notifications
+ * @notifier: notifier struct to unregister
+ *
+ * This is *not* safe to call from within a preemption notifier.
+ */
+void preempt_notifier_unregister(struct preempt_notifier *notifier)
+{
+ hlist_del(¬ifier->link);
+}
+EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
+
+static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
+{
+ struct preempt_notifier *notifier;
+
+ hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
+ notifier->ops->sched_in(notifier, raw_smp_processor_id());
+}
+
+static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
+{
+ if (static_key_false(&preempt_notifier_key))
+ __fire_sched_in_preempt_notifiers(curr);
+}
+
+static void
+__fire_sched_out_preempt_notifiers(struct task_struct *curr,
+ struct task_struct *next)
+{
+ struct preempt_notifier *notifier;
+
+ hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
+ notifier->ops->sched_out(notifier, next);
+}
+
+static __always_inline void
+fire_sched_out_preempt_notifiers(struct task_struct *curr,
+ struct task_struct *next)
+{
+ if (static_key_false(&preempt_notifier_key))
+ __fire_sched_out_preempt_notifiers(curr, next);
+}
+
+#else /* !CONFIG_PREEMPT_NOTIFIERS */
+
+static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
+{
+}
+
+static inline void
+fire_sched_out_preempt_notifiers(struct task_struct *curr,
+ struct task_struct *next)
+{
+}
+
+#endif /* CONFIG_PREEMPT_NOTIFIERS */
+
+/**
+ * prepare_task_switch - prepare to switch tasks
+ * @rq: the runqueue preparing to switch
+ * @next: the task we are going to switch to.
+ *
+ * This is called with the rq lock held and interrupts off. It must
+ * be paired with a subsequent finish_task_switch after the context
+ * switch.
+ *
+ * prepare_task_switch sets up locking and calls architecture specific
+ * hooks.
+ */
+static inline void
+prepare_task_switch(struct rq *rq, struct task_struct *prev,
+ struct task_struct *next)
+{
+ sched_info_switch(rq, prev, next);
+ perf_event_task_sched_out(prev, next);
+ fire_sched_out_preempt_notifiers(prev, next);
+ prepare_lock_switch(rq, next);
+ prepare_arch_switch(next);
+}
+
+/**
+ * finish_task_switch - clean up after a task-switch
+ * @rq: runqueue associated with task-switch
+ * @prev: the thread we just switched away from.
+ *
+ * finish_task_switch must be called after the context switch, paired
+ * with a prepare_task_switch call before the context switch.
+ * finish_task_switch will reconcile locking set up by prepare_task_switch,
+ * and do any other architecture-specific cleanup actions.
+ *
+ * Note that we may have delayed dropping an mm in context_switch(). If
+ * so, we finish that here outside of the runqueue lock. (Doing it
+ * with the lock held can cause deadlocks; see schedule() for
+ * details.)
+ *
+ * The context switch have flipped the stack from under us and restored the
+ * local variables which were saved when this task called schedule() in the
+ * past. prev == current is still correct but we need to recalculate this_rq
+ * because prev may have moved to another CPU.
+ */
+static void finish_task_switch(struct task_struct *prev)
+ __releases(rq->lock)
+{
+ struct rq *rq = this_rq();
+ struct mm_struct *mm = rq->prev_mm;
+ long prev_state;
+
+ /*
+ * The previous task will have left us with a preempt_count of 2
+ * because it left us after:
+ *
+ * schedule()
+ * preempt_disable(); // 1
+ * __schedule()
+ * raw_spin_lock_irq(&rq->lock) // 2
+ *
+ * Also, see FORK_PREEMPT_COUNT.
+ */
+ if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
+ "corrupted preempt_count: %s/%d/0x%x\n",
+ current->comm, current->pid, preempt_count()))
+ preempt_count_set(FORK_PREEMPT_COUNT);
+
+ rq->prev_mm = NULL;
+
+ /*
+ * A task struct has one reference for the use as "current".
+ * If a task dies, then it sets TASK_DEAD in tsk->state and calls
+ * schedule one last time. The schedule call will never return, and
+ * the scheduled task must drop that reference.
+ *
+ * We must observe prev->state before clearing prev->on_cpu (in
+ * finish_lock_switch), otherwise a concurrent wakeup can get prev
+ * running on another CPU and we could rave with its RUNNING -> DEAD
+ * transition, resulting in a double drop.
+ */
+ prev_state = prev->state;
+ vtime_task_switch(prev);
+ perf_event_task_sched_in(prev, current);
+ /*
+ * The membarrier system call requires a full memory barrier
+ * after storing to rq->curr, before going back to user-space.
+ *
+ * TODO: This smp_mb__after_unlock_lock can go away if PPC end
+ * up adding a full barrier to switch_mm(), or we should figure
+ * out if a smp_mb__after_unlock_lock is really the proper API
+ * to use.
+ */
+ smp_mb__after_unlock_lock();
+ finish_lock_switch(rq, prev);
+ finish_arch_post_lock_switch();
+
+ fire_sched_in_preempt_notifiers(current);
+ if (mm)
+ mmdrop(mm);
+ if (unlikely(prev_state == TASK_DEAD)) {
+ /*
+ * Remove function-return probe instances associated with this
+ * task and put them back on the free list.
+ */
+ kprobe_flush_task(prev);
+
+ /* Task is done with its stack. */
+ put_task_stack(prev);
+
+ put_task_struct(prev);
+ }
+}
+
+/**
+ * schedule_tail - first thing a freshly forked thread must call.
+ * @prev: the thread we just switched away from.
+ */
+asmlinkage __visible void schedule_tail(struct task_struct *prev)
+{
+ /*
+ * New tasks start with FORK_PREEMPT_COUNT, see there and
+ * finish_task_switch() for details.
+ *
+ * finish_task_switch() will drop rq->lock() and lower preempt_count
+ * and the preempt_enable() will end up enabling preemption (on
+ * PREEMPT_COUNT kernels).
+ */
+
+ finish_task_switch(prev);
+ preempt_enable();
+
+ if (current->set_child_tid)
+ put_user(task_pid_vnr(current), current->set_child_tid);
+}
+
+/*
+ * context_switch - switch to the new MM and the new thread's register state.
+ */
+static __always_inline void
+context_switch(struct rq *rq, struct task_struct *prev,
+ struct task_struct *next)
+{
+ struct mm_struct *mm, *oldmm;
+
+ prepare_task_switch(rq, prev, next);
+
+ mm = next->mm;
+ oldmm = prev->active_mm;
+ /*
+ * For paravirt, this is coupled with an exit in switch_to to
+ * combine the page table reload and the switch backend into
+ * one hypercall.
+ */
+ arch_start_context_switch(prev);
+
+ if (!mm) {
+ next->active_mm = oldmm;
+ mmgrab(oldmm);
+ enter_lazy_tlb(oldmm, next);
+ } else
+ switch_mm_irqs_off(oldmm, mm, next);
+
+ if (!prev->mm) {
+ prev->active_mm = NULL;
+ rq->prev_mm = oldmm;
+ }
+ /*
+ * Since the runqueue lock will be released by the next
+ * task (which is an invalid locking op but in the case
+ * of the scheduler it's an obvious special-case), so we
+ * do an early lockdep release here:
+ */
+ spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
+
+ /* Here we just switch the register state and the stack. */
+ switch_to(prev, next, prev);
+ barrier();
+
+ finish_task_switch(prev);
+}
+
+/*
+ * nr_running, nr_uninterruptible and nr_context_switches:
+ *
+ * externally visible scheduler statistics: current number of runnable
+ * threads, total number of context switches performed since bootup.
+ */
+unsigned long nr_running(void)
+{
+ unsigned long i, sum = 0;
+
+ for_each_online_cpu(i)
+ sum += cpu_rq(i)->nr_running;
+
+ return sum;
+}
+
+static unsigned long nr_uninterruptible(void)
+{
+ unsigned long i, sum = 0;
+
+ for_each_online_cpu(i)
+ sum += cpu_rq(i)->nr_uninterruptible;
+
+ return sum;
+}
+
+/*
+ * Check if only the current task is running on the CPU.
+ *
+ * Caution: this function does not check that the caller has disabled
+ * preemption, thus the result might have a time-of-check-to-time-of-use
+ * race. The caller is responsible to use it correctly, for example:
+ *
+ * - from a non-preemptable section (of course)
+ *
+ * - from a thread that is bound to a single CPU
+ *
+ * - in a loop with very short iterations (e.g. a polling loop)
+ */
+bool single_task_running(void)
+{
+ struct rq *rq = cpu_rq(smp_processor_id());
+
+ if (rq_load(rq) == 1)
+ return true;
+ else
+ return false;
+}
+EXPORT_SYMBOL(single_task_running);
+
+unsigned long long nr_context_switches(void)
+{
+ int i;
+ unsigned long long sum = 0;
+
+ for_each_possible_cpu(i)
+ sum += cpu_rq(i)->nr_switches;
+
+ return sum;
+}
+
+/*
+ * IO-wait accounting, and how its mostly bollocks (on SMP).
+ *
+ * The idea behind IO-wait account is to account the idle time that we could
+ * have spend running if it were not for IO. That is, if we were to improve the
+ * storage performance, we'd have a proportional reduction in IO-wait time.
+ *
+ * This all works nicely on UP, where, when a task blocks on IO, we account
+ * idle time as IO-wait, because if the storage were faster, it could've been
+ * running and we'd not be idle.
+ *
+ * This has been extended to SMP, by doing the same for each CPU. This however
+ * is broken.
+ *
+ * Imagine for instance the case where two tasks block on one CPU, only the one
+ * CPU will have IO-wait accounted, while the other has regular idle. Even
+ * though, if the storage were faster, both could've ran at the same time,
+ * utilising both CPUs.
+ *
+ * This means, that when looking globally, the current IO-wait accounting on
+ * SMP is a lower bound, by reason of under accounting.
+ *
+ * Worse, since the numbers are provided per CPU, they are sometimes
+ * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
+ * associated with any one particular CPU, it can wake to another CPU than it
+ * blocked on. This means the per CPU IO-wait number is meaningless.
+ *
+ * Task CPU affinities can make all that even more 'interesting'.
+ */
+
+unsigned long nr_iowait(void)
+{
+ unsigned long i, sum = 0;
+
+ for_each_possible_cpu(i)
+ sum += atomic_read(&cpu_rq(i)->nr_iowait);
+
+ return sum;
+}
+
+/*
+ * Consumers of these two interfaces, like for example the cpufreq menu
+ * governor are using nonsensical data. Boosting frequency for a CPU that has
+ * IO-wait which might not even end up running the task when it does become
+ * runnable.
+ */
+
+unsigned long nr_iowait_cpu(int cpu)
+{
+ struct rq *this = cpu_rq(cpu);
+ return atomic_read(&this->nr_iowait);
+}
+
+unsigned long nr_active(void)
+{
+ return nr_running() + nr_uninterruptible();
+}
+
+/*
+ * I/O wait is the number of running or queued tasks with their ->rq pointer
+ * set to this cpu as being the CPU they're more likely to run on.
+ */
+void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
+{
+ struct rq *rq = this_rq();
+
+ *nr_waiters = atomic_read(&rq->nr_iowait);
+ *load = rq_load(rq);
+}
+
+/* Variables and functions for calc_load */
+static unsigned long calc_load_update;
+unsigned long avenrun[3];
+EXPORT_SYMBOL(avenrun);
+
+/**
+ * get_avenrun - get the load average array
+ * @loads: pointer to dest load array
+ * @offset: offset to add
+ * @shift: shift count to shift the result left
+ *
+ * These values are estimates at best, so no need for locking.
+ */
+void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
+{
+ loads[0] = (avenrun[0] + offset) << shift;
+ loads[1] = (avenrun[1] + offset) << shift;
+ loads[2] = (avenrun[2] + offset) << shift;
+}
+
+static unsigned long
+calc_load(unsigned long load, unsigned long exp, unsigned long active)
+{
+ unsigned long newload;
+
+ newload = load * exp + active * (FIXED_1 - exp);
+ if (active >= load)
+ newload += FIXED_1-1;
+
+ return newload / FIXED_1;
+}
+
+/*
+ * calc_load - update the avenrun load estimates every LOAD_FREQ seconds.
+ */
+void calc_global_load(unsigned long ticks)
+{
+ long active;
+
+ if (time_before(jiffies, READ_ONCE(calc_load_update)))
+ return;
+ active = nr_active() * FIXED_1;
+
+ avenrun[0] = calc_load(avenrun[0], EXP_1, active);
+ avenrun[1] = calc_load(avenrun[1], EXP_5, active);
+ avenrun[2] = calc_load(avenrun[2], EXP_15, active);
+
+ calc_load_update = jiffies + LOAD_FREQ;
+}
+
+DEFINE_PER_CPU(struct kernel_stat, kstat);
+DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
+
+EXPORT_PER_CPU_SYMBOL(kstat);
+EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
+
+#ifdef CONFIG_PARAVIRT
+static inline u64 steal_ticks(u64 steal)
+{
+ if (unlikely(steal > NSEC_PER_SEC))
+ return div_u64(steal, TICK_NSEC);
+
+ return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
+}
+#endif
+
+#ifndef nsecs_to_cputime
+# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
+#endif
+
+/*
+ * On each tick, add the number of nanoseconds to the unbanked variables and
+ * once one tick's worth has accumulated, account it allowing for accurate
+ * sub-tick accounting and totals.
+ */
+static void pc_idle_time(struct rq *rq, struct task_struct *idle, unsigned long ns)
+{
+ u64 *cpustat = kcpustat_this_cpu->cpustat;
+ unsigned long ticks;
+
+ if (atomic_read(&rq->nr_iowait) > 0) {
+ rq->iowait_ns += ns;
+ if (rq->iowait_ns >= JIFFY_NS) {
+ ticks = NS_TO_JIFFIES(rq->iowait_ns);
+ cpustat[CPUTIME_IOWAIT] += (__force u64)TICK_NSEC * ticks;
+ rq->iowait_ns %= JIFFY_NS;
+ }
+ } else {
+ rq->idle_ns += ns;
+ if (rq->idle_ns >= JIFFY_NS) {
+ ticks = NS_TO_JIFFIES(rq->idle_ns);
+ cpustat[CPUTIME_IDLE] += (__force u64)TICK_NSEC * ticks;
+ rq->idle_ns %= JIFFY_NS;
+ }
+ }
+ acct_update_integrals(idle);
+}
+
+static void pc_system_time(struct rq *rq, struct task_struct *p,
+ int hardirq_offset, unsigned long ns)
+{
+ u64 *cpustat = kcpustat_this_cpu->cpustat;
+ unsigned long ticks;
+
+ p->stime_ns += ns;
+ if (p->stime_ns >= JIFFY_NS) {
+ ticks = NS_TO_JIFFIES(p->stime_ns);
+ p->stime_ns %= JIFFY_NS;
+ p->stime += (__force u64)TICK_NSEC * ticks;
+ account_group_system_time(p, TICK_NSEC * ticks);
+ }
+ p->sched_time += ns;
+ account_group_exec_runtime(p, ns);
+
+ if (hardirq_count() - hardirq_offset) {
+ rq->irq_ns += ns;
+ if (rq->irq_ns >= JIFFY_NS) {
+ ticks = NS_TO_JIFFIES(rq->irq_ns);
+ cpustat[CPUTIME_IRQ] += (__force u64)TICK_NSEC * ticks;
+ rq->irq_ns %= JIFFY_NS;
+ }
+ } else if (in_serving_softirq()) {
+ rq->softirq_ns += ns;
+ if (rq->softirq_ns >= JIFFY_NS) {
+ ticks = NS_TO_JIFFIES(rq->softirq_ns);
+ cpustat[CPUTIME_SOFTIRQ] += (__force u64)TICK_NSEC * ticks;
+ rq->softirq_ns %= JIFFY_NS;
+ }
+ } else {
+ rq->system_ns += ns;
+ if (rq->system_ns >= JIFFY_NS) {
+ ticks = NS_TO_JIFFIES(rq->system_ns);
+ cpustat[CPUTIME_SYSTEM] += (__force u64)TICK_NSEC * ticks;
+ rq->system_ns %= JIFFY_NS;
+ }
+ }
+ acct_update_integrals(p);
+}
+
+static void pc_user_time(struct rq *rq, struct task_struct *p, unsigned long ns)
+{
+ u64 *cpustat = kcpustat_this_cpu->cpustat;
+ unsigned long ticks;
+
+ p->utime_ns += ns;
+ if (p->utime_ns >= JIFFY_NS) {
+ ticks = NS_TO_JIFFIES(p->utime_ns);
+ p->utime_ns %= JIFFY_NS;
+ p->utime += (__force u64)TICK_NSEC * ticks;
+ account_group_user_time(p, TICK_NSEC * ticks);
+ }
+ p->sched_time += ns;
+ account_group_exec_runtime(p, ns);
+
+ if (this_cpu_ksoftirqd() == p) {
+ /*
+ * ksoftirqd time do not get accounted in cpu_softirq_time.
+ * So, we have to handle it separately here.
+ */
+ rq->softirq_ns += ns;
+ if (rq->softirq_ns >= JIFFY_NS) {
+ ticks = NS_TO_JIFFIES(rq->softirq_ns);
+ cpustat[CPUTIME_SOFTIRQ] += (__force u64)TICK_NSEC * ticks;
+ rq->softirq_ns %= JIFFY_NS;
+ }
+ }
+
+ if (task_nice(p) > 0 || idleprio_task(p)) {
+ rq->nice_ns += ns;
+ if (rq->nice_ns >= JIFFY_NS) {
+ ticks = NS_TO_JIFFIES(rq->nice_ns);
+ cpustat[CPUTIME_NICE] += (__force u64)TICK_NSEC * ticks;
+ rq->nice_ns %= JIFFY_NS;
+ }
+ } else {
+ rq->user_ns += ns;
+ if (rq->user_ns >= JIFFY_NS) {
+ ticks = NS_TO_JIFFIES(rq->user_ns);
+ cpustat[CPUTIME_USER] += (__force u64)TICK_NSEC * ticks;
+ rq->user_ns %= JIFFY_NS;
+ }
+ }
+ acct_update_integrals(p);
+}
+
+/*
+ * This is called on clock ticks.
+ * Bank in p->sched_time the ns elapsed since the last tick or switch.
+ * CPU scheduler quota accounting is also performed here in microseconds.
+ */
+static void update_cpu_clock_tick(struct rq *rq, struct task_struct *p)
+{
+ s64 account_ns = rq->niffies - p->last_ran;
+ struct task_struct *idle = rq->idle;
+
+ /* Accurate tick timekeeping */
+ if (user_mode(get_irq_regs()))
+ pc_user_time(rq, p, account_ns);
+ else if (p != idle || (irq_count() != HARDIRQ_OFFSET)) {
+ pc_system_time(rq, p, HARDIRQ_OFFSET, account_ns);
+ } else
+ pc_idle_time(rq, idle, account_ns);
+
+ /* time_slice accounting is done in usecs to avoid overflow on 32bit */
+ if (p->policy != SCHED_FIFO && p != idle)
+ p->time_slice -= NS_TO_US(account_ns);
+
+ p->last_ran = rq->niffies;
+}
+
+/*
+ * This is called on context switches.
+ * Bank in p->sched_time the ns elapsed since the last tick or switch.
+ * CPU scheduler quota accounting is also performed here in microseconds.
+ */
+static void update_cpu_clock_switch(struct rq *rq, struct task_struct *p)
+{
+ s64 account_ns = rq->niffies - p->last_ran;
+ struct task_struct *idle = rq->idle;
+
+ /* Accurate subtick timekeeping */
+ if (p != idle)
+ pc_user_time(rq, p, account_ns);
+ else
+ pc_idle_time(rq, idle, account_ns);
+
+ /* time_slice accounting is done in usecs to avoid overflow on 32bit */
+ if (p->policy != SCHED_FIFO && p != idle)
+ p->time_slice -= NS_TO_US(account_ns);
+}
+
+/*
+ * Return any ns on the sched_clock that have not yet been accounted in
+ * @p in case that task is currently running.
+ *
+ * Called with task_rq_lock(p) held.
+ */
+static inline u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
+{
+ u64 ns = 0;
+
+ /*
+ * Must be ->curr _and_ ->on_rq. If dequeued, we would
+ * project cycles that may never be accounted to this
+ * thread, breaking clock_gettime().
+ */
+ if (p == rq->curr && task_on_rq_queued(p)) {
+ update_clocks(rq);
+ ns = rq->niffies - p->last_ran;
+ }
+
+ return ns;
+}
+
+/*
+ * Return accounted runtime for the task.
+ * Return separately the current's pending runtime that have not been
+ * accounted yet.
+ *
+ */
+unsigned long long task_sched_runtime(struct task_struct *p)
+{
+ unsigned long flags;
+ struct rq *rq;
+ u64 ns;
+
+#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
+ /*
+ * 64-bit doesn't need locks to atomically read a 64bit value.
+ * So we have a optimization chance when the task's delta_exec is 0.
+ * Reading ->on_cpu is racy, but this is ok.
+ *
+ * If we race with it leaving CPU, we'll take a lock. So we're correct.
+ * If we race with it entering CPU, unaccounted time is 0. This is
+ * indistinguishable from the read occurring a few cycles earlier.
+ * If we see ->on_cpu without ->on_rq, the task is leaving, and has
+ * been accounted, so we're correct here as well.
+ */
+ if (!p->on_cpu || !task_on_rq_queued(p))
+ return tsk_seruntime(p);
+#endif
+
+ rq = task_rq_lock(p, &flags);
+ ns = p->sched_time + do_task_delta_exec(p, rq);
+ task_rq_unlock(rq, p, &flags);
+
+ return ns;
+}
+
+/*
+ * Functions to test for when SCHED_ISO tasks have used their allocated
+ * quota as real time scheduling and convert them back to SCHED_NORMAL. All
+ * data is modified only by the local runqueue during scheduler_tick with
+ * interrupts disabled.
+ */
+
+/*
+ * Test if SCHED_ISO tasks have run longer than their alloted period as RT
+ * tasks and set the refractory flag if necessary. There is 10% hysteresis
+ * for unsetting the flag. 115/128 is ~90/100 as a fast shift instead of a
+ * slow division.
+ */
+static inline void iso_tick(struct rq *rq)
+{
+ rq->iso_ticks = rq->iso_ticks * (ISO_PERIOD - 1) / ISO_PERIOD;
+ rq->iso_ticks += 100;
+ if (rq->iso_ticks > ISO_PERIOD * sched_iso_cpu) {
+ rq->iso_refractory = true;
+ if (unlikely(rq->iso_ticks > ISO_PERIOD * 100))
+ rq->iso_ticks = ISO_PERIOD * 100;
+ }
+}
+
+/* No SCHED_ISO task was running so decrease rq->iso_ticks */
+static inline void no_iso_tick(struct rq *rq, int ticks)
+{
+ if (rq->iso_ticks > 0 || rq->iso_refractory) {
+ rq->iso_ticks = rq->iso_ticks * (ISO_PERIOD - ticks) / ISO_PERIOD;
+ if (rq->iso_ticks < ISO_PERIOD * (sched_iso_cpu * 115 / 128)) {
+ rq->iso_refractory = false;
+ if (unlikely(rq->iso_ticks < 0))
+ rq->iso_ticks = 0;
+ }
+ }
+}
+
+/* This manages tasks that have run out of timeslice during a scheduler_tick */
+static void task_running_tick(struct rq *rq)
+{
+ struct task_struct *p = rq->curr;
+
+ /*
+ * If a SCHED_ISO task is running we increment the iso_ticks. In
+ * order to prevent SCHED_ISO tasks from causing starvation in the
+ * presence of true RT tasks we account those as iso_ticks as well.
+ */
+ if (rt_task(p) || task_running_iso(p))
+ iso_tick(rq);
+ else
+ no_iso_tick(rq, 1);
+
+ /* SCHED_FIFO tasks never run out of timeslice. */
+ if (p->policy == SCHED_FIFO)
+ return;
+
+ if (iso_task(p)) {
+ if (task_running_iso(p)) {
+ if (rq->iso_refractory) {
+ /*
+ * SCHED_ISO task is running as RT and limit
+ * has been hit. Force it to reschedule as
+ * SCHED_NORMAL by zeroing its time_slice
+ */
+ p->time_slice = 0;
+ }
+ } else if (!rq->iso_refractory) {
+ /* Can now run again ISO. Reschedule to pick up prio */
+ goto out_resched;
+ }
+ }
+
+ /*
+ * Tasks that were scheduled in the first half of a tick are not
+ * allowed to run into the 2nd half of the next tick if they will
+ * run out of time slice in the interim. Otherwise, if they have
+ * less than RESCHED_US μs of time slice left they will be rescheduled.
+ * Dither is used as a backup for when hrexpiry is disabled or high res
+ * timers not configured in.
+ */
+ if (p->time_slice - rq->dither >= RESCHED_US)
+ return;
+out_resched:
+ rq_lock(rq);
+ __set_tsk_resched(p);
+ rq_unlock(rq);
+}
+
+#ifdef CONFIG_NO_HZ_FULL
+/*
+ * We can stop the timer tick any time highres timers are active since
+ * we rely entirely on highres timeouts for task expiry rescheduling.
+ */
+static void sched_stop_tick(struct rq *rq, int cpu)
+{
+ if (!hrexpiry_enabled(rq))
+ return;
+ if (!tick_nohz_full_enabled())
+ return;
+ if (!tick_nohz_full_cpu(cpu))
+ return;
+ tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
+}
+
+static inline void sched_start_tick(struct rq *rq, int cpu)
+{
+ tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
+}
+
+/**
+ * scheduler_tick_max_deferment
+ *
+ * Keep at least one tick per second when a single
+ * active task is running.
+ *
+ * This makes sure that uptime continues to move forward, even
+ * with a very low granularity.
+ *
+ * Return: Maximum deferment in nanoseconds.
+ */
+u64 scheduler_tick_max_deferment(void)
+{
+ struct rq *rq = this_rq();
+ unsigned long next, now = READ_ONCE(jiffies);
+
+ next = rq->last_jiffy + HZ;
+
+ if (time_before_eq(next, now))
+ return 0;
+
+ return jiffies_to_nsecs(next - now);
+}
+#else
+static inline void sched_stop_tick(struct rq *rq, int cpu)
+{
+}
+
+static inline void sched_start_tick(struct rq *rq, int cpu)
+{
+}
+#endif
+
+/*
+ * This function gets called by the timer code, with HZ frequency.
+ * We call it with interrupts disabled.
+ */
+void scheduler_tick(void)
+{
+ int cpu __maybe_unused = smp_processor_id();
+ struct rq *rq = cpu_rq(cpu);
+
+ sched_clock_tick();
+ update_clocks(rq);
+ update_load_avg(rq, 0);
+ update_cpu_clock_tick(rq, rq->curr);
+ if (!rq_idle(rq))
+ task_running_tick(rq);
+ else if (rq->last_jiffy > rq->last_scheduler_tick)
+ no_iso_tick(rq, rq->last_jiffy - rq->last_scheduler_tick);
+ rq->last_scheduler_tick = rq->last_jiffy;
+ rq->last_tick = rq->clock;
+ perf_event_task_tick();
+ sched_stop_tick(rq, cpu);
+}
+
+#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
+ defined(CONFIG_PREEMPT_TRACER))
+/*
+ * If the value passed in is equal to the current preempt count
+ * then we just disabled preemption. Start timing the latency.
+ */
+static inline void preempt_latency_start(int val)
+{
+ if (preempt_count() == val) {
+ unsigned long ip = get_lock_parent_ip();
+#ifdef CONFIG_DEBUG_PREEMPT
+ current->preempt_disable_ip = ip;
+#endif
+ trace_preempt_off(CALLER_ADDR0, ip);
+ }
+}
+
+void preempt_count_add(int val)
+{
+#ifdef CONFIG_DEBUG_PREEMPT
+ /*
+ * Underflow?
+ */
+ if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
+ return;
+#endif
+ __preempt_count_add(val);
+#ifdef CONFIG_DEBUG_PREEMPT
+ /*
+ * Spinlock count overflowing soon?
+ */
+ DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
+ PREEMPT_MASK - 10);
+#endif
+ preempt_latency_start(val);
+}
+EXPORT_SYMBOL(preempt_count_add);
+NOKPROBE_SYMBOL(preempt_count_add);
+
+/*
+ * If the value passed in equals to the current preempt count
+ * then we just enabled preemption. Stop timing the latency.
+ */
+static inline void preempt_latency_stop(int val)
+{
+ if (preempt_count() == val)
+ trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
+}
+
+void preempt_count_sub(int val)
+{
+#ifdef CONFIG_DEBUG_PREEMPT
+ /*
+ * Underflow?
+ */
+ if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
+ return;
+ /*
+ * Is the spinlock portion underflowing?
+ */
+ if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
+ !(preempt_count() & PREEMPT_MASK)))
+ return;
+#endif
+
+ preempt_latency_stop(val);
+ __preempt_count_sub(val);
+}
+EXPORT_SYMBOL(preempt_count_sub);
+NOKPROBE_SYMBOL(preempt_count_sub);
+
+#else
+static inline void preempt_latency_start(int val) { }
+static inline void preempt_latency_stop(int val) { }
+#endif
+
+static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
+{
+#ifdef CONFIG_DEBUG_PREEMPT
+ return p->preempt_disable_ip;
+#else
+ return 0;
+#endif
+}
+
+/*
+ * The time_slice is only refilled when it is empty and that is when we set a
+ * new deadline. Make sure update_clocks has been called recently to update
+ * rq->niffies.
+ */
+static void time_slice_expired(struct task_struct *p, struct rq *rq)
+{
+ p->time_slice = timeslice();
+ p->deadline = rq->niffies + task_deadline_diff(p);
+#ifdef CONFIG_SMT_NICE
+ if (!p->mm)
+ p->smt_bias = 0;
+ else if (rt_task(p))
+ p->smt_bias = 1 << 30;
+ else if (task_running_iso(p))
+ p->smt_bias = 1 << 29;
+ else if (idleprio_task(p)) {
+ if (task_running_idle(p))
+ p->smt_bias = 0;
+ else
+ p->smt_bias = 1;
+ } else if (--p->smt_bias < 1)
+ p->smt_bias = MAX_PRIO - p->static_prio;
+#endif
+}
+
+/*
+ * Timeslices below RESCHED_US are considered as good as expired as there's no
+ * point rescheduling when there's so little time left. SCHED_BATCH tasks
+ * have been flagged be not latency sensitive and likely to be fully CPU
+ * bound so every time they're rescheduled they have their time_slice
+ * refilled, but get a new later deadline to have little effect on
+ * SCHED_NORMAL tasks.
+
+ */
+static inline void check_deadline(struct task_struct *p, struct rq *rq)
+{
+ if (p->time_slice < RESCHED_US || batch_task(p))
+ time_slice_expired(p, rq);
+}
+
+/*
+ * Task selection with skiplists is a simple matter of picking off the first
+ * task in the sorted list, an O(1) operation. The lookup is amortised O(1)
+ * being bound to the number of processors.
+ *
+ * Runqueues are selectively locked based on their unlocked data and then
+ * unlocked if not needed. At most 3 locks will be held at any time and are
+ * released as soon as they're no longer needed. All balancing between CPUs
+ * is thus done here in an extremely simple first come best fit manner.
+ *
+ * This iterates over runqueues in cache locality order. In interactive mode
+ * it iterates over all CPUs and finds the task with the best key/deadline.
+ * In non-interactive mode it will only take a task if it's from the current
+ * runqueue or a runqueue with more tasks than the current one with a better
+ * key/deadline.
+ */
+#ifdef CONFIG_SMP
+static inline struct task_struct
+*earliest_deadline_task(struct rq *rq, int cpu, struct task_struct *idle)
+{
+ struct rq *locked = NULL, *chosen = NULL;
+ struct task_struct *edt = idle;
+ int i, best_entries = 0;
+ u64 best_key = ~0ULL;
+
+ for (i = 0; i < num_possible_cpus(); i++) {
+ struct rq *other_rq = rq_order(rq, i);
+ int entries = other_rq->sl->entries;
+ skiplist_node *next;
+
+ /*
+ * Check for queued entres lockless first. The local runqueue
+ * is locked so entries will always be accurate.
+ */
+ if (!sched_interactive) {
+ /*
+ * Don't reschedule balance across nodes unless the CPU
+ * is idle.
+ */
+ if (edt != idle && rq->cpu_locality[other_rq->cpu] > 3)
+ break;
+ if (entries <= best_entries)
+ continue;
+ } else if (!entries)
+ continue;
+
+ /* if (i) implies other_rq != rq */
+ if (i) {
+ /* Check for best id queued lockless first */
+ if (other_rq->best_key >= best_key)
+ continue;
+
+ if (unlikely(!trylock_rq(rq, other_rq)))
+ continue;
+
+ /* Need to reevaluate entries after locking */
+ entries = other_rq->sl->entries;
+ if (unlikely(!entries)) {
+ unlock_rq(other_rq);
+ continue;
+ }
+ }
+
+ next = &other_rq->node;
+ /*
+ * In interactive mode we check beyond the best entry on other
+ * runqueues if we can't get the best for smt or affinity
+ * reasons.
+ */
+ while ((next = next->next[0]) != &other_rq->node) {
+ struct task_struct *p;
+ u64 key = next->key;
+
+ /* Reevaluate key after locking */
+ if (key >= best_key)
+ break;
+
+ p = next->value;
+ if (!smt_schedule(p, rq)) {
+ if (i && !sched_interactive)
+ break;
+ continue;
+ }
+
+ /* Make sure affinity is ok */
+ if (i) {
+ if (needs_other_cpu(p, cpu)) {
+ if (sched_interactive)
+ continue;
+ break;
+ }
+ /* From this point on p is the best so far */
+ if (locked)
+ unlock_rq(locked);
+ chosen = locked = other_rq;
+ }
+ best_entries = entries;
+ best_key = key;
+ edt = p;
+ break;
+ }
+ /* rq->preempting is a hint only as the state may have changed
+ * since it was set with the resched call but if we have met
+ * the condition we can break out here. */
+ if (edt == rq->preempting)
+ break;
+ if (i && other_rq != chosen)
+ unlock_rq(other_rq);
+ }
+
+ if (likely(edt != idle))
+ take_task(rq, cpu, edt);
+
+ if (locked)
+ unlock_rq(locked);
+
+ rq->preempting = NULL;
+
+ return edt;
+}
+#else /* CONFIG_SMP */
+static inline struct task_struct
+*earliest_deadline_task(struct rq *rq, int cpu, struct task_struct *idle)
+{
+ struct task_struct *edt;
+
+ if (unlikely(!rq->sl->entries))
+ return idle;
+ edt = rq->node.next[0]->value;
+ take_task(rq, cpu, edt);
+ return edt;
+}
+#endif /* CONFIG_SMP */
+
+/*
+ * Print scheduling while atomic bug:
+ */
+static noinline void __schedule_bug(struct task_struct *prev)
+{
+ /* Save this before calling printk(), since that will clobber it */
+ unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
+
+ if (oops_in_progress)
+ return;
+
+ printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
+ prev->comm, prev->pid, preempt_count());
+
+ debug_show_held_locks(prev);
+ print_modules();
+ if (irqs_disabled())
+ print_irqtrace_events(prev);
+ if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
+ && in_atomic_preempt_off()) {
+ pr_err("Preemption disabled at:");
+ print_ip_sym(preempt_disable_ip);
+ pr_cont("\n");
+ }
+ dump_stack();
+ add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
+}
+
+/*
+ * Various schedule()-time debugging checks and statistics:
+ */
+static inline void schedule_debug(struct task_struct *prev)
+{
+#ifdef CONFIG_SCHED_STACK_END_CHECK
+ if (task_stack_end_corrupted(prev))
+ panic("corrupted stack end detected inside scheduler\n");
+#endif
+
+ if (unlikely(in_atomic_preempt_off())) {
+ __schedule_bug(prev);
+ preempt_count_set(PREEMPT_DISABLED);
+ }
+ rcu_sleep_check();
+
+ profile_hit(SCHED_PROFILING, __builtin_return_address(0));
+
+ schedstat_inc(this_rq()->sched_count);
+}
+
+/*
+ * The currently running task's information is all stored in rq local data
+ * which is only modified by the local CPU.
+ */
+static inline void set_rq_task(struct rq *rq, struct task_struct *p)
+{
+ if (p == rq->idle || p->policy == SCHED_FIFO)
+ hrexpiry_clear(rq);
+ else
+ hrexpiry_start(rq, US_TO_NS(p->time_slice));
+ if (rq->clock - rq->last_tick > HALF_JIFFY_NS)
+ rq->dither = 0;
+ else
+ rq->dither = rq_dither(rq);
+
+ rq->rq_deadline = p->deadline;
+ rq->rq_prio = p->prio;
+#ifdef CONFIG_SMT_NICE
+ rq->rq_mm = p->mm;
+ rq->rq_smt_bias = p->smt_bias;
+#endif
+}
+
+#ifdef CONFIG_SMT_NICE
+static void check_no_siblings(struct rq __maybe_unused *this_rq) {}
+static void wake_no_siblings(struct rq __maybe_unused *this_rq) {}
+static void (*check_siblings)(struct rq *this_rq) = &check_no_siblings;
+static void (*wake_siblings)(struct rq *this_rq) = &wake_no_siblings;
+
+/* Iterate over smt siblings when we've scheduled a process on cpu and decide
+ * whether they should continue running or be descheduled. */
+static void check_smt_siblings(struct rq *this_rq)
+{
+ int other_cpu;
+
+ for_each_cpu(other_cpu, &this_rq->thread_mask) {
+ struct task_struct *p;
+ struct rq *rq;
+
+ rq = cpu_rq(other_cpu);
+ if (rq_idle(rq))
+ continue;
+ p = rq->curr;
+ if (!smt_schedule(p, this_rq))
+ resched_curr(rq);
+ }
+}
+
+static void wake_smt_siblings(struct rq *this_rq)
+{
+ int other_cpu;
+
+ for_each_cpu(other_cpu, &this_rq->thread_mask) {
+ struct rq *rq;
+
+ rq = cpu_rq(other_cpu);
+ if (rq_idle(rq))
+ resched_idle(rq);
+ }
+}
+#else
+static void check_siblings(struct rq __maybe_unused *this_rq) {}
+static void wake_siblings(struct rq __maybe_unused *this_rq) {}
+#endif
+
+/*
+ * schedule() is the main scheduler function.
+ *
+ * The main means of driving the scheduler and thus entering this function are:
+ *
+ * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
+ *
+ * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
+ * paths. For example, see arch/x86/entry_64.S.
+ *
+ * To drive preemption between tasks, the scheduler sets the flag in timer
+ * interrupt handler scheduler_tick().
+ *
+ * 3. Wakeups don't really cause entry into schedule(). They add a
+ * task to the run-queue and that's it.
+ *
+ * Now, if the new task added to the run-queue preempts the current
+ * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
+ * called on the nearest possible occasion:
+ *
+ * - If the kernel is preemptible (CONFIG_PREEMPT=y):
+ *
+ * - in syscall or exception context, at the next outmost
+ * preempt_enable(). (this might be as soon as the wake_up()'s
+ * spin_unlock()!)
+ *
+ * - in IRQ context, return from interrupt-handler to
+ * preemptible context
+ *
+ * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
+ * then at the next:
+ *
+ * - cond_resched() call
+ * - explicit schedule() call
+ * - return from syscall or exception to user-space
+ * - return from interrupt-handler to user-space
+ *
+ * WARNING: must be called with preemption disabled!
+ */
+static void __sched notrace __schedule(bool preempt)
+{
+ struct task_struct *prev, *next, *idle;
+ unsigned long *switch_count;
+ bool deactivate = false;
+ struct rq *rq;
+ u64 niffies;
+ int cpu;
+
+ cpu = smp_processor_id();
+ rq = cpu_rq(cpu);
+ prev = rq->curr;
+ idle = rq->idle;
+
+ schedule_debug(prev);
+
+ local_irq_disable();
+ rcu_note_context_switch(preempt);
+
+ /*
+ * Make sure that signal_pending_state()->signal_pending() below
+ * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
+ * done by the caller to avoid the race with signal_wake_up().
+ */
+ rq_lock(rq);
+ smp_mb__after_spinlock();
+#ifdef CONFIG_SMP
+ if (rq->preempt) {
+ /*
+ * Make sure resched_curr hasn't triggered a preemption
+ * locklessly on a task that has since scheduled away. Spurious
+ * wakeup of idle is okay though.
+ */
+ if (unlikely(preempt && prev != idle && !test_tsk_need_resched(prev))) {
+ rq->preempt = NULL;
+ clear_preempt_need_resched();
+ rq_unlock_irq(rq);
+ return;
+ }
+ rq->preempt = NULL;
+ }
+#endif
+
+ switch_count = &prev->nivcsw;
+ if (!preempt && prev->state) {
+ if (unlikely(signal_pending_state(prev->state, prev))) {
+ prev->state = TASK_RUNNING;
+ } else {
+ deactivate = true;
+ prev->on_rq = 0;
+
+ if (prev->in_iowait) {
+ atomic_inc(&rq->nr_iowait);
+ delayacct_blkio_start();
+ }
+
+ /*
+ * If a worker is going to sleep, notify and
+ * ask workqueue whether it wants to wake up a
+ * task to maintain concurrency. If so, wake
+ * up the task.
+ */
+ if (prev->flags & PF_WQ_WORKER) {
+ struct task_struct *to_wakeup;
+
+ to_wakeup = wq_worker_sleeping(prev);
+ if (to_wakeup)
+ try_to_wake_up_local(to_wakeup);
+ }
+ }
+ switch_count = &prev->nvcsw;
+ }
+
+ /*
+ * Store the niffy value here for use by the next task's last_ran
+ * below to avoid losing niffies due to update_clocks being called
+ * again after this point.
+ */
+ update_clocks(rq);
+ niffies = rq->niffies;
+ update_cpu_clock_switch(rq, prev);
+
+ clear_tsk_need_resched(prev);
+ clear_preempt_need_resched();
+
+ if (idle != prev) {
+ check_deadline(prev, rq);
+ return_task(prev, rq, cpu, deactivate);
+ }
+
+ next = earliest_deadline_task(rq, cpu, idle);
+ if (likely(next->prio != PRIO_LIMIT))
+ clear_cpuidle_map(cpu);
+ else {
+ set_cpuidle_map(cpu);
+ update_load_avg(rq, 0);
+ }
+
+ set_rq_task(rq, next);
+ next->last_ran = niffies;
+
+ if (likely(prev != next)) {
+ /*
+ * Don't reschedule an idle task or deactivated tasks
+ */
+ if (prev != idle && !deactivate)
+ resched_suitable_idle(prev);
+ if (next != idle)
+ check_siblings(rq);
+ else
+ wake_siblings(rq);
+ rq->nr_switches++;
+ rq->curr = next;
+ /*
+ * The membarrier system call requires each architecture
+ * to have a full memory barrier after updating
+ * rq->curr, before returning to user-space. For TSO
+ * (e.g. x86), the architecture must provide its own
+ * barrier in switch_mm(). For weakly ordered machines
+ * for which spin_unlock() acts as a full memory
+ * barrier, finish_lock_switch() in common code takes
+ * care of this barrier. For weakly ordered machines for
+ * which spin_unlock() acts as a RELEASE barrier (only
+ * arm64 and PowerPC), arm64 has a full barrier in
+ * switch_to(), and PowerPC has
+ * smp_mb__after_unlock_lock() before
+ * finish_lock_switch().
+ */
+ ++*switch_count;
+
+ trace_sched_switch(preempt, prev, next);
+ context_switch(rq, prev, next); /* unlocks the rq */
+ } else {
+ check_siblings(rq);
+ rq_unlock(rq);
+ do_pending_softirq(rq, next);
+ local_irq_enable();
+ }
+}
+
+void __noreturn do_task_dead(void)
+{
+ /*
+ * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
+ * when the following two conditions become true.
+ * - There is race condition of mmap_sem (It is acquired by
+ * exit_mm()), and
+ * - SMI occurs before setting TASK_RUNINNG.
+ * (or hypervisor of virtual machine switches to other guest)
+ * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
+ *
+ * To avoid it, we have to wait for releasing tsk->pi_lock which
+ * is held by try_to_wake_up()
+ */
+ raw_spin_lock_irq(¤t->pi_lock);
+ raw_spin_unlock_irq(¤t->pi_lock);
+
+ /* Causes final put_task_struct in finish_task_switch(). */
+ __set_current_state(TASK_DEAD);
+
+ /* Tell freezer to ignore us: */
+ current->flags |= PF_NOFREEZE;
+ __schedule(false);
+ BUG();
+
+ /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
+ for (;;)
+ cpu_relax();
+}
+
+static inline void sched_submit_work(struct task_struct *tsk)
+{
+ if (!tsk->state || tsk_is_pi_blocked(tsk) ||
+ preempt_count() ||
+ signal_pending_state(tsk->state, tsk))
+ return;
+
+ /*
+ * If we are going to sleep and we have plugged IO queued,
+ * make sure to submit it to avoid deadlocks.
+ */
+ if (blk_needs_flush_plug(tsk))
+ blk_schedule_flush_plug(tsk);
+}
+
+asmlinkage __visible void __sched schedule(void)
+{
+ struct task_struct *tsk = current;
+
+ sched_submit_work(tsk);
+ do {
+ preempt_disable();
+ __schedule(false);
+ sched_preempt_enable_no_resched();
+ } while (need_resched());
+}
+
+EXPORT_SYMBOL(schedule);
+
+/*
+ * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
+ * state (have scheduled out non-voluntarily) by making sure that all
+ * tasks have either left the run queue or have gone into user space.
+ * As idle tasks do not do either, they must not ever be preempted
+ * (schedule out non-voluntarily).
+ *
+ * schedule_idle() is similar to schedule_preempt_disable() except that it
+ * never enables preemption because it does not call sched_submit_work().
+ */
+void __sched schedule_idle(void)
+{
+ /*
+ * As this skips calling sched_submit_work(), which the idle task does
+ * regardless because that function is a nop when the task is in a
+ * TASK_RUNNING state, make sure this isn't used someplace that the
+ * current task can be in any other state. Note, idle is always in the
+ * TASK_RUNNING state.
+ */
+ WARN_ON_ONCE(current->state);
+ do {
+ __schedule(false);
+ } while (need_resched());
+}
+
+#ifdef CONFIG_CONTEXT_TRACKING
+asmlinkage __visible void __sched schedule_user(void)
+{
+ /*
+ * If we come here after a random call to set_need_resched(),
+ * or we have been woken up remotely but the IPI has not yet arrived,
+ * we haven't yet exited the RCU idle mode. Do it here manually until
+ * we find a better solution.
+ *
+ * NB: There are buggy callers of this function. Ideally we
+ * should warn if prev_state != IN_USER, but that will trigger
+ * too frequently to make sense yet.
+ */
+ enum ctx_state prev_state = exception_enter();
+ schedule();
+ exception_exit(prev_state);
+}
+#endif
+
+/**
+ * schedule_preempt_disabled - called with preemption disabled
+ *
+ * Returns with preemption disabled. Note: preempt_count must be 1
+ */
+void __sched schedule_preempt_disabled(void)
+{
+ sched_preempt_enable_no_resched();
+ schedule();
+ preempt_disable();
+}
+
+static void __sched notrace preempt_schedule_common(void)
+{
+ do {
+ /*
+ * Because the function tracer can trace preempt_count_sub()
+ * and it also uses preempt_enable/disable_notrace(), if
+ * NEED_RESCHED is set, the preempt_enable_notrace() called
+ * by the function tracer will call this function again and
+ * cause infinite recursion.
+ *
+ * Preemption must be disabled here before the function
+ * tracer can trace. Break up preempt_disable() into two
+ * calls. One to disable preemption without fear of being
+ * traced. The other to still record the preemption latency,
+ * which can also be traced by the function tracer.
+ */
+ preempt_disable_notrace();
+ preempt_latency_start(1);
+ __schedule(true);
+ preempt_latency_stop(1);
+ preempt_enable_no_resched_notrace();
+
+ /*
+ * Check again in case we missed a preemption opportunity
+ * between schedule and now.
+ */
+ } while (need_resched());
+}
+
+#ifdef CONFIG_PREEMPT
+/*
+ * this is the entry point to schedule() from in-kernel preemption
+ * off of preempt_enable. Kernel preemptions off return from interrupt
+ * occur there and call schedule directly.
+ */
+asmlinkage __visible void __sched notrace preempt_schedule(void)
+{
+ /*
+ * If there is a non-zero preempt_count or interrupts are disabled,
+ * we do not want to preempt the current task. Just return..
+ */
+ if (likely(!preemptible()))
+ return;
+
+ preempt_schedule_common();
+}
+NOKPROBE_SYMBOL(preempt_schedule);
+EXPORT_SYMBOL(preempt_schedule);
+
+/**
+ * preempt_schedule_notrace - preempt_schedule called by tracing
+ *
+ * The tracing infrastructure uses preempt_enable_notrace to prevent
+ * recursion and tracing preempt enabling caused by the tracing
+ * infrastructure itself. But as tracing can happen in areas coming
+ * from userspace or just about to enter userspace, a preempt enable
+ * can occur before user_exit() is called. This will cause the scheduler
+ * to be called when the system is still in usermode.
+ *
+ * To prevent this, the preempt_enable_notrace will use this function
+ * instead of preempt_schedule() to exit user context if needed before
+ * calling the scheduler.
+ */
+asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
+{
+ enum ctx_state prev_ctx;
+
+ if (likely(!preemptible()))
+ return;
+
+ do {
+ /*
+ * Because the function tracer can trace preempt_count_sub()
+ * and it also uses preempt_enable/disable_notrace(), if
+ * NEED_RESCHED is set, the preempt_enable_notrace() called
+ * by the function tracer will call this function again and
+ * cause infinite recursion.
+ *
+ * Preemption must be disabled here before the function
+ * tracer can trace. Break up preempt_disable() into two
+ * calls. One to disable preemption without fear of being
+ * traced. The other to still record the preemption latency,
+ * which can also be traced by the function tracer.
+ */
+ preempt_disable_notrace();
+ preempt_latency_start(1);
+ /*
+ * Needs preempt disabled in case user_exit() is traced
+ * and the tracer calls preempt_enable_notrace() causing
+ * an infinite recursion.
+ */
+ prev_ctx = exception_enter();
+ __schedule(true);
+ exception_exit(prev_ctx);
+
+ preempt_latency_stop(1);
+ preempt_enable_no_resched_notrace();
+ } while (need_resched());
+}
+EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
+
+#endif /* CONFIG_PREEMPT */
+
+/*
+ * this is the entry point to schedule() from kernel preemption
+ * off of irq context.
+ * Note, that this is called and return with irqs disabled. This will
+ * protect us against recursive calling from irq.
+ */
+asmlinkage __visible void __sched preempt_schedule_irq(void)
+{
+ enum ctx_state prev_state;
+
+ /* Catch callers which need to be fixed */
+ BUG_ON(preempt_count() || !irqs_disabled());
+
+ prev_state = exception_enter();
+
+ do {
+ preempt_disable();
+ local_irq_enable();
+ __schedule(true);
+ local_irq_disable();
+ sched_preempt_enable_no_resched();
+ } while (need_resched());
+
+ exception_exit(prev_state);
+}
+
+int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
+ void *key)
+{
+ return try_to_wake_up(curr->private, mode, wake_flags);
+}
+EXPORT_SYMBOL(default_wake_function);
+
+#ifdef CONFIG_RT_MUTEXES
+
+static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
+{
+ if (pi_task)
+ prio = min(prio, pi_task->prio);
+
+ return prio;
+}
+
+static inline int rt_effective_prio(struct task_struct *p, int prio)
+{
+ struct task_struct *pi_task = rt_mutex_get_top_task(p);
+
+ return __rt_effective_prio(pi_task, prio);
+}
+
+/*
+ * rt_mutex_setprio - set the current priority of a task
+ * @p: task to boost
+ * @pi_task: donor task
+ *
+ * This function changes the 'effective' priority of a task. It does
+ * not touch ->normal_prio like __setscheduler().
+ *
+ * Used by the rt_mutex code to implement priority inheritance
+ * logic. Call site only calls if the priority of the task changed.
+ */
+void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
+{
+ int prio, oldprio;
+ struct rq *rq;
+
+ /* XXX used to be waiter->prio, not waiter->task->prio */
+ prio = __rt_effective_prio(pi_task, p->normal_prio);
+
+ /*
+ * If nothing changed; bail early.
+ */
+ if (p->pi_top_task == pi_task && prio == p->prio)
+ return;
+
+ rq = __task_rq_lock(p);
+ update_rq_clock(rq);
+ /*
+ * Set under pi_lock && rq->lock, such that the value can be used under
+ * either lock.
+ *
+ * Note that there is loads of tricky to make this pointer cache work
+ * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
+ * ensure a task is de-boosted (pi_task is set to NULL) before the
+ * task is allowed to run again (and can exit). This ensures the pointer
+ * points to a blocked task -- which guaratees the task is present.
+ */
+ p->pi_top_task = pi_task;
+
+ /*
+ * For FIFO/RR we only need to set prio, if that matches we're done.
+ */
+ if (prio == p->prio)
+ goto out_unlock;
+
+ /*
+ * Idle task boosting is a nono in general. There is one
+ * exception, when PREEMPT_RT and NOHZ is active:
+ *
+ * The idle task calls get_next_timer_interrupt() and holds
+ * the timer wheel base->lock on the CPU and another CPU wants
+ * to access the timer (probably to cancel it). We can safely
+ * ignore the boosting request, as the idle CPU runs this code
+ * with interrupts disabled and will complete the lock
+ * protected section without being interrupted. So there is no
+ * real need to boost.
+ */
+ if (unlikely(p == rq->idle)) {
+ WARN_ON(p != rq->curr);
+ WARN_ON(p->pi_blocked_on);
+ goto out_unlock;
+ }
+
+ trace_sched_pi_setprio(p, pi_task);
+ oldprio = p->prio;
+ p->prio = prio;
+ if (task_running(rq, p)){
+ if (prio > oldprio)
+ resched_task(p);
+ } else if (task_queued(p)) {
+ dequeue_task(rq, p, DEQUEUE_SAVE);
+ enqueue_task(rq, p, ENQUEUE_RESTORE);
+ if (prio < oldprio)
+ try_preempt(p, rq);
+ }
+out_unlock:
+ __task_rq_unlock(rq);
+}
+#else
+static inline int rt_effective_prio(struct task_struct *p, int prio)
+{
+ return prio;
+}
+#endif
+
+/*
+ * Adjust the deadline for when the priority is to change, before it's
+ * changed.
+ */
+static inline void adjust_deadline(struct task_struct *p, int new_prio)
+{
+ p->deadline += static_deadline_diff(new_prio) - task_deadline_diff(p);
+}
+
+void set_user_nice(struct task_struct *p, long nice)
+{
+ int new_static, old_static;
+ unsigned long flags;
+ struct rq *rq;
+
+ if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
+ return;
+ new_static = NICE_TO_PRIO(nice);
+ /*
+ * We have to be careful, if called from sys_setpriority(),
+ * the task might be in the middle of scheduling on another CPU.
+ */
+ rq = task_rq_lock(p, &flags);
+ update_rq_clock(rq);
+
+ /*
+ * The RT priorities are set via sched_setscheduler(), but we still
+ * allow the 'normal' nice value to be set - but as expected
+ * it wont have any effect on scheduling until the task is
+ * not SCHED_NORMAL/SCHED_BATCH:
+ */
+ if (has_rt_policy(p)) {
+ p->static_prio = new_static;
+ goto out_unlock;
+ }
+
+ adjust_deadline(p, new_static);
+ old_static = p->static_prio;
+ p->static_prio = new_static;
+ p->prio = effective_prio(p);
+
+ if (task_queued(p)) {
+ dequeue_task(rq, p, DEQUEUE_SAVE);
+ enqueue_task(rq, p, ENQUEUE_RESTORE);
+ if (new_static < old_static)
+ try_preempt(p, rq);
+ } else if (task_running(rq, p)) {
+ set_rq_task(rq, p);
+ if (old_static < new_static)
+ resched_task(p);
+ }
+out_unlock:
+ task_rq_unlock(rq, p, &flags);
+}
+EXPORT_SYMBOL(set_user_nice);
+
+/*
+ * can_nice - check if a task can reduce its nice value
+ * @p: task
+ * @nice: nice value
+ */
+int can_nice(const struct task_struct *p, const int nice)
+{
+ /* Convert nice value [19,-20] to rlimit style value [1,40] */
+ int nice_rlim = nice_to_rlimit(nice);
+
+ return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
+ capable(CAP_SYS_NICE));
+}
+
+#ifdef __ARCH_WANT_SYS_NICE
+
+/*
+ * sys_nice - change the priority of the current process.
+ * @increment: priority increment
+ *
+ * sys_setpriority is a more generic, but much slower function that
+ * does similar things.
+ */
+SYSCALL_DEFINE1(nice, int, increment)
+{
+ long nice, retval;
+
+ /*
+ * Setpriority might change our priority at the same moment.
+ * We don't have to worry. Conceptually one call occurs first
+ * and we have a single winner.
+ */
+
+ increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
+ nice = task_nice(current) + increment;
+
+ nice = clamp_val(nice, MIN_NICE, MAX_NICE);
+ if (increment < 0 && !can_nice(current, nice))
+ return -EPERM;
+
+ retval = security_task_setnice(current, nice);
+ if (retval)
+ return retval;
+
+ set_user_nice(current, nice);
+ return 0;
+}
+
+#endif
+
+/**
+ * task_prio - return the priority value of a given task.
+ * @p: the task in question.
+ *
+ * Return: The priority value as seen by users in /proc.
+ * RT tasks are offset by -100. Normal tasks are centered around 1, value goes
+ * from 0 (SCHED_ISO) up to 82 (nice +19 SCHED_IDLEPRIO).
+ */
+int task_prio(const struct task_struct *p)
+{
+ int delta, prio = p->prio - MAX_RT_PRIO;
+
+ /* rt tasks and iso tasks */
+ if (prio <= 0)
+ goto out;
+
+ /* Convert to ms to avoid overflows */
+ delta = NS_TO_MS(p->deadline - task_rq(p)->niffies);
+ if (unlikely(delta < 0))
+ delta = 0;
+ delta = delta * 40 / ms_longest_deadline_diff();
+ if (delta <= 80)
+ prio += delta;
+ if (idleprio_task(p))
+ prio += 40;
+out:
+ return prio;
+}
+
+/**
+ * idle_cpu - is a given CPU idle currently?
+ * @cpu: the processor in question.
+ *
+ * Return: 1 if the CPU is currently idle. 0 otherwise.
+ */
+int idle_cpu(int cpu)
+{
+ return cpu_curr(cpu) == cpu_rq(cpu)->idle;
+}
+
+/**
+ * idle_task - return the idle task for a given CPU.
+ * @cpu: the processor in question.
+ *
+ * Return: The idle task for the CPU @cpu.
+ */
+struct task_struct *idle_task(int cpu)
+{
+ return cpu_rq(cpu)->idle;
+}
+
+/**
+ * find_process_by_pid - find a process with a matching PID value.
+ * @pid: the pid in question.
+ *
+ * The task of @pid, if found. %NULL otherwise.
+ */
+static inline struct task_struct *find_process_by_pid(pid_t pid)
+{
+ return pid ? find_task_by_vpid(pid) : current;
+}
+
+/* Actually do priority change: must hold rq lock. */
+static void __setscheduler(struct task_struct *p, struct rq *rq, int policy,
+ int prio, bool keep_boost)
+{
+ int oldrtprio, oldprio;
+
+ p->policy = policy;
+ oldrtprio = p->rt_priority;
+ p->rt_priority = prio;
+ p->normal_prio = normal_prio(p);
+ oldprio = p->prio;
+ /*
+ * Keep a potential priority boosting if called from
+ * sched_setscheduler().
+ */
+ p->prio = normal_prio(p);
+ if (keep_boost)
+ p->prio = rt_effective_prio(p, p->prio);
+
+ if (task_running(rq, p)) {
+ set_rq_task(rq, p);
+ resched_task(p);
+ } else if (task_queued(p)) {
+ dequeue_task(rq, p, DEQUEUE_SAVE);
+ enqueue_task(rq, p, ENQUEUE_RESTORE);
+ if (p->prio < oldprio || p->rt_priority > oldrtprio)
+ try_preempt(p, rq);
+ }
+}
+
+/*
+ * Check the target process has a UID that matches the current process's
+ */
+static bool check_same_owner(struct task_struct *p)
+{
+ const struct cred *cred = current_cred(), *pcred;
+ bool match;
+
+ rcu_read_lock();
+ pcred = __task_cred(p);
+ match = (uid_eq(cred->euid, pcred->euid) ||
+ uid_eq(cred->euid, pcred->uid));
+ rcu_read_unlock();
+ return match;
+}
+
+static int
+__sched_setscheduler(struct task_struct *p, int policy,
+ const struct sched_param *param, bool user, bool pi)
+{
+ struct sched_param zero_param = { .sched_priority = 0 };
+ unsigned long flags, rlim_rtprio = 0;
+ int retval, oldpolicy = -1;
+ int reset_on_fork;
+ struct rq *rq;
+
+ /* The pi code expects interrupts enabled */
+ BUG_ON(pi && in_interrupt());
+
+ if (is_rt_policy(policy) && !capable(CAP_SYS_NICE)) {
+ unsigned long lflags;
+
+ if (!lock_task_sighand(p, &lflags))
+ return -ESRCH;
+ rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
+ unlock_task_sighand(p, &lflags);
+ if (rlim_rtprio)
+ goto recheck;
+ /*
+ * If the caller requested an RT policy without having the
+ * necessary rights, we downgrade the policy to SCHED_ISO.
+ * We also set the parameter to zero to pass the checks.
+ */
+ policy = SCHED_ISO;
+ param = &zero_param;
+ }
+recheck:
+ /* Double check policy once rq lock held */
+ if (policy < 0) {
+ reset_on_fork = p->sched_reset_on_fork;
+ policy = oldpolicy = p->policy;
+ } else {
+ reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
+ policy &= ~SCHED_RESET_ON_FORK;
+
+ if (!SCHED_RANGE(policy))
+ return -EINVAL;
+ }
+
+ /*
+ * Valid priorities for SCHED_FIFO and SCHED_RR are
+ * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
+ * SCHED_BATCH is 0.
+ */
+ if (param->sched_priority < 0 ||
+ (p->mm && param->sched_priority > MAX_USER_RT_PRIO - 1) ||
+ (!p->mm && param->sched_priority > MAX_RT_PRIO - 1))
+ return -EINVAL;
+ if (is_rt_policy(policy) != (param->sched_priority != 0))
+ return -EINVAL;
+
+ /*
+ * Allow unprivileged RT tasks to decrease priority:
+ */
+ if (user && !capable(CAP_SYS_NICE)) {
+ if (is_rt_policy(policy)) {
+ unsigned long rlim_rtprio =
+ task_rlimit(p, RLIMIT_RTPRIO);
+
+ /* Can't set/change the rt policy */
+ if (policy != p->policy && !rlim_rtprio)
+ return -EPERM;
+
+ /* Can't increase priority */
+ if (param->sched_priority > p->rt_priority &&
+ param->sched_priority > rlim_rtprio)
+ return -EPERM;
+ } else {
+ switch (p->policy) {
+ /*
+ * Can only downgrade policies but not back to
+ * SCHED_NORMAL
+ */
+ case SCHED_ISO:
+ if (policy == SCHED_ISO)
+ goto out;
+ if (policy != SCHED_NORMAL)
+ return -EPERM;
+ break;
+ case SCHED_BATCH:
+ if (policy == SCHED_BATCH)
+ goto out;
+ if (policy != SCHED_IDLEPRIO)
+ return -EPERM;
+ break;
+ case SCHED_IDLEPRIO:
+ if (policy == SCHED_IDLEPRIO)
+ goto out;
+ return -EPERM;
+ default:
+ break;
+ }
+ }
+
+ /* Can't change other user's priorities */
+ if (!check_same_owner(p))
+ return -EPERM;
+
+ /* Normal users shall not reset the sched_reset_on_fork flag: */
+ if (p->sched_reset_on_fork && !reset_on_fork)
+ return -EPERM;
+ }
+
+ if (user) {
+ retval = security_task_setscheduler(p);
+ if (retval)
+ return retval;
+ }
+
+ /*
+ * Make sure no PI-waiters arrive (or leave) while we are
+ * changing the priority of the task:
+ *
+ * To be able to change p->policy safely, the runqueue lock must be
+ * held.
+ */
+ rq = task_rq_lock(p, &flags);
+ update_rq_clock(rq);
+
+ /*
+ * Changing the policy of the stop threads its a very bad idea:
+ */
+ if (p == rq->stop) {
+ task_rq_unlock(rq, p, &flags);
+ return -EINVAL;
+ }
+
+ /*
+ * If not changing anything there's no need to proceed further:
+ */
+ if (unlikely(policy == p->policy && (!is_rt_policy(policy) ||
+ param->sched_priority == p->rt_priority))) {
+ task_rq_unlock(rq, p, &flags);
+ return 0;
+ }
+
+ /* Re-check policy now with rq lock held */
+ if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
+ policy = oldpolicy = -1;
+ task_rq_unlock(rq, p, &flags);
+ goto recheck;
+ }
+ p->sched_reset_on_fork = reset_on_fork;
+
+ __setscheduler(p, rq, policy, param->sched_priority, pi);
+ task_rq_unlock(rq, p, &flags);
+
+ if (pi)
+ rt_mutex_adjust_pi(p);
+out:
+ return 0;
+}
+
+/**
+ * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
+ * @p: the task in question.
+ * @policy: new policy.
+ * @param: structure containing the new RT priority.
+ *
+ * Return: 0 on success. An error code otherwise.
+ *
+ * NOTE that the task may be already dead.
+ */
+int sched_setscheduler(struct task_struct *p, int policy,
+ const struct sched_param *param)
+{
+ return __sched_setscheduler(p, policy, param, true, true);
+}
+
+EXPORT_SYMBOL_GPL(sched_setscheduler);
+
+int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
+{
+ const struct sched_param param = { .sched_priority = attr->sched_priority };
+ int policy = attr->sched_policy;
+
+ return __sched_setscheduler(p, policy, ¶m, true, true);
+}
+EXPORT_SYMBOL_GPL(sched_setattr);
+
+/**
+ * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
+ * @p: the task in question.
+ * @policy: new policy.
+ * @param: structure containing the new RT priority.
+ *
+ * Just like sched_setscheduler, only don't bother checking if the
+ * current context has permission. For example, this is needed in
+ * stop_machine(): we create temporary high priority worker threads,
+ * but our caller might not have that capability.
+ *
+ * Return: 0 on success. An error code otherwise.
+ */
+int sched_setscheduler_nocheck(struct task_struct *p, int policy,
+ const struct sched_param *param)
+{
+ return __sched_setscheduler(p, policy, param, false, true);
+}
+EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
+
+static int
+do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
+{
+ struct sched_param lparam;
+ struct task_struct *p;
+ int retval;
+
+ if (!param || pid < 0)
+ return -EINVAL;
+ if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
+ return -EFAULT;
+
+ rcu_read_lock();
+ retval = -ESRCH;
+ p = find_process_by_pid(pid);
+ if (p != NULL)
+ retval = sched_setscheduler(p, policy, &lparam);
+ rcu_read_unlock();
+
+ return retval;
+}
+
+/*
+ * Mimics kernel/events/core.c perf_copy_attr().
+ */
+static int sched_copy_attr(struct sched_attr __user *uattr,
+ struct sched_attr *attr)
+{
+ u32 size;
+ int ret;
+
+ if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
+ return -EFAULT;
+
+ /* Zero the full structure, so that a short copy will be nice: */
+ memset(attr, 0, sizeof(*attr));
+
+ ret = get_user(size, &uattr->size);
+ if (ret)
+ return ret;
+
+ /* Bail out on silly large: */
+ if (size > PAGE_SIZE)
+ goto err_size;
+
+ /* ABI compatibility quirk: */
+ if (!size)
+ size = SCHED_ATTR_SIZE_VER0;
+
+ if (size < SCHED_ATTR_SIZE_VER0)
+ goto err_size;
+
+ /*
+ * If we're handed a bigger struct than we know of,
+ * ensure all the unknown bits are 0 - i.e. new
+ * user-space does not rely on any kernel feature
+ * extensions we dont know about yet.
+ */
+ if (size > sizeof(*attr)) {
+ unsigned char __user *addr;
+ unsigned char __user *end;
+ unsigned char val;
+
+ addr = (void __user *)uattr + sizeof(*attr);
+ end = (void __user *)uattr + size;
+
+ for (; addr < end; addr++) {
+ ret = get_user(val, addr);
+ if (ret)
+ return ret;
+ if (val)
+ goto err_size;
+ }
+ size = sizeof(*attr);
+ }
+
+ ret = copy_from_user(attr, uattr, size);
+ if (ret)
+ return -EFAULT;
+
+ /*
+ * XXX: Do we want to be lenient like existing syscalls; or do we want
+ * to be strict and return an error on out-of-bounds values?
+ */
+ attr->sched_nice = clamp(attr->sched_nice, -20, 19);
+
+ /* sched/core.c uses zero here but we already know ret is zero */
+ return 0;
+
+err_size:
+ put_user(sizeof(*attr), &uattr->size);
+ return -E2BIG;
+}
+
+/*
+ * sched_setparam() passes in -1 for its policy, to let the functions
+ * it calls know not to change it.
+ */
+#define SETPARAM_POLICY -1
+
+/**
+ * sys_sched_setscheduler - set/change the scheduler policy and RT priority
+ * @pid: the pid in question.
+ * @policy: new policy.
+ * @param: structure containing the new RT priority.
+ *
+ * Return: 0 on success. An error code otherwise.
+ */
+SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
+{
+ if (policy < 0)
+ return -EINVAL;
+
+ return do_sched_setscheduler(pid, policy, param);
+}
+
+/**
+ * sys_sched_setparam - set/change the RT priority of a thread
+ * @pid: the pid in question.
+ * @param: structure containing the new RT priority.
+ *
+ * Return: 0 on success. An error code otherwise.
+ */
+SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
+{
+ return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
+}
+
+/**
+ * sys_sched_setattr - same as above, but with extended sched_attr
+ * @pid: the pid in question.
+ * @uattr: structure containing the extended parameters.
+ */
+SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
+ unsigned int, flags)
+{
+ struct sched_attr attr;
+ struct task_struct *p;
+ int retval;
+
+ if (!uattr || pid < 0 || flags)
+ return -EINVAL;
+
+ retval = sched_copy_attr(uattr, &attr);
+ if (retval)
+ return retval;
+
+ if ((int)attr.sched_policy < 0)
+ return -EINVAL;
+
+ rcu_read_lock();
+ retval = -ESRCH;
+ p = find_process_by_pid(pid);
+ if (p != NULL)
+ retval = sched_setattr(p, &attr);
+ rcu_read_unlock();
+
+ return retval;
+}
+
+/**
+ * sys_sched_getscheduler - get the policy (scheduling class) of a thread
+ * @pid: the pid in question.
+ *
+ * Return: On success, the policy of the thread. Otherwise, a negative error
+ * code.
+ */
+SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
+{
+ struct task_struct *p;
+ int retval = -EINVAL;
+
+ if (pid < 0)
+ goto out_nounlock;
+
+ retval = -ESRCH;
+ rcu_read_lock();
+ p = find_process_by_pid(pid);
+ if (p) {
+ retval = security_task_getscheduler(p);
+ if (!retval)
+ retval = p->policy;
+ }
+ rcu_read_unlock();
+
+out_nounlock:
+ return retval;
+}
+
+/**
+ * sys_sched_getscheduler - get the RT priority of a thread
+ * @pid: the pid in question.
+ * @param: structure containing the RT priority.
+ *
+ * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
+ * code.
+ */
+SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
+{
+ struct sched_param lp = { .sched_priority = 0 };
+ struct task_struct *p;
+ int retval = -EINVAL;
+
+ if (!param || pid < 0)
+ goto out_nounlock;
+
+ rcu_read_lock();
+ p = find_process_by_pid(pid);
+ retval = -ESRCH;
+ if (!p)
+ goto out_unlock;
+
+ retval = security_task_getscheduler(p);
+ if (retval)
+ goto out_unlock;
+
+ if (has_rt_policy(p))
+ lp.sched_priority = p->rt_priority;
+ rcu_read_unlock();
+
+ /*
+ * This one might sleep, we cannot do it with a spinlock held ...
+ */
+ retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
+
+out_nounlock:
+ return retval;
+
+out_unlock:
+ rcu_read_unlock();
+ return retval;
+}
+
+static int sched_read_attr(struct sched_attr __user *uattr,
+ struct sched_attr *attr,
+ unsigned int usize)
+{
+ int ret;
+
+ if (!access_ok(VERIFY_WRITE, uattr, usize))
+ return -EFAULT;
+
+ /*
+ * If we're handed a smaller struct than we know of,
+ * ensure all the unknown bits are 0 - i.e. old
+ * user-space does not get uncomplete information.
+ */
+ if (usize < sizeof(*attr)) {
+ unsigned char *addr;
+ unsigned char *end;
+
+ addr = (void *)attr + usize;
+ end = (void *)attr + sizeof(*attr);
+
+ for (; addr < end; addr++) {
+ if (*addr)
+ return -EFBIG;
+ }
+
+ attr->size = usize;
+ }
+
+ ret = copy_to_user(uattr, attr, attr->size);
+ if (ret)
+ return -EFAULT;
+
+ /* sched/core.c uses zero here but we already know ret is zero */
+ return ret;
+}
+
+/**
+ * sys_sched_getattr - similar to sched_getparam, but with sched_attr
+ * @pid: the pid in question.
+ * @uattr: structure containing the extended parameters.
+ * @size: sizeof(attr) for fwd/bwd comp.
+ * @flags: for future extension.
+ */
+SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
+ unsigned int, size, unsigned int, flags)
+{
+ struct sched_attr attr = {
+ .size = sizeof(struct sched_attr),
+ };
+ struct task_struct *p;
+ int retval;
+
+ if (!uattr || pid < 0 || size > PAGE_SIZE ||
+ size < SCHED_ATTR_SIZE_VER0 || flags)
+ return -EINVAL;
+
+ rcu_read_lock();
+ p = find_process_by_pid(pid);
+ retval = -ESRCH;
+ if (!p)
+ goto out_unlock;
+
+ retval = security_task_getscheduler(p);
+ if (retval)
+ goto out_unlock;
+
+ attr.sched_policy = p->policy;
+ if (rt_task(p))
+ attr.sched_priority = p->rt_priority;
+ else
+ attr.sched_nice = task_nice(p);
+
+ rcu_read_unlock();
+
+ retval = sched_read_attr(uattr, &attr, size);
+ return retval;
+
+out_unlock:
+ rcu_read_unlock();
+ return retval;
+}
+
+long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
+{
+ cpumask_var_t cpus_allowed, new_mask;
+ struct task_struct *p;
+ int retval;
+
+ rcu_read_lock();
+
+ p = find_process_by_pid(pid);
+ if (!p) {
+ rcu_read_unlock();
+ return -ESRCH;
+ }
+
+ /* Prevent p going away */
+ get_task_struct(p);
+ rcu_read_unlock();
+
+ if (p->flags & PF_NO_SETAFFINITY) {
+ retval = -EINVAL;
+ goto out_put_task;
+ }
+ if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
+ retval = -ENOMEM;
+ goto out_put_task;
+ }
+ if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
+ retval = -ENOMEM;
+ goto out_free_cpus_allowed;
+ }
+ retval = -EPERM;
+ if (!check_same_owner(p)) {
+ rcu_read_lock();
+ if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
+ rcu_read_unlock();
+ goto out_unlock;
+ }
+ rcu_read_unlock();
+ }
+
+ retval = security_task_setscheduler(p);
+ if (retval)
+ goto out_unlock;
+
+ cpuset_cpus_allowed(p, cpus_allowed);
+ cpumask_and(new_mask, in_mask, cpus_allowed);
+again:
+ retval = __set_cpus_allowed_ptr(p, new_mask, true);
+
+ if (!retval) {
+ cpuset_cpus_allowed(p, cpus_allowed);
+ if (!cpumask_subset(new_mask, cpus_allowed)) {
+ /*
+ * We must have raced with a concurrent cpuset
+ * update. Just reset the cpus_allowed to the
+ * cpuset's cpus_allowed
+ */
+ cpumask_copy(new_mask, cpus_allowed);
+ goto again;
+ }
+ }
+out_unlock:
+ free_cpumask_var(new_mask);
+out_free_cpus_allowed:
+ free_cpumask_var(cpus_allowed);
+out_put_task:
+ put_task_struct(p);
+ return retval;
+}
+
+static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
+ cpumask_t *new_mask)
+{
+ if (len < cpumask_size())
+ cpumask_clear(new_mask);
+ else if (len > cpumask_size())
+ len = cpumask_size();
+
+ return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
+}
+
+
+/**
+ * sys_sched_setaffinity - set the CPU affinity of a process
+ * @pid: pid of the process
+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
+ * @user_mask_ptr: user-space pointer to the new CPU mask
+ *
+ * Return: 0 on success. An error code otherwise.
+ */
+SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
+ unsigned long __user *, user_mask_ptr)
+{
+ cpumask_var_t new_mask;
+ int retval;
+
+ if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
+ return -ENOMEM;
+
+ retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
+ if (retval == 0)
+ retval = sched_setaffinity(pid, new_mask);
+ free_cpumask_var(new_mask);
+ return retval;
+}
+
+long sched_getaffinity(pid_t pid, cpumask_t *mask)
+{
+ struct task_struct *p;
+ unsigned long flags;
+ int retval;
+
+ get_online_cpus();
+ rcu_read_lock();
+
+ retval = -ESRCH;
+ p = find_process_by_pid(pid);
+ if (!p)
+ goto out_unlock;
+
+ retval = security_task_getscheduler(p);
+ if (retval)
+ goto out_unlock;
+
+ raw_spin_lock_irqsave(&p->pi_lock, flags);
+ cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
+
+out_unlock:
+ rcu_read_unlock();
+ put_online_cpus();
+
+ return retval;
+}
+
+/**
+ * sys_sched_getaffinity - get the CPU affinity of a process
+ * @pid: pid of the process
+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
+ * @user_mask_ptr: user-space pointer to hold the current CPU mask
+ *
+ * Return: 0 on success. An error code otherwise.
+ */
+SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
+ unsigned long __user *, user_mask_ptr)
+{
+ int ret;
+ cpumask_var_t mask;
+
+ if ((len * BITS_PER_BYTE) < nr_cpu_ids)
+ return -EINVAL;
+ if (len & (sizeof(unsigned long)-1))
+ return -EINVAL;
+
+ if (!alloc_cpumask_var(&mask, GFP_KERNEL))
+ return -ENOMEM;
+
+ ret = sched_getaffinity(pid, mask);
+ if (ret == 0) {
+ size_t retlen = min_t(size_t, len, cpumask_size());
+
+ if (copy_to_user(user_mask_ptr, mask, retlen))
+ ret = -EFAULT;
+ else
+ ret = retlen;
+ }
+ free_cpumask_var(mask);
+
+ return ret;
+}
+
+/**
+ * sys_sched_yield - yield the current processor to other threads.
+ *
+ * This function yields the current CPU to other tasks. It does this by
+ * scheduling away the current task. If it still has the earliest deadline
+ * it will be scheduled again as the next task.
+ *
+ * Return: 0.
+ */
+SYSCALL_DEFINE0(sched_yield)
+{
+ struct rq *rq;
+
+ if (!sched_yield_type)
+ goto out;
+
+ local_irq_disable();
+ rq = this_rq();
+ rq_lock(rq);
+
+ if (sched_yield_type > 1)
+ time_slice_expired(current, rq);
+ schedstat_inc(rq->yld_count);
+
+ /*
+ * Since we are going to call schedule() anyway, there's
+ * no need to preempt or enable interrupts:
+ */
+ preempt_disable();
+ rq_unlock(rq);
+ sched_preempt_enable_no_resched();
+
+ schedule();
+out:
+ return 0;
+}
+
+#ifndef CONFIG_PREEMPT
+int __sched _cond_resched(void)
+{
+ if (should_resched(0)) {
+ preempt_schedule_common();
+ return 1;
+ }
+ return 0;
+}
+EXPORT_SYMBOL(_cond_resched);
+#endif
+
+/*
+ * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
+ * call schedule, and on return reacquire the lock.
+ *
+ * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
+ * operations here to prevent schedule() from being called twice (once via
+ * spin_unlock(), once by hand).
+ */
+int __cond_resched_lock(spinlock_t *lock)
+{
+ int resched = should_resched(PREEMPT_LOCK_OFFSET);
+ int ret = 0;
+
+ lockdep_assert_held(lock);
+
+ if (spin_needbreak(lock) || resched) {
+ spin_unlock(lock);
+ if (resched)
+ preempt_schedule_common();
+ else
+ cpu_relax();
+ ret = 1;
+ spin_lock(lock);
+ }
+ return ret;
+}
+EXPORT_SYMBOL(__cond_resched_lock);
+
+int __sched __cond_resched_softirq(void)
+{
+ BUG_ON(!in_softirq());
+
+ if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
+ local_bh_enable();
+ preempt_schedule_common();
+ local_bh_disable();
+ return 1;
+ }
+ return 0;
+}
+EXPORT_SYMBOL(__cond_resched_softirq);
+
+/**
+ * yield - yield the current processor to other threads.
+ *
+ * Do not ever use this function, there's a 99% chance you're doing it wrong.
+ *
+ * The scheduler is at all times free to pick the calling task as the most
+ * eligible task to run, if removing the yield() call from your code breaks
+ * it, its already broken.
+ *
+ * Typical broken usage is:
+ *
+ * while (!event)
+ * yield();
+ *
+ * where one assumes that yield() will let 'the other' process run that will
+ * make event true. If the current task is a SCHED_FIFO task that will never
+ * happen. Never use yield() as a progress guarantee!!
+ *
+ * If you want to use yield() to wait for something, use wait_event().
+ * If you want to use yield() to be 'nice' for others, use cond_resched().
+ * If you still want to use yield(), do not!
+ */
+void __sched yield(void)
+{
+ set_current_state(TASK_RUNNING);
+ sys_sched_yield();
+}
+EXPORT_SYMBOL(yield);
+
+/**
+ * yield_to - yield the current processor to another thread in
+ * your thread group, or accelerate that thread toward the
+ * processor it's on.
+ * @p: target task
+ * @preempt: whether task preemption is allowed or not
+ *
+ * It's the caller's job to ensure that the target task struct
+ * can't go away on us before we can do any checks.
+ *
+ * Return:
+ * true (>0) if we indeed boosted the target task.
+ * false (0) if we failed to boost the target.
+ * -ESRCH if there's no task to yield to.
+ */
+int __sched yield_to(struct task_struct *p, bool preempt)
+{
+ struct task_struct *rq_p;
+ struct rq *rq, *p_rq;
+ unsigned long flags;
+ int yielded = 0;
+
+ local_irq_save(flags);
+ rq = this_rq();
+
+again:
+ p_rq = task_rq(p);
+ /*
+ * If we're the only runnable task on the rq and target rq also
+ * has only one task, there's absolutely no point in yielding.
+ */
+ if (task_running(p_rq, p) || p->state) {
+ yielded = -ESRCH;
+ goto out_irq;
+ }
+
+ double_rq_lock(rq, p_rq);
+ if (unlikely(task_rq(p) != p_rq)) {
+ double_rq_unlock(rq, p_rq);
+ goto again;
+ }
+
+ yielded = 1;
+ schedstat_inc(rq->yld_count);
+ rq_p = rq->curr;
+ if (p->deadline > rq_p->deadline)
+ p->deadline = rq_p->deadline;
+ p->time_slice += rq_p->time_slice;
+ if (p->time_slice > timeslice())
+ p->time_slice = timeslice();
+ time_slice_expired(rq_p, rq);
+ if (preempt && rq != p_rq)
+ resched_task(p_rq->curr);
+ double_rq_unlock(rq, p_rq);
+out_irq:
+ local_irq_restore(flags);
+
+ if (yielded > 0)
+ schedule();
+ return yielded;
+}
+EXPORT_SYMBOL_GPL(yield_to);
+
+int io_schedule_prepare(void)
+{
+ int old_iowait = current->in_iowait;
+
+ current->in_iowait = 1;
+ blk_schedule_flush_plug(current);
+
+ return old_iowait;
+}
+
+void io_schedule_finish(int token)
+{
+ current->in_iowait = token;
+}
+
+/*
+ * This task is about to go to sleep on IO. Increment rq->nr_iowait so
+ * that process accounting knows that this is a task in IO wait state.
+ *
+ * But don't do that if it is a deliberate, throttling IO wait (this task
+ * has set its backing_dev_info: the queue against which it should throttle)
+ */
+
+long __sched io_schedule_timeout(long timeout)
+{
+ int token;
+ long ret;
+
+ token = io_schedule_prepare();
+ ret = schedule_timeout(timeout);
+ io_schedule_finish(token);
+
+ return ret;
+}
+EXPORT_SYMBOL(io_schedule_timeout);
+
+void io_schedule(void)
+{
+ int token;
+
+ token = io_schedule_prepare();
+ schedule();
+ io_schedule_finish(token);
+}
+EXPORT_SYMBOL(io_schedule);
+
+/**
+ * sys_sched_get_priority_max - return maximum RT priority.
+ * @policy: scheduling class.
+ *
+ * Return: On success, this syscall returns the maximum
+ * rt_priority that can be used by a given scheduling class.
+ * On failure, a negative error code is returned.
+ */
+SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
+{
+ int ret = -EINVAL;
+
+ switch (policy) {
+ case SCHED_FIFO:
+ case SCHED_RR:
+ ret = MAX_USER_RT_PRIO-1;
+ break;
+ case SCHED_NORMAL:
+ case SCHED_BATCH:
+ case SCHED_ISO:
+ case SCHED_IDLEPRIO:
+ ret = 0;
+ break;
+ }
+ return ret;
+}
+
+/**
+ * sys_sched_get_priority_min - return minimum RT priority.
+ * @policy: scheduling class.
+ *
+ * Return: On success, this syscall returns the minimum
+ * rt_priority that can be used by a given scheduling class.
+ * On failure, a negative error code is returned.
+ */
+SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
+{
+ int ret = -EINVAL;
+
+ switch (policy) {
+ case SCHED_FIFO:
+ case SCHED_RR:
+ ret = 1;
+ break;
+ case SCHED_NORMAL:
+ case SCHED_BATCH:
+ case SCHED_ISO:
+ case SCHED_IDLEPRIO:
+ ret = 0;
+ break;
+ }
+ return ret;
+}
+
+/**
+ * sys_sched_rr_get_interval - return the default timeslice of a process.
+ * @pid: pid of the process.
+ * @interval: userspace pointer to the timeslice value.
+ *
+ *
+ * Return: On success, 0 and the timeslice is in @interval. Otherwise,
+ * an error code.
+ */
+SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
+ struct timespec __user *, interval)
+{
+ struct task_struct *p;
+ unsigned int time_slice;
+ unsigned long flags;
+ struct timespec t;
+ struct rq *rq;
+ int retval;
+
+ if (pid < 0)
+ return -EINVAL;
+
+ retval = -ESRCH;
+ rcu_read_lock();
+ p = find_process_by_pid(pid);
+ if (!p)
+ goto out_unlock;
+
+ retval = security_task_getscheduler(p);
+ if (retval)
+ goto out_unlock;
+
+ rq = task_rq_lock(p, &flags);
+ time_slice = p->policy == SCHED_FIFO ? 0 : MS_TO_NS(task_timeslice(p));
+ task_rq_unlock(rq, p, &flags);
+
+ rcu_read_unlock();
+ t = ns_to_timespec(time_slice);
+ retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
+ return retval;
+
+out_unlock:
+ rcu_read_unlock();
+ return retval;
+}
+
+void sched_show_task(struct task_struct *p)
+{
+ unsigned long free = 0;
+ int ppid;
+
+ if (!try_get_task_stack(p))
+ return;
+
+ printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
+
+ if (p->state == TASK_RUNNING)
+ printk(KERN_CONT " running task ");
+#ifdef CONFIG_DEBUG_STACK_USAGE
+ free = stack_not_used(p);
+#endif
+ ppid = 0;
+ rcu_read_lock();
+ if (pid_alive(p))
+ ppid = task_pid_nr(rcu_dereference(p->real_parent));
+ rcu_read_unlock();
+ printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
+ task_pid_nr(p), ppid,
+ (unsigned long)task_thread_info(p)->flags);
+
+ print_worker_info(KERN_INFO, p);
+ show_stack(p, NULL);
+ put_task_stack(p);
+}
+
+static inline bool
+state_filter_match(unsigned long state_filter, struct task_struct *p)
+{
+ /* no filter, everything matches */
+ if (!state_filter)
+ return true;
+
+ /* filter, but doesn't match */
+ if (!(p->state & state_filter))
+ return false;
+
+ /*
+ * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
+ * TASK_KILLABLE).
+ */
+ if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
+ return false;
+
+ return true;
+}
+
+void show_state_filter(unsigned long state_filter)
+{
+ struct task_struct *g, *p;
+
+#if BITS_PER_LONG == 32
+ printk(KERN_INFO
+ " task PC stack pid father\n");
+#else
+ printk(KERN_INFO
+ " task PC stack pid father\n");
+#endif
+ rcu_read_lock();
+ for_each_process_thread(g, p) {
+ /*
+ * reset the NMI-timeout, listing all files on a slow
+ * console might take a lot of time:
+ * Also, reset softlockup watchdogs on all CPUs, because
+ * another CPU might be blocked waiting for us to process
+ * an IPI.
+ */
+ touch_nmi_watchdog();
+ touch_all_softlockup_watchdogs();
+ if (state_filter_match(state_filter, p))
+ sched_show_task(p);
+ }
+
+ rcu_read_unlock();
+ /*
+ * Only show locks if all tasks are dumped:
+ */
+ if (!state_filter)
+ debug_show_all_locks();
+}
+
+void dump_cpu_task(int cpu)
+{
+ pr_info("Task dump for CPU %d:\n", cpu);
+ sched_show_task(cpu_curr(cpu));
+}
+
+#ifdef CONFIG_SMP
+void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
+{
+ cpumask_copy(&p->cpus_allowed, new_mask);
+ p->nr_cpus_allowed = cpumask_weight(new_mask);
+}
+
+void __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
+{
+ struct rq *rq = task_rq(p);
+
+ lockdep_assert_held(&p->pi_lock);
+
+ cpumask_copy(&p->cpus_allowed, new_mask);
+
+ if (task_queued(p)) {
+ /*
+ * Because __kthread_bind() calls this on blocked tasks without
+ * holding rq->lock.
+ */
+ lockdep_assert_held(&rq->lock);
+ }
+}
+
+/*
+ * Calling do_set_cpus_allowed from outside the scheduler code should not be
+ * called on a running or queued task. We should be holding pi_lock.
+ */
+void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
+{
+ __do_set_cpus_allowed(p, new_mask);
+ if (needs_other_cpu(p, task_cpu(p))) {
+ struct rq *rq;
+
+ rq = __task_rq_lock(p);
+ set_task_cpu(p, valid_task_cpu(p));
+ resched_task(p);
+ __task_rq_unlock(rq);
+ }
+}
+#endif
+
+/**
+ * init_idle - set up an idle thread for a given CPU
+ * @idle: task in question
+ * @cpu: cpu the idle task belongs to
+ *
+ * NOTE: this function does not set the idle thread's NEED_RESCHED
+ * flag, to make booting more robust.
+ */
+void init_idle(struct task_struct *idle, int cpu)
+{
+ struct rq *rq = cpu_rq(cpu);
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&idle->pi_lock, flags);
+ raw_spin_lock(&rq->lock);
+ idle->last_ran = rq->niffies;
+ time_slice_expired(idle, rq);
+ idle->state = TASK_RUNNING;
+ /* Setting prio to illegal value shouldn't matter when never queued */
+ idle->prio = PRIO_LIMIT;
+
+ kasan_unpoison_task_stack(idle);
+
+#ifdef CONFIG_SMP
+ /*
+ * It's possible that init_idle() gets called multiple times on a task,
+ * in that case do_set_cpus_allowed() will not do the right thing.
+ *
+ * And since this is boot we can forgo the serialisation.
+ */
+ set_cpus_allowed_common(idle, cpumask_of(cpu));
+#ifdef CONFIG_SMT_NICE
+ idle->smt_bias = 0;
+#endif
+#endif
+ set_rq_task(rq, idle);
+
+ /* Silence PROVE_RCU */
+ rcu_read_lock();
+ set_task_cpu(idle, cpu);
+ rcu_read_unlock();
+
+ rq->curr = rq->idle = idle;
+ idle->on_rq = TASK_ON_RQ_QUEUED;
+ raw_spin_unlock(&rq->lock);
+ raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
+
+ /* Set the preempt count _outside_ the spinlocks! */
+ init_idle_preempt_count(idle, cpu);
+
+ ftrace_graph_init_idle_task(idle, cpu);
+ vtime_init_idle(idle, cpu);
+#ifdef CONFIG_SMP
+ sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
+#endif
+}
+
+int cpuset_cpumask_can_shrink(const struct cpumask __maybe_unused *cur,
+ const struct cpumask __maybe_unused *trial)
+{
+ return 1;
+}
+
+int task_can_attach(struct task_struct *p,
+ const struct cpumask *cs_cpus_allowed)
+{
+ int ret = 0;
+
+ /*
+ * Kthreads which disallow setaffinity shouldn't be moved
+ * to a new cpuset; we don't want to change their CPU
+ * affinity and isolating such threads by their set of
+ * allowed nodes is unnecessary. Thus, cpusets are not
+ * applicable for such threads. This prevents checking for
+ * success of set_cpus_allowed_ptr() on all attached tasks
+ * before cpus_allowed may be changed.
+ */
+ if (p->flags & PF_NO_SETAFFINITY)
+ ret = -EINVAL;
+
+ return ret;
+}
+
+void resched_cpu(int cpu)
+{
+ struct rq *rq = cpu_rq(cpu);
+ unsigned long flags;
+
+ rq_lock_irqsave(rq, &flags);
+ resched_task(cpu_curr(cpu));
+ rq_unlock_irqrestore(rq, &flags);
+}
+
+#ifdef CONFIG_SMP
+#ifdef CONFIG_NO_HZ_COMMON
+void nohz_balance_enter_idle(int cpu)
+{
+}
+
+void select_nohz_load_balancer(int stop_tick)
+{
+}
+
+void set_cpu_sd_state_idle(void) {}
+
+/*
+ * In the semi idle case, use the nearest busy CPU for migrating timers
+ * from an idle CPU. This is good for power-savings.
+ *
+ * We don't do similar optimization for completely idle system, as
+ * selecting an idle CPU will add more delays to the timers than intended
+ * (as that CPU's timer base may not be uptodate wrt jiffies etc).
+ */
+int get_nohz_timer_target(void)
+{
+ int i, cpu = smp_processor_id();
+ struct sched_domain *sd;
+
+ if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
+ return cpu;
+
+ rcu_read_lock();
+ for_each_domain(cpu, sd) {
+ for_each_cpu(i, sched_domain_span(sd)) {
+ if (cpu == i)
+ continue;
+
+ if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
+ cpu = i;
+ cpu = i;
+ goto unlock;
+ }
+ }
+ }
+
+ if (!is_housekeeping_cpu(cpu))
+ cpu = housekeeping_any_cpu();
+unlock:
+ rcu_read_unlock();
+ return cpu;
+}
+
+/*
+ * When add_timer_on() enqueues a timer into the timer wheel of an
+ * idle CPU then this timer might expire before the next timer event
+ * which is scheduled to wake up that CPU. In case of a completely
+ * idle system the next event might even be infinite time into the
+ * future. wake_up_idle_cpu() ensures that the CPU is woken up and
+ * leaves the inner idle loop so the newly added timer is taken into
+ * account when the CPU goes back to idle and evaluates the timer
+ * wheel for the next timer event.
+ */
+void wake_up_idle_cpu(int cpu)
+{
+ if (cpu == smp_processor_id())
+ return;
+
+ if (set_nr_and_not_polling(cpu_rq(cpu)->idle))
+ smp_sched_reschedule(cpu);
+ else
+ trace_sched_wake_idle_without_ipi(cpu);
+}
+
+static bool wake_up_full_nohz_cpu(int cpu)
+{
+ /*
+ * We just need the target to call irq_exit() and re-evaluate
+ * the next tick. The nohz full kick at least implies that.
+ * If needed we can still optimize that later with an
+ * empty IRQ.
+ */
+ if (cpu_is_offline(cpu))
+ return true; /* Don't try to wake offline CPUs. */
+ if (tick_nohz_full_cpu(cpu)) {
+ if (cpu != smp_processor_id() ||
+ tick_nohz_tick_stopped())
+ tick_nohz_full_kick_cpu(cpu);
+ return true;
+ }
+
+ return false;
+}
+
+/*
+ * Wake up the specified CPU. If the CPU is going offline, it is the
+ * caller's responsibility to deal with the lost wakeup, for example,
+ * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
+ */
+void wake_up_nohz_cpu(int cpu)
+{
+ if (!wake_up_full_nohz_cpu(cpu))
+ wake_up_idle_cpu(cpu);
+}
+#endif /* CONFIG_NO_HZ_COMMON */
+
+/*
+ * Change a given task's CPU affinity. Migrate the thread to a
+ * proper CPU and schedule it away if the CPU it's executing on
+ * is removed from the allowed bitmask.
+ *
+ * NOTE: the caller must have a valid reference to the task, the
+ * task must not exit() & deallocate itself prematurely. The
+ * call is not atomic; no spinlocks may be held.
+ */
+static int __set_cpus_allowed_ptr(struct task_struct *p,
+ const struct cpumask *new_mask, bool check)
+{
+ const struct cpumask *cpu_valid_mask = cpu_active_mask;
+ bool queued = false, running_wrong = false, kthread;
+ struct cpumask old_mask;
+ unsigned long flags;
+ struct rq *rq;
+ int ret = 0;
+
+ rq = task_rq_lock(p, &flags);
+ update_rq_clock(rq);
+
+ kthread = !!(p->flags & PF_KTHREAD);
+ if (kthread) {
+ /*
+ * Kernel threads are allowed on online && !active CPUs
+ */
+ cpu_valid_mask = cpu_online_mask;
+ }
+
+ /*
+ * Must re-check here, to close a race against __kthread_bind(),
+ * sched_setaffinity() is not guaranteed to observe the flag.
+ */
+ if (check && (p->flags & PF_NO_SETAFFINITY)) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ cpumask_copy(&old_mask, &p->cpus_allowed);
+ if (cpumask_equal(&old_mask, new_mask))
+ goto out;
+
+ if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ queued = task_queued(p);
+ __do_set_cpus_allowed(p, new_mask);
+
+ if (kthread) {
+ /*
+ * For kernel threads that do indeed end up on online &&
+ * !active we want to ensure they are strict per-CPU threads.
+ */
+ WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
+ !cpumask_intersects(new_mask, cpu_active_mask) &&
+ p->nr_cpus_allowed != 1);
+ }
+
+ /* Can the task run on the task's current CPU? If so, we're done */
+ if (cpumask_test_cpu(task_cpu(p), new_mask))
+ goto out;
+
+ if (task_running(rq, p)) {
+ /* Task is running on the wrong cpu now, reschedule it. */
+ if (rq == this_rq()) {
+ set_tsk_need_resched(p);
+ running_wrong = true;
+ } else
+ resched_task(p);
+ } else {
+ int cpu = cpumask_any_and(cpu_valid_mask, new_mask);
+
+ if (queued) {
+ /*
+ * Switch runqueue locks after dequeueing the task
+ * here while still holding the pi_lock to be holding
+ * the correct lock for enqueueing.
+ */
+ dequeue_task(rq, p, 0);
+ rq_unlock(rq);
+
+ rq = cpu_rq(cpu);
+ rq_lock(rq);
+ }
+ set_task_cpu(p, cpu);
+ if (queued)
+ enqueue_task(rq, p, 0);
+ }
+ if (queued)
+ try_preempt(p, rq);
+ if (running_wrong)
+ preempt_disable();
+out:
+ task_rq_unlock(rq, p, &flags);
+
+ if (running_wrong) {
+ __schedule(true);
+ preempt_enable();
+ }
+
+ return ret;
+}
+
+int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
+{
+ return __set_cpus_allowed_ptr(p, new_mask, false);
+}
+EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
+
+#ifdef CONFIG_HOTPLUG_CPU
+/*
+ * Run through task list and find tasks affined to the dead cpu, then remove
+ * that cpu from the list, enable cpu0 and set the zerobound flag. Must hold
+ * cpu 0 and src_cpu's runqueue locks.
+ */
+static void bind_zero(int src_cpu)
+{
+ struct task_struct *p, *t;
+ struct rq *rq0;
+ int bound = 0;
+
+ if (src_cpu == 0)
+ return;
+
+ rq0 = cpu_rq(0);
+
+ do_each_thread(t, p) {
+ if (cpumask_test_cpu(src_cpu, &p->cpus_allowed)) {
+ bool local = (task_cpu(p) == src_cpu);
+ struct rq *rq = task_rq(p);
+
+ /* task_running is the cpu stopper thread */
+ if (local && task_running(rq, p))
+ continue;
+ atomic_clear_cpu(src_cpu, &p->cpus_allowed);
+ atomic_set_cpu(0, &p->cpus_allowed);
+ p->zerobound = true;
+ bound++;
+ if (local) {
+ bool queued = task_queued(p);
+
+ if (queued)
+ dequeue_task(rq, p, 0);
+ set_task_cpu(p, 0);
+ if (queued)
+ enqueue_task(rq0, p, 0);
+ }
+ }
+ } while_each_thread(t, p);
+
+ if (bound) {
+ printk(KERN_INFO "Removed affinity for %d processes to cpu %d\n",
+ bound, src_cpu);
+ }
+}
+
+/* Find processes with the zerobound flag and reenable their affinity for the
+ * CPU coming alive. */
+static void unbind_zero(int src_cpu)
+{
+ int unbound = 0, zerobound = 0;
+ struct task_struct *p, *t;
+
+ if (src_cpu == 0)
+ return;
+
+ do_each_thread(t, p) {
+ if (!p->mm)
+ p->zerobound = false;
+ if (p->zerobound) {
+ unbound++;
+ cpumask_set_cpu(src_cpu, &p->cpus_allowed);
+ /* Once every CPU affinity has been re-enabled, remove
+ * the zerobound flag */
+ if (cpumask_subset(cpu_possible_mask, &p->cpus_allowed)) {
+ p->zerobound = false;
+ zerobound++;
+ }
+ }
+ } while_each_thread(t, p);
+
+ if (unbound) {
+ printk(KERN_INFO "Added affinity for %d processes to cpu %d\n",
+ unbound, src_cpu);
+ }
+ if (zerobound) {
+ printk(KERN_INFO "Released forced binding to cpu0 for %d processes\n",
+ zerobound);
+ }
+}
+
+/*
+ * Ensure that the idle task is using init_mm right before its cpu goes
+ * offline.
+ */
+void idle_task_exit(void)
+{
+ struct mm_struct *mm = current->active_mm;
+
+ BUG_ON(cpu_online(smp_processor_id()));
+
+ if (mm != &init_mm) {
+ switch_mm(mm, &init_mm, current);
+ finish_arch_post_lock_switch();
+ }
+ mmdrop(mm);
+}
+#else /* CONFIG_HOTPLUG_CPU */
+static void unbind_zero(int src_cpu) {}
+#endif /* CONFIG_HOTPLUG_CPU */
+
+void sched_set_stop_task(int cpu, struct task_struct *stop)
+{
+ struct sched_param stop_param = { .sched_priority = STOP_PRIO };
+ struct sched_param start_param = { .sched_priority = 0 };
+ struct task_struct *old_stop = cpu_rq(cpu)->stop;
+
+ if (stop) {
+ /*
+ * Make it appear like a SCHED_FIFO task, its something
+ * userspace knows about and won't get confused about.
+ *
+ * Also, it will make PI more or less work without too
+ * much confusion -- but then, stop work should not
+ * rely on PI working anyway.
+ */
+ sched_setscheduler_nocheck(stop, SCHED_FIFO, &stop_param);
+ }
+
+ cpu_rq(cpu)->stop = stop;
+
+ if (old_stop) {
+ /*
+ * Reset it back to a normal scheduling policy so that
+ * it can die in pieces.
+ */
+ sched_setscheduler_nocheck(old_stop, SCHED_NORMAL, &start_param);
+ }
+}
+
+#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
+
+static struct ctl_table sd_ctl_dir[] = {
+ {
+ .procname = "sched_domain",
+ .mode = 0555,
+ },
+ {}
+};
+
+static struct ctl_table sd_ctl_root[] = {
+ {
+ .procname = "kernel",
+ .mode = 0555,
+ .child = sd_ctl_dir,
+ },
+ {}
+};
+
+static struct ctl_table *sd_alloc_ctl_entry(int n)
+{
+ struct ctl_table *entry =
+ kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
+
+ return entry;
+}
+
+static void sd_free_ctl_entry(struct ctl_table **tablep)
+{
+ struct ctl_table *entry;
+
+ /*
+ * In the intermediate directories, both the child directory and
+ * procname are dynamically allocated and could fail but the mode
+ * will always be set. In the lowest directory the names are
+ * static strings and all have proc handlers.
+ */
+ for (entry = *tablep; entry->mode; entry++) {
+ if (entry->child)
+ sd_free_ctl_entry(&entry->child);
+ if (entry->proc_handler == NULL)
+ kfree(entry->procname);
+ }
+
+ kfree(*tablep);
+ *tablep = NULL;
+}
+
+#define CPU_LOAD_IDX_MAX 5
+static int min_load_idx = 0;
+static int max_load_idx = CPU_LOAD_IDX_MAX-1;
+
+static void
+set_table_entry(struct ctl_table *entry,
+ const char *procname, void *data, int maxlen,
+ umode_t mode, proc_handler *proc_handler,
+ bool load_idx)
+{
+ entry->procname = procname;
+ entry->data = data;
+ entry->maxlen = maxlen;
+ entry->mode = mode;
+ entry->proc_handler = proc_handler;
+
+ if (load_idx) {
+ entry->extra1 = &min_load_idx;
+ entry->extra2 = &max_load_idx;
+ }
+}
+
+static struct ctl_table *
+sd_alloc_ctl_domain_table(struct sched_domain *sd)
+{
+ struct ctl_table *table = sd_alloc_ctl_entry(14);
+
+ if (table == NULL)
+ return NULL;
+
+ set_table_entry(&table[0], "min_interval", &sd->min_interval,
+ sizeof(long), 0644, proc_doulongvec_minmax, false);
+ set_table_entry(&table[1], "max_interval", &sd->max_interval,
+ sizeof(long), 0644, proc_doulongvec_minmax, false);
+ set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
+ sizeof(int), 0644, proc_dointvec_minmax, true);
+ set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
+ sizeof(int), 0644, proc_dointvec_minmax, true);
+ set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
+ sizeof(int), 0644, proc_dointvec_minmax, true);
+ set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
+ sizeof(int), 0644, proc_dointvec_minmax, true);
+ set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
+ sizeof(int), 0644, proc_dointvec_minmax, true);
+ set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
+ sizeof(int), 0644, proc_dointvec_minmax, false);
+ set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
+ sizeof(int), 0644, proc_dointvec_minmax, false);
+ set_table_entry(&table[9], "cache_nice_tries",
+ &sd->cache_nice_tries,
+ sizeof(int), 0644, proc_dointvec_minmax, false);
+ set_table_entry(&table[10], "flags", &sd->flags,
+ sizeof(int), 0644, proc_dointvec_minmax, false);
+ set_table_entry(&table[11], "max_newidle_lb_cost",
+ &sd->max_newidle_lb_cost,
+ sizeof(long), 0644, proc_doulongvec_minmax, false);
+ set_table_entry(&table[12], "name", sd->name,
+ CORENAME_MAX_SIZE, 0444, proc_dostring, false);
+ /* &table[13] is terminator */
+
+ return table;
+}
+
+static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
+{
+ struct ctl_table *entry, *table;
+ struct sched_domain *sd;
+ int domain_num = 0, i;
+ char buf[32];
+
+ for_each_domain(cpu, sd)
+ domain_num++;
+ entry = table = sd_alloc_ctl_entry(domain_num + 1);
+ if (table == NULL)
+ return NULL;
+
+ i = 0;
+ for_each_domain(cpu, sd) {
+ snprintf(buf, 32, "domain%d", i);
+ entry->procname = kstrdup(buf, GFP_KERNEL);
+ entry->mode = 0555;
+ entry->child = sd_alloc_ctl_domain_table(sd);
+ entry++;
+ i++;
+ }
+ return table;
+}
+
+static cpumask_var_t sd_sysctl_cpus;
+static struct ctl_table_header *sd_sysctl_header;
+
+void register_sched_domain_sysctl(void)
+{
+ static struct ctl_table *cpu_entries;
+ static struct ctl_table **cpu_idx;
+ char buf[32];
+ int i;
+
+ if (!cpu_entries) {
+ cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
+ if (!cpu_entries)
+ return;
+
+ WARN_ON(sd_ctl_dir[0].child);
+ sd_ctl_dir[0].child = cpu_entries;
+ }
+
+ if (!cpu_idx) {
+ struct ctl_table *e = cpu_entries;
+
+ cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
+ if (!cpu_idx)
+ return;
+
+ /* deal with sparse possible map */
+ for_each_possible_cpu(i) {
+ cpu_idx[i] = e;
+ e++;
+ }
+ }
+
+ if (!cpumask_available(sd_sysctl_cpus)) {
+ if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
+ return;
+
+ /* init to possible to not have holes in @cpu_entries */
+ cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
+ }
+
+ for_each_cpu(i, sd_sysctl_cpus) {
+ struct ctl_table *e = cpu_idx[i];
+
+ if (e->child)
+ sd_free_ctl_entry(&e->child);
+
+ if (!e->procname) {
+ snprintf(buf, 32, "cpu%d", i);
+ e->procname = kstrdup(buf, GFP_KERNEL);
+ }
+ e->mode = 0555;
+ e->child = sd_alloc_ctl_cpu_table(i);
+
+ __cpumask_clear_cpu(i, sd_sysctl_cpus);
+ }
+
+ WARN_ON(sd_sysctl_header);
+ sd_sysctl_header = register_sysctl_table(sd_ctl_root);
+}
+
+void dirty_sched_domain_sysctl(int cpu)
+{
+ if (cpumask_available(sd_sysctl_cpus))
+ __cpumask_set_cpu(cpu, sd_sysctl_cpus);
+}
+
+/* may be called multiple times per register */
+void unregister_sched_domain_sysctl(void)
+{
+ unregister_sysctl_table(sd_sysctl_header);
+ sd_sysctl_header = NULL;
+}
+#endif /* CONFIG_SYSCTL */
+
+void set_rq_online(struct rq *rq)
+{
+ if (!rq->online) {
+ cpumask_set_cpu(cpu_of(rq), rq->rd->online);
+ rq->online = true;
+ }
+}
+
+void set_rq_offline(struct rq *rq)
+{
+ if (rq->online) {
+ int cpu = cpu_of(rq);
+
+ cpumask_clear_cpu(cpu, rq->rd->online);
+ rq->online = false;
+ clear_cpuidle_map(cpu);
+ }
+}
+
+/*
+ * used to mark begin/end of suspend/resume:
+ */
+static int num_cpus_frozen;
+
+/*
+ * Update cpusets according to cpu_active mask. If cpusets are
+ * disabled, cpuset_update_active_cpus() becomes a simple wrapper
+ * around partition_sched_domains().
+ *
+ * If we come here as part of a suspend/resume, don't touch cpusets because we
+ * want to restore it back to its original state upon resume anyway.
+ */
+static void cpuset_cpu_active(void)
+{
+ if (cpuhp_tasks_frozen) {
+ /*
+ * num_cpus_frozen tracks how many CPUs are involved in suspend
+ * resume sequence. As long as this is not the last online
+ * operation in the resume sequence, just build a single sched
+ * domain, ignoring cpusets.
+ */
+ partition_sched_domains(1, NULL, NULL);
+ if (--num_cpus_frozen)
+ return;
+ /*
+ * This is the last CPU online operation. So fall through and
+ * restore the original sched domains by considering the
+ * cpuset configurations.
+ */
+ cpuset_force_rebuild();
+ }
+
+ cpuset_update_active_cpus();
+}
+
+static int cpuset_cpu_inactive(unsigned int cpu)
+{
+ if (!cpuhp_tasks_frozen) {
+ cpuset_update_active_cpus();
+ } else {
+ num_cpus_frozen++;
+ partition_sched_domains(1, NULL, NULL);
+ }
+ return 0;
+}
+
+int sched_cpu_activate(unsigned int cpu)
+{
+ struct rq *rq = cpu_rq(cpu);
+ unsigned long flags;
+
+ set_cpu_active(cpu, true);
+
+ if (sched_smp_initialized) {
+ sched_domains_numa_masks_set(cpu);
+ cpuset_cpu_active();
+ }
+
+ /*
+ * Put the rq online, if not already. This happens:
+ *
+ * 1) In the early boot process, because we build the real domains
+ * after all CPUs have been brought up.
+ *
+ * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
+ * domains.
+ */
+ rq_lock_irqsave(rq, &flags);
+ if (rq->rd) {
+ BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
+ set_rq_online(rq);
+ }
+ unbind_zero(cpu);
+ rq_unlock_irqrestore(rq, &flags);
+
+ return 0;
+}
+
+int sched_cpu_deactivate(unsigned int cpu)
+{
+ int ret;
+
+ set_cpu_active(cpu, false);
+ /*
+ * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
+ * users of this state to go away such that all new such users will
+ * observe it.
+ *
+ * Do sync before park smpboot threads to take care the rcu boost case.
+ */
+ synchronize_rcu_mult(call_rcu, call_rcu_sched);
+
+ if (!sched_smp_initialized)
+ return 0;
+
+ ret = cpuset_cpu_inactive(cpu);
+ if (ret) {
+ set_cpu_active(cpu, true);
+ return ret;
+ }
+ sched_domains_numa_masks_clear(cpu);
+ return 0;
+}
+
+int sched_cpu_starting(unsigned int __maybe_unused cpu)
+{
+ return 0;
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+int sched_cpu_dying(unsigned int cpu)
+{
+ struct rq *rq = cpu_rq(cpu);
+ unsigned long flags;
+
+ local_irq_save(flags);
+ double_rq_lock(rq, cpu_rq(0));
+ if (rq->rd) {
+ BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
+ set_rq_offline(rq);
+ }
+ bind_zero(cpu);
+ double_rq_unlock(rq, cpu_rq(0));
+ sched_start_tick(rq, cpu);
+ hrexpiry_clear(rq);
+ local_irq_restore(flags);
+
+ return 0;
+}
+#endif
+
+#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
+/*
+ * Cheaper version of the below functions in case support for SMT and MC is
+ * compiled in but CPUs have no siblings.
+ */
+static bool sole_cpu_idle(struct rq *rq)
+{
+ return rq_idle(rq);
+}
+#endif
+#ifdef CONFIG_SCHED_SMT
+static const cpumask_t *thread_cpumask(int cpu)
+{
+ return topology_sibling_cpumask(cpu);
+}
+/* All this CPU's SMT siblings are idle */
+static bool siblings_cpu_idle(struct rq *rq)
+{
+ return cpumask_subset(&rq->thread_mask, &cpu_idle_map);
+}
+#endif
+#ifdef CONFIG_SCHED_MC
+static const cpumask_t *core_cpumask(int cpu)
+{
+ return topology_core_cpumask(cpu);
+}
+/* All this CPU's shared cache siblings are idle */
+static bool cache_cpu_idle(struct rq *rq)
+{
+ return cpumask_subset(&rq->core_mask, &cpu_idle_map);
+}
+#endif
+
+enum sched_domain_level {
+ SD_LV_NONE = 0,
+ SD_LV_SIBLING,
+ SD_LV_MC,
+ SD_LV_BOOK,
+ SD_LV_CPU,
+ SD_LV_NODE,
+ SD_LV_ALLNODES,
+ SD_LV_MAX
+};
+
+void __init sched_init_smp(void)
+{
+ struct sched_domain *sd;
+ int cpu, other_cpu;
+#ifdef CONFIG_SCHED_SMT
+ bool smt_threads = false;
+#endif
+ cpumask_var_t non_isolated_cpus;
+ struct rq *rq;
+
+ alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
+
+ sched_init_numa();
+
+ /*
+ * There's no userspace yet to cause hotplug operations; hence all the
+ * cpu masks are stable and all blatant races in the below code cannot
+ * happen.
+ */
+ mutex_lock(&sched_domains_mutex);
+ sched_init_domains(cpu_active_mask);
+ cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
+ if (cpumask_empty(non_isolated_cpus))
+ cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
+ mutex_unlock(&sched_domains_mutex);
+
+ /* Move init over to a non-isolated CPU */
+ if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
+ BUG();
+ free_cpumask_var(non_isolated_cpus);
+
+ mutex_lock(&sched_domains_mutex);
+ local_irq_disable();
+ lock_all_rqs();
+ /*
+ * Set up the relative cache distance of each online cpu from each
+ * other in a simple array for quick lookup. Locality is determined
+ * by the closest sched_domain that CPUs are separated by. CPUs with
+ * shared cache in SMT and MC are treated as local. Separate CPUs
+ * (within the same package or physically) within the same node are
+ * treated as not local. CPUs not even in the same domain (different
+ * nodes) are treated as very distant.
+ */
+ for_each_online_cpu(cpu) {
+ rq = cpu_rq(cpu);
+
+ /* First check if this cpu is in the same node */
+ for_each_domain(cpu, sd) {
+ if (sd->level > SD_LV_MC)
+ continue;
+ /* Set locality to local node if not already found lower */
+ for_each_cpu(other_cpu, sched_domain_span(sd)) {
+ if (rq->cpu_locality[other_cpu] > 3)
+ rq->cpu_locality[other_cpu] = 3;
+ }
+ }
+
+ /*
+ * Each runqueue has its own function in case it doesn't have
+ * siblings of its own allowing mixed topologies.
+ */
+#ifdef CONFIG_SCHED_MC
+ for_each_cpu(other_cpu, core_cpumask(cpu)) {
+ if (rq->cpu_locality[other_cpu] > 2)
+ rq->cpu_locality[other_cpu] = 2;
+ }
+ if (cpumask_weight(core_cpumask(cpu)) > 1) {
+ cpumask_copy(&rq->core_mask, core_cpumask(cpu));
+ cpumask_clear_cpu(cpu, &rq->core_mask);
+ rq->cache_idle = cache_cpu_idle;
+ }
+#endif
+#ifdef CONFIG_SCHED_SMT
+ if (cpumask_weight(thread_cpumask(cpu)) > 1) {
+ cpumask_copy(&rq->thread_mask, thread_cpumask(cpu));
+ cpumask_clear_cpu(cpu, &rq->thread_mask);
+ for_each_cpu(other_cpu, thread_cpumask(cpu))
+ rq->cpu_locality[other_cpu] = 1;
+ rq->siblings_idle = siblings_cpu_idle;
+ smt_threads = true;
+ }
+#endif
+ }
+ for_each_possible_cpu(cpu) {
+ int total_cpus = 1, locality;
+
+ rq = cpu_rq(cpu);
+ for (locality = 1; locality <= 4; locality++) {
+ for_each_possible_cpu(other_cpu) {
+ if (rq->cpu_locality[other_cpu] == locality)
+ rq->rq_order[total_cpus++] = cpu_rq(other_cpu);
+ }
+ }
+ }
+#ifdef CONFIG_SMT_NICE
+ if (smt_threads) {
+ check_siblings = &check_smt_siblings;
+ wake_siblings = &wake_smt_siblings;
+ smt_schedule = &smt_should_schedule;
+ }
+#endif
+ unlock_all_rqs();
+ local_irq_enable();
+ mutex_unlock(&sched_domains_mutex);
+
+ for_each_online_cpu(cpu) {
+ rq = cpu_rq(cpu);
+
+ for_each_online_cpu(other_cpu) {
+ if (other_cpu <= cpu)
+ continue;
+ printk(KERN_DEBUG "MuQSS locality CPU %d to %d: %d\n", cpu, other_cpu, rq->cpu_locality[other_cpu]);
+ }
+ }
+
+ sched_smp_initialized = true;
+}
+#else
+void __init sched_init_smp(void)
+{
+ sched_smp_initialized = true;
+}
+#endif /* CONFIG_SMP */
+
+int in_sched_functions(unsigned long addr)
+{
+ return in_lock_functions(addr) ||
+ (addr >= (unsigned long)__sched_text_start
+ && addr < (unsigned long)__sched_text_end);
+}
+
+#ifdef CONFIG_CGROUP_SCHED
+/* task group related information */
+struct task_group {
+ struct cgroup_subsys_state css;
+
+ struct rcu_head rcu;
+ struct list_head list;
+
+ struct task_group *parent;
+ struct list_head siblings;
+ struct list_head children;
+};
+
+/*
+ * Default task group.
+ * Every task in system belongs to this group at bootup.
+ */
+struct task_group root_task_group;
+LIST_HEAD(task_groups);
+
+/* Cacheline aligned slab cache for task_group */
+static struct kmem_cache *task_group_cache __read_mostly;
+#endif /* CONFIG_CGROUP_SCHED */
+
+void __init sched_init(void)
+{
+#ifdef CONFIG_SMP
+ int cpu_ids;
+#endif
+ int i;
+ struct rq *rq;
+
+ sched_clock_init();
+
+ wait_bit_init();
+
+ prio_ratios[0] = 128;
+ for (i = 1 ; i < NICE_WIDTH ; i++)
+ prio_ratios[i] = prio_ratios[i - 1] * 11 / 10;
+
+ skiplist_node_init(&init_task.node);
+
+#ifdef CONFIG_SMP
+ init_defrootdomain();
+ cpumask_clear(&cpu_idle_map);
+#else
+ uprq = &per_cpu(runqueues, 0);
+#endif
+
+#ifdef CONFIG_CGROUP_SCHED
+ task_group_cache = KMEM_CACHE(task_group, 0);
+
+ list_add(&root_task_group.list, &task_groups);
+ INIT_LIST_HEAD(&root_task_group.children);
+ INIT_LIST_HEAD(&root_task_group.siblings);
+#endif /* CONFIG_CGROUP_SCHED */
+ for_each_possible_cpu(i) {
+ rq = cpu_rq(i);
+ skiplist_init(&rq->node);
+ rq->sl = new_skiplist(&rq->node);
+ raw_spin_lock_init(&rq->lock);
+ rq->nr_running = 0;
+ rq->nr_uninterruptible = 0;
+ rq->nr_switches = 0;
+ rq->clock = rq->old_clock = rq->last_niffy = rq->niffies = 0;
+ rq->last_jiffy = jiffies;
+ rq->user_ns = rq->nice_ns = rq->softirq_ns = rq->system_ns =
+ rq->iowait_ns = rq->idle_ns = 0;
+ rq->dither = 0;
+ set_rq_task(rq, &init_task);
+ rq->iso_ticks = 0;
+ rq->iso_refractory = false;
+#ifdef CONFIG_SMP
+ rq->sd = NULL;
+ rq->rd = NULL;
+ rq->online = false;
+ rq->cpu = i;
+ rq_attach_root(rq, &def_root_domain);
+#endif
+ init_rq_hrexpiry(rq);
+ atomic_set(&rq->nr_iowait, 0);
+ }
+
+#ifdef CONFIG_SMP
+ cpu_ids = i;
+ /*
+ * Set the base locality for cpu cache distance calculation to
+ * "distant" (3). Make sure the distance from a CPU to itself is 0.
+ */
+ for_each_possible_cpu(i) {
+ int j;
+
+ rq = cpu_rq(i);
+#ifdef CONFIG_SCHED_SMT
+ rq->siblings_idle = sole_cpu_idle;
+#endif
+#ifdef CONFIG_SCHED_MC
+ rq->cache_idle = sole_cpu_idle;
+#endif
+ rq->cpu_locality = kmalloc(cpu_ids * sizeof(int *), GFP_ATOMIC);
+ for_each_possible_cpu(j) {
+ if (i == j)
+ rq->cpu_locality[j] = 0;
+ else
+ rq->cpu_locality[j] = 4;
+ }
+ rq->rq_order = kmalloc(cpu_ids * sizeof(struct rq *), GFP_ATOMIC);
+ rq->rq_order[0] = rq;
+ for (j = 1; j < cpu_ids; j++)
+ rq->rq_order[j] = cpu_rq(j);
+ }
+#endif
+
+ /*
+ * The boot idle thread does lazy MMU switching as well:
+ */
+ mmgrab(&init_mm);
+ enter_lazy_tlb(&init_mm, current);
+
+ /*
+ * Make us the idle thread. Technically, schedule() should not be
+ * called from this thread, however somewhere below it might be,
+ * but because we are the idle thread, we just pick up running again
+ * when this runqueue becomes "idle".
+ */
+ init_idle(current, smp_processor_id());
+
+#ifdef CONFIG_SMP
+ /* May be allocated at isolcpus cmdline parse time */
+ if (cpu_isolated_map == NULL)
+ zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
+ idle_thread_set_boot_cpu();
+#endif /* SMP */
+
+ init_schedstats();
+}
+
+#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
+static inline int preempt_count_equals(int preempt_offset)
+{
+ int nested = preempt_count() + rcu_preempt_depth();
+
+ return (nested == preempt_offset);
+}
+
+void __might_sleep(const char *file, int line, int preempt_offset)
+{
+ /*
+ * Blocking primitives will set (and therefore destroy) current->state,
+ * since we will exit with TASK_RUNNING make sure we enter with it,
+ * otherwise we will destroy state.
+ */
+ WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
+ "do not call blocking ops when !TASK_RUNNING; "
+ "state=%lx set at [<%p>] %pS\n",
+ current->state,
+ (void *)current->task_state_change,
+ (void *)current->task_state_change);
+
+ ___might_sleep(file, line, preempt_offset);
+}
+EXPORT_SYMBOL(__might_sleep);
+
+void ___might_sleep(const char *file, int line, int preempt_offset)
+{
+ /* Ratelimiting timestamp: */
+ static unsigned long prev_jiffy;
+
+ unsigned long preempt_disable_ip;
+
+ /* WARN_ON_ONCE() by default, no rate limit required: */
+ rcu_sleep_check();
+
+ if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
+ !is_idle_task(current)) ||
+ system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
+ oops_in_progress)
+ return;
+
+ if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
+ return;
+ prev_jiffy = jiffies;
+
+ /* Save this before calling printk(), since that will clobber it: */
+ preempt_disable_ip = get_preempt_disable_ip(current);
+
+ printk(KERN_ERR
+ "BUG: sleeping function called from invalid context at %s:%d\n",
+ file, line);
+ printk(KERN_ERR
+ "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
+ in_atomic(), irqs_disabled(),
+ current->pid, current->comm);
+
+ if (task_stack_end_corrupted(current))
+ printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
+
+ debug_show_held_locks(current);
+ if (irqs_disabled())
+ print_irqtrace_events(current);
+ if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
+ && !preempt_count_equals(preempt_offset)) {
+ pr_err("Preemption disabled at:");
+ print_ip_sym(preempt_disable_ip);
+ pr_cont("\n");
+ }
+ dump_stack();
+ add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
+}
+EXPORT_SYMBOL(___might_sleep);
+#endif
+
+#ifdef CONFIG_MAGIC_SYSRQ
+static inline void normalise_rt_tasks(void)
+{
+ struct task_struct *g, *p;
+ unsigned long flags;
+ struct rq *rq;
+
+ read_lock(&tasklist_lock);
+ for_each_process_thread(g, p) {
+ /*
+ * Only normalize user tasks:
+ */
+ if (p->flags & PF_KTHREAD)
+ continue;
+
+ if (!rt_task(p) && !iso_task(p))
+ continue;
+
+ rq = task_rq_lock(p, &flags);
+ __setscheduler(p, rq, SCHED_NORMAL, 0, false);
+ task_rq_unlock(rq, p, &flags);
+ }
+ read_unlock(&tasklist_lock);
+}
+
+void normalize_rt_tasks(void)
+{
+ normalise_rt_tasks();
+}
+#endif /* CONFIG_MAGIC_SYSRQ */
+
+#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
+/*
+ * These functions are only useful for the IA64 MCA handling, or kdb.
+ *
+ * They can only be called when the whole system has been
+ * stopped - every CPU needs to be quiescent, and no scheduling
+ * activity can take place. Using them for anything else would
+ * be a serious bug, and as a result, they aren't even visible
+ * under any other configuration.
+ */
+
+/**
+ * curr_task - return the current task for a given CPU.
+ * @cpu: the processor in question.
+ *
+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
+ *
+ * Return: The current task for @cpu.
+ */
+struct task_struct *curr_task(int cpu)
+{
+ return cpu_curr(cpu);
+}
+
+#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
+
+#ifdef CONFIG_IA64
+/**
+ * set_curr_task - set the current task for a given CPU.
+ * @cpu: the processor in question.
+ * @p: the task pointer to set.
+ *
+ * Description: This function must only be used when non-maskable interrupts
+ * are serviced on a separate stack. It allows the architecture to switch the
+ * notion of the current task on a CPU in a non-blocking manner. This function
+ * must be called with all CPU's synchronised, and interrupts disabled, the
+ * and caller must save the original value of the current task (see
+ * curr_task() above) and restore that value before reenabling interrupts and
+ * re-starting the system.
+ *
+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
+ */
+void ia64_set_curr_task(int cpu, struct task_struct *p)
+{
+ cpu_curr(cpu) = p;
+}
+
+#endif
+
+void init_idle_bootup_task(struct task_struct *idle)
+{}
+
+#ifdef CONFIG_SCHED_DEBUG
+__read_mostly bool sched_debug_enabled;
+
+void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
+ struct seq_file *m)
+{}
+
+void proc_sched_set_task(struct task_struct *p)
+{}
+#endif
+
+#ifdef CONFIG_SMP
+#define SCHED_LOAD_SHIFT (10)
+#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
+
+unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
+{
+ return SCHED_LOAD_SCALE;
+}
+
+unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
+{
+ unsigned long weight = cpumask_weight(sched_domain_span(sd));
+ unsigned long smt_gain = sd->smt_gain;
+
+ smt_gain /= weight;
+
+ return smt_gain;
+}
+#endif
+
+#ifdef CONFIG_CGROUP_SCHED
+static void sched_free_group(struct task_group *tg)
+{
+ kmem_cache_free(task_group_cache, tg);
+}
+
+/* allocate runqueue etc for a new task group */
+struct task_group *sched_create_group(struct task_group *parent)
+{
+ struct task_group *tg;
+
+ tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
+ if (!tg)
+ return ERR_PTR(-ENOMEM);
+
+ return tg;
+}
+
+void sched_online_group(struct task_group *tg, struct task_group *parent)
+{
+}
+
+/* rcu callback to free various structures associated with a task group */
+static void sched_free_group_rcu(struct rcu_head *rhp)
+{
+ /* Now it should be safe to free those cfs_rqs */
+ sched_free_group(container_of(rhp, struct task_group, rcu));
+}
+
+void sched_destroy_group(struct task_group *tg)
+{
+ /* Wait for possible concurrent references to cfs_rqs complete */
+ call_rcu(&tg->rcu, sched_free_group_rcu);
+}
+
+void sched_offline_group(struct task_group *tg)
+{
+}
+
+static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
+{
+ return css ? container_of(css, struct task_group, css) : NULL;
+}
+
+static struct cgroup_subsys_state *
+cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
+{
+ struct task_group *parent = css_tg(parent_css);
+ struct task_group *tg;
+
+ if (!parent) {
+ /* This is early initialization for the top cgroup */
+ return &root_task_group.css;
+ }
+
+ tg = sched_create_group(parent);
+ if (IS_ERR(tg))
+ return ERR_PTR(-ENOMEM);
+ return &tg->css;
+}
+
+/* Expose task group only after completing cgroup initialization */
+static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
+{
+ struct task_group *tg = css_tg(css);
+ struct task_group *parent = css_tg(css->parent);
+
+ if (parent)
+ sched_online_group(tg, parent);
+ return 0;
+}
+
+static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
+{
+ struct task_group *tg = css_tg(css);
+
+ sched_offline_group(tg);
+}
+
+static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
+{
+ struct task_group *tg = css_tg(css);
+
+ /*
+ * Relies on the RCU grace period between css_released() and this.
+ */
+ sched_free_group(tg);
+}
+
+static void cpu_cgroup_fork(struct task_struct *task)
+{
+}
+
+static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
+{
+ return 0;
+}
+
+static void cpu_cgroup_attach(struct cgroup_taskset *tset)
+{
+}
+
+static struct cftype cpu_files[] = {
+ { } /* Terminate */
+};
+
+struct cgroup_subsys cpu_cgrp_subsys = {
+ .css_alloc = cpu_cgroup_css_alloc,
+ .css_online = cpu_cgroup_css_online,
+ .css_released = cpu_cgroup_css_released,
+ .css_free = cpu_cgroup_css_free,
+ .fork = cpu_cgroup_fork,
+ .can_attach = cpu_cgroup_can_attach,
+ .attach = cpu_cgroup_attach,
+ .legacy_cftypes = cpu_files,
+ .early_init = true,
+};
+#endif /* CONFIG_CGROUP_SCHED */
diff -Nur a/kernel/sched/MuQSS.h b/kernel/sched/MuQSS.h
--- a/kernel/sched/MuQSS.h 1970-01-01 01:00:00.000000000 +0100
+++ b/kernel/sched/MuQSS.h 2018-11-03 16:06:32.715529032 +0000
@@ -0,0 +1,725 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#include <linux/sched.h>
+#include <linux/cpuidle.h>
+#include <linux/freezer.h>
+#include <linux/interrupt.h>
+#include <linux/skip_list.h>
+#include <linux/stop_machine.h>
+#include <linux/sched/topology.h>
+#include <linux/u64_stats_sync.h>
+#include <linux/tsacct_kern.h>
+#include <linux/sched/clock.h>
+#include <linux/sched/wake_q.h>
+#include <linux/sched/signal.h>
+#include <linux/sched/mm.h>
+#include <linux/sched/cpufreq.h>
+#include <linux/sched/stat.h>
+#include <linux/sched/nohz.h>
+#include <linux/sched/debug.h>
+#include <linux/sched/hotplug.h>
+#include <linux/sched/task.h>
+#include <linux/sched/task_stack.h>
+#include <linux/sched/cputime.h>
+#include <linux/sched/init.h>
+
+#include <linux/u64_stats_sync.h>
+#include <linux/kernel_stat.h>
+#include <linux/tick.h>
+#include <linux/slab.h>
+
+#ifdef CONFIG_PARAVIRT
+#include <asm/paravirt.h>
+#endif
+
+#include "cpuacct.h"
+
+#ifndef MUQSS_SCHED_H
+#define MUQSS_SCHED_H
+
+#ifdef CONFIG_SCHED_DEBUG
+# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
+#else
+# define SCHED_WARN_ON(x) ((void)(x))
+#endif
+
+/* task_struct::on_rq states: */
+#define TASK_ON_RQ_QUEUED 1
+#define TASK_ON_RQ_MIGRATING 2
+
+struct rq;
+
+#ifdef CONFIG_SMP
+
+static inline bool sched_asym_prefer(int a, int b)
+{
+ return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
+}
+
+/*
+ * We add the notion of a root-domain which will be used to define per-domain
+ * variables. Each exclusive cpuset essentially defines an island domain by
+ * fully partitioning the member cpus from any other cpuset. Whenever a new
+ * exclusive cpuset is created, we also create and attach a new root-domain
+ * object.
+ *
+ */
+struct root_domain {
+ atomic_t refcount;
+ atomic_t rto_count;
+ struct rcu_head rcu;
+ cpumask_var_t span;
+ cpumask_var_t online;
+
+ /* Indicate more than one runnable task for any CPU */
+ bool overload;
+
+ /*
+ * The bit corresponding to a CPU gets set here if such CPU has more
+ * than one runnable -deadline task (as it is below for RT tasks).
+ */
+ cpumask_var_t dlo_mask;
+ atomic_t dlo_count;
+ /* Replace unused CFS structures with void */
+ //struct dl_bw dl_bw;
+ //struct cpudl cpudl;
+ void *dl_bw;
+ void *cpudl;
+
+ /*
+ * The "RT overload" flag: it gets set if a CPU has more than
+ * one runnable RT task.
+ */
+ cpumask_var_t rto_mask;
+ //struct cpupri cpupri;
+ void *cpupri;
+
+ unsigned long max_cpu_capacity;
+};
+
+extern struct root_domain def_root_domain;
+extern struct mutex sched_domains_mutex;
+
+extern void init_defrootdomain(void);
+extern int sched_init_domains(const struct cpumask *cpu_map);
+extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
+
+static inline void cpupri_cleanup(void __maybe_unused *cpupri)
+{
+}
+
+static inline void cpudl_cleanup(void __maybe_unused *cpudl)
+{
+}
+
+static inline void init_dl_bw(void __maybe_unused *dl_bw)
+{
+}
+
+static inline int cpudl_init(void __maybe_unused *dl_bw)
+{
+ return 0;
+}
+
+static inline int cpupri_init(void __maybe_unused *cpupri)
+{
+ return 0;
+}
+#endif /* CONFIG_SMP */
+
+/*
+ * This is the main, per-CPU runqueue data structure.
+ * This data should only be modified by the local cpu.
+ */
+struct rq {
+ raw_spinlock_t lock;
+
+ struct task_struct *curr, *idle, *stop;
+ struct mm_struct *prev_mm;
+
+ unsigned int nr_running;
+ /*
+ * This is part of a global counter where only the total sum
+ * over all CPUs matters. A task can increase this counter on
+ * one CPU and if it got migrated afterwards it may decrease
+ * it on another CPU. Always updated under the runqueue lock:
+ */
+ unsigned long nr_uninterruptible;
+ u64 nr_switches;
+
+ /* Stored data about rq->curr to work outside rq lock */
+ u64 rq_deadline;
+ int rq_prio;
+
+ /* Best queued id for use outside lock */
+ u64 best_key;
+
+ unsigned long last_scheduler_tick; /* Last jiffy this RQ ticked */
+ unsigned long last_jiffy; /* Last jiffy this RQ updated rq clock */
+ u64 niffies; /* Last time this RQ updated rq clock */
+ u64 last_niffy; /* Last niffies as updated by local clock */
+ u64 last_jiffy_niffies; /* Niffies @ last_jiffy */
+
+ u64 load_update; /* When we last updated load */
+ unsigned long load_avg; /* Rolling load average */
+#ifdef CONFIG_SMT_NICE
+ struct mm_struct *rq_mm;
+ int rq_smt_bias; /* Policy/nice level bias across smt siblings */
+#endif
+ /* Accurate timekeeping data */
+ unsigned long user_ns, nice_ns, irq_ns, softirq_ns, system_ns,
+ iowait_ns, idle_ns;
+ atomic_t nr_iowait;
+
+ skiplist_node node;
+ skiplist *sl;
+#ifdef CONFIG_SMP
+ struct task_struct *preempt; /* Preempt triggered on this task */
+ struct task_struct *preempting; /* Hint only, what task is preempting */
+
+ int cpu; /* cpu of this runqueue */
+ bool online;
+
+ struct root_domain *rd;
+ struct sched_domain *sd;
+
+ unsigned long cpu_capacity_orig;
+
+ int *cpu_locality; /* CPU relative cache distance */
+ struct rq **rq_order; /* RQs ordered by relative cache distance */
+
+#ifdef CONFIG_SCHED_SMT
+ cpumask_t thread_mask;
+ bool (*siblings_idle)(struct rq *rq);
+ /* See if all smt siblings are idle */
+#endif /* CONFIG_SCHED_SMT */
+#ifdef CONFIG_SCHED_MC
+ cpumask_t core_mask;
+ bool (*cache_idle)(struct rq *rq);
+ /* See if all cache siblings are idle */
+#endif /* CONFIG_SCHED_MC */
+#endif /* CONFIG_SMP */
+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
+ u64 prev_irq_time;
+#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
+#ifdef CONFIG_PARAVIRT
+ u64 prev_steal_time;
+#endif /* CONFIG_PARAVIRT */
+#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
+ u64 prev_steal_time_rq;
+#endif /* CONFIG_PARAVIRT_TIME_ACCOUNTING */
+
+ u64 clock, old_clock, last_tick;
+ u64 clock_task;
+ int dither;
+
+ int iso_ticks;
+ bool iso_refractory;
+
+#ifdef CONFIG_HIGH_RES_TIMERS
+ struct hrtimer hrexpiry_timer;
+#endif
+
+#ifdef CONFIG_SCHEDSTATS
+
+ /* latency stats */
+ struct sched_info rq_sched_info;
+ unsigned long long rq_cpu_time;
+ /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
+
+ /* sys_sched_yield() stats */
+ unsigned int yld_count;
+
+ /* schedule() stats */
+ unsigned int sched_switch;
+ unsigned int sched_count;
+ unsigned int sched_goidle;
+
+ /* try_to_wake_up() stats */
+ unsigned int ttwu_count;
+ unsigned int ttwu_local;
+#endif /* CONFIG_SCHEDSTATS */
+
+#ifdef CONFIG_SMP
+ struct llist_head wake_list;
+#endif
+
+#ifdef CONFIG_CPU_IDLE
+ /* Must be inspected within a rcu lock section */
+ struct cpuidle_state *idle_state;
+#endif
+};
+
+#ifdef CONFIG_SMP
+struct rq *cpu_rq(int cpu);
+#endif
+
+#ifndef CONFIG_SMP
+extern struct rq *uprq;
+#define cpu_rq(cpu) (uprq)
+#define this_rq() (uprq)
+#define raw_rq() (uprq)
+#define task_rq(p) (uprq)
+#define cpu_curr(cpu) ((uprq)->curr)
+#else /* CONFIG_SMP */
+DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
+#define this_rq() this_cpu_ptr(&runqueues)
+#define raw_rq() raw_cpu_ptr(&runqueues)
+#define task_rq(p) cpu_rq(task_cpu(p))
+#endif /* CONFIG_SMP */
+
+static inline int task_current(struct rq *rq, struct task_struct *p)
+{
+ return rq->curr == p;
+}
+
+static inline int task_running(struct rq *rq, struct task_struct *p)
+{
+#ifdef CONFIG_SMP
+ return p->on_cpu;
+#else
+ return task_current(rq, p);
+#endif
+}
+
+static inline void rq_lock(struct rq *rq)
+ __acquires(rq->lock)
+{
+ raw_spin_lock(&rq->lock);
+}
+
+static inline void rq_unlock(struct rq *rq)
+ __releases(rq->lock)
+{
+ raw_spin_unlock(&rq->lock);
+}
+
+static inline void rq_lock_irq(struct rq *rq)
+ __acquires(rq->lock)
+{
+ raw_spin_lock_irq(&rq->lock);
+}
+
+static inline void rq_unlock_irq(struct rq *rq)
+ __releases(rq->lock)
+{
+ raw_spin_unlock_irq(&rq->lock);
+}
+
+static inline void rq_lock_irqsave(struct rq *rq, unsigned long *flags)
+ __acquires(rq->lock)
+{
+ raw_spin_lock_irqsave(&rq->lock, *flags);
+}
+
+static inline void rq_unlock_irqrestore(struct rq *rq, unsigned long *flags)
+ __releases(rq->lock)
+{
+ raw_spin_unlock_irqrestore(&rq->lock, *flags);
+}
+
+static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
+ __acquires(p->pi_lock)
+ __acquires(rq->lock)
+{
+ struct rq *rq;
+
+ while (42) {
+ raw_spin_lock_irqsave(&p->pi_lock, *flags);
+ rq = task_rq(p);
+ raw_spin_lock(&rq->lock);
+ if (likely(rq == task_rq(p)))
+ break;
+ raw_spin_unlock(&rq->lock);
+ raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
+ }
+ return rq;
+}
+
+static inline void task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
+ __releases(rq->lock)
+ __releases(p->pi_lock)
+{
+ rq_unlock(rq);
+ raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
+}
+
+static inline struct rq *__task_rq_lock(struct task_struct *p)
+ __acquires(rq->lock)
+{
+ struct rq *rq;
+
+ lockdep_assert_held(&p->pi_lock);
+
+ while (42) {
+ rq = task_rq(p);
+ raw_spin_lock(&rq->lock);
+ if (likely(rq == task_rq(p)))
+ break;
+ raw_spin_unlock(&rq->lock);
+ }
+ return rq;
+}
+
+static inline void __task_rq_unlock(struct rq *rq)
+{
+ rq_unlock(rq);
+}
+
+/*
+ * {de,en}queue flags: Most not used on MuQSS.
+ *
+ * DEQUEUE_SLEEP - task is no longer runnable
+ * ENQUEUE_WAKEUP - task just became runnable
+ *
+ * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
+ * are in a known state which allows modification. Such pairs
+ * should preserve as much state as possible.
+ *
+ * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
+ * in the runqueue.
+ *
+ * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
+ * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
+ * ENQUEUE_MIGRATED - the task was migrated during wakeup
+ *
+ */
+
+#define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
+
+#define ENQUEUE_RESTORE 0x02
+
+static inline u64 __rq_clock_broken(struct rq *rq)
+{
+ return READ_ONCE(rq->clock);
+}
+
+static inline u64 rq_clock(struct rq *rq)
+{
+ lockdep_assert_held(&rq->lock);
+
+ return rq->clock;
+}
+
+static inline u64 rq_clock_task(struct rq *rq)
+{
+ lockdep_assert_held(&rq->lock);
+
+ return rq->clock_task;
+}
+
+#ifdef CONFIG_NUMA
+enum numa_topology_type {
+ NUMA_DIRECT,
+ NUMA_GLUELESS_MESH,
+ NUMA_BACKPLANE,
+};
+extern enum numa_topology_type sched_numa_topology_type;
+extern int sched_max_numa_distance;
+extern bool find_numa_distance(int distance);
+
+extern void sched_init_numa(void);
+extern void sched_domains_numa_masks_set(unsigned int cpu);
+extern void sched_domains_numa_masks_clear(unsigned int cpu);
+#else
+static inline void sched_init_numa(void) { }
+static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
+static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
+#endif
+
+extern struct mutex sched_domains_mutex;
+extern struct static_key_false sched_schedstats;
+
+#define rcu_dereference_check_sched_domain(p) \
+ rcu_dereference_check((p), \
+ lockdep_is_held(&sched_domains_mutex))
+
+#ifdef CONFIG_SMP
+
+/*
+ * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
+ * See detach_destroy_domains: synchronize_sched for details.
+ *
+ * The domain tree of any CPU may only be accessed from within
+ * preempt-disabled sections.
+ */
+#define for_each_domain(cpu, __sd) \
+ for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
+ __sd; __sd = __sd->parent)
+
+#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
+
+/**
+ * highest_flag_domain - Return highest sched_domain containing flag.
+ * @cpu: The cpu whose highest level of sched domain is to
+ * be returned.
+ * @flag: The flag to check for the highest sched_domain
+ * for the given cpu.
+ *
+ * Returns the highest sched_domain of a cpu which contains the given flag.
+ */
+static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
+{
+ struct sched_domain *sd, *hsd = NULL;
+
+ for_each_domain(cpu, sd) {
+ if (!(sd->flags & flag))
+ break;
+ hsd = sd;
+ }
+
+ return hsd;
+}
+
+static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
+{
+ struct sched_domain *sd;
+
+ for_each_domain(cpu, sd) {
+ if (sd->flags & flag)
+ break;
+ }
+
+ return sd;
+}
+
+DECLARE_PER_CPU(struct sched_domain *, sd_llc);
+DECLARE_PER_CPU(int, sd_llc_size);
+DECLARE_PER_CPU(int, sd_llc_id);
+DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
+DECLARE_PER_CPU(struct sched_domain *, sd_numa);
+DECLARE_PER_CPU(struct sched_domain *, sd_asym);
+
+struct sched_group_capacity {
+ atomic_t ref;
+ /*
+ * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
+ * for a single CPU.
+ */
+ unsigned long capacity;
+ unsigned long min_capacity; /* Min per-CPU capacity in group */
+ unsigned long next_update;
+ int imbalance; /* XXX unrelated to capacity but shared group state */
+
+#ifdef CONFIG_SCHED_DEBUG
+ int id;
+#endif
+
+ unsigned long cpumask[0]; /* balance mask */
+};
+
+struct sched_group {
+ struct sched_group *next; /* Must be a circular list */
+ atomic_t ref;
+
+ unsigned int group_weight;
+ struct sched_group_capacity *sgc;
+ int asym_prefer_cpu; /* cpu of highest priority in group */
+
+ /*
+ * The CPUs this group covers.
+ *
+ * NOTE: this field is variable length. (Allocated dynamically
+ * by attaching extra space to the end of the structure,
+ * depending on how many CPUs the kernel has booted up with)
+ */
+ unsigned long cpumask[0];
+};
+
+static inline struct cpumask *sched_group_span(struct sched_group *sg)
+{
+ return to_cpumask(sg->cpumask);
+}
+
+/*
+ * See build_balance_mask().
+ */
+static inline struct cpumask *group_balance_mask(struct sched_group *sg)
+{
+ return to_cpumask(sg->sgc->cpumask);
+}
+
+/**
+ * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
+ * @group: The group whose first cpu is to be returned.
+ */
+static inline unsigned int group_first_cpu(struct sched_group *group)
+{
+ return cpumask_first(sched_group_span(group));
+}
+
+
+#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
+void register_sched_domain_sysctl(void);
+void dirty_sched_domain_sysctl(int cpu);
+void unregister_sched_domain_sysctl(void);
+#else
+static inline void register_sched_domain_sysctl(void)
+{
+}
+static inline void dirty_sched_domain_sysctl(int cpu)
+{
+}
+static inline void unregister_sched_domain_sysctl(void)
+{
+}
+#endif
+
+extern void sched_ttwu_pending(void);
+extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
+extern void set_rq_online (struct rq *rq);
+extern void set_rq_offline(struct rq *rq);
+extern bool sched_smp_initialized;
+
+static inline void update_group_capacity(struct sched_domain *sd, int cpu)
+{
+}
+
+static inline void trigger_load_balance(struct rq *rq)
+{
+}
+
+#define sched_feat(x) 0
+
+#else /* CONFIG_SMP */
+
+static inline void sched_ttwu_pending(void) { }
+
+#endif /* CONFIG_SMP */
+
+#ifdef CONFIG_CPU_IDLE
+static inline void idle_set_state(struct rq *rq,
+ struct cpuidle_state *idle_state)
+{
+ rq->idle_state = idle_state;
+}
+
+static inline struct cpuidle_state *idle_get_state(struct rq *rq)
+{
+ SCHED_WARN_ON(!rcu_read_lock_held());
+ return rq->idle_state;
+}
+#else
+static inline void idle_set_state(struct rq *rq,
+ struct cpuidle_state *idle_state)
+{
+}
+
+static inline struct cpuidle_state *idle_get_state(struct rq *rq)
+{
+ return NULL;
+}
+#endif
+
+#ifdef CONFIG_SCHED_DEBUG
+extern bool sched_debug_enabled;
+#endif
+
+extern void schedule_idle(void);
+
+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
+struct irqtime {
+ u64 total;
+ u64 tick_delta;
+ u64 irq_start_time;
+ struct u64_stats_sync sync;
+};
+
+DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
+
+/*
+ * Returns the irqtime minus the softirq time computed by ksoftirqd.
+ * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
+ * and never move forward.
+ */
+static inline u64 irq_time_read(int cpu)
+{
+ struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
+ unsigned int seq;
+ u64 total;
+
+ do {
+ seq = __u64_stats_fetch_begin(&irqtime->sync);
+ total = irqtime->total;
+ } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
+
+ return total;
+}
+#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
+
+#ifdef CONFIG_SMP
+static inline int cpu_of(struct rq *rq)
+{
+ return rq->cpu;
+}
+#else /* CONFIG_SMP */
+static inline int cpu_of(struct rq *rq)
+{
+ return 0;
+}
+#endif
+
+#ifdef CONFIG_CPU_FREQ
+DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
+
+static inline void cpufreq_trigger(struct rq *rq, unsigned int flags)
+{
+ struct update_util_data *data;
+
+ data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
+ cpu_of(rq)));
+
+ if (data)
+ data->func(data, rq->niffies, flags);
+}
+#else
+static inline void cpufreq_trigger(struct rq *rq, unsigned int flag)
+{
+}
+#endif /* CONFIG_CPU_FREQ */
+
+#ifdef arch_scale_freq_capacity
+#ifndef arch_scale_freq_invariant
+#define arch_scale_freq_invariant() (true)
+#endif
+#else /* arch_scale_freq_capacity */
+#define arch_scale_freq_invariant() (false)
+#endif
+
+/*
+ * This should only be called when current == rq->idle. Dodgy workaround for
+ * when softirqs are pending and we are in the idle loop. Setting current to
+ * resched will kick us out of the idle loop and the softirqs will be serviced
+ * on our next pass through schedule().
+ */
+static inline bool softirq_pending(int cpu)
+{
+ if (likely(!local_softirq_pending()))
+ return false;
+ set_tsk_need_resched(current);
+ return true;
+}
+
+#ifdef CONFIG_64BIT
+static inline u64 read_sum_exec_runtime(struct task_struct *t)
+{
+ return tsk_seruntime(t);
+}
+#else
+struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags);
+void task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags);
+
+static inline u64 read_sum_exec_runtime(struct task_struct *t)
+{
+ unsigned long flags;
+ u64 ns;
+ struct rq *rq;
+
+ rq = task_rq_lock(t, &flags);
+ ns = tsk_seruntime(t);
+ task_rq_unlock(rq, t, &flags);
+
+ return ns;
+}
+#endif
+
+#endif /* MUQSS_SCHED_H */
diff -Nur a/kernel/sched/sched.h b/kernel/sched/sched.h
--- a/kernel/sched/sched.h 2018-10-10 07:54:28.000000000 +0100
+++ b/kernel/sched/sched.h 2018-11-03 16:06:32.717529096 +0000
@@ -1,5 +1,8 @@
/* SPDX-License-Identifier: GPL-2.0 */
+#ifdef CONFIG_SCHED_MUQSS
+#include "MuQSS.h"
+#else /* CONFIG_SCHED_MUQSS */
#include <linux/sched.h>
#include <linux/sched/autogroup.h>
#include <linux/sched/sysctl.h>
@@ -2103,3 +2106,29 @@
#else /* arch_scale_freq_capacity */
#define arch_scale_freq_invariant() (false)
#endif
+
+static inline bool softirq_pending(int cpu)
+{
+ return false;
+}
+
+#ifdef CONFIG_64BIT
+static inline u64 read_sum_exec_runtime(struct task_struct *t)
+{
+ return t->se.sum_exec_runtime;
+}
+#else
+static inline u64 read_sum_exec_runtime(struct task_struct *t)
+{
+ u64 ns;
+ struct rq_flags rf;
+ struct rq *rq;
+
+ rq = task_rq_lock(t, &rf);
+ ns = t->se.sum_exec_runtime;
+ task_rq_unlock(rq, t, &rf);
+
+ return ns;
+}
+#endif
+#endif /* CONFIG_SCHED_MUQSS */
diff -Nur a/kernel/skip_list.c b/kernel/skip_list.c
--- a/kernel/skip_list.c 1970-01-01 01:00:00.000000000 +0100
+++ b/kernel/skip_list.c 2018-11-03 16:06:32.717529096 +0000
@@ -0,0 +1,148 @@
+/*
+ Copyright (C) 2011,2016 Con Kolivas.
+
+ Code based on example originally by William Pugh.
+
+Skip Lists are a probabilistic alternative to balanced trees, as
+described in the June 1990 issue of CACM and were invented by
+William Pugh in 1987.
+
+A couple of comments about this implementation:
+The routine randomLevel has been hard-coded to generate random
+levels using p=0.25. It can be easily changed.
+
+The insertion routine has been implemented so as to use the
+dirty hack described in the CACM paper: if a random level is
+generated that is more than the current maximum level, the
+current maximum level plus one is used instead.
+
+Levels start at zero and go up to MaxLevel (which is equal to
+MaxNumberOfLevels-1).
+
+The routines defined in this file are:
+
+init: defines slnode
+
+new_skiplist: returns a new, empty list
+
+randomLevel: Returns a random level based on a u64 random seed passed to it.
+In MuQSS, the "niffy" time is used for this purpose.
+
+insert(l,key, value): inserts the binding (key, value) into l. This operation
+occurs in O(log n) time.
+
+delnode(slnode, l, node): deletes any binding of key from the l based on the
+actual node value. This operation occurs in O(k) time where k is the
+number of levels of the node in question (max 8). The original delete
+function occurred in O(log n) time and involved a search.
+
+MuQSS Notes: In this implementation of skiplists, there are bidirectional
+next/prev pointers and the insert function returns a pointer to the actual
+node the value is stored. The key here is chosen by the scheduler so as to
+sort tasks according to the priority list requirements and is no longer used
+by the scheduler after insertion. The scheduler lookup, however, occurs in
+O(1) time because it is always the first item in the level 0 linked list.
+Since the task struct stores a copy of the node pointer upon skiplist_insert,
+it can also remove it much faster than the original implementation with the
+aid of prev<->next pointer manipulation and no searching.
+
+*/
+
+#include <linux/slab.h>
+#include <linux/skip_list.h>
+
+#define MaxNumberOfLevels 8
+#define MaxLevel (MaxNumberOfLevels - 1)
+
+void skiplist_init(skiplist_node *slnode)
+{
+ int i;
+
+ slnode->key = 0xFFFFFFFFFFFFFFFF;
+ slnode->level = 0;
+ slnode->value = NULL;
+ for (i = 0; i < MaxNumberOfLevels; i++)
+ slnode->next[i] = slnode->prev[i] = slnode;
+}
+
+skiplist *new_skiplist(skiplist_node *slnode)
+{
+ skiplist *l = kzalloc(sizeof(skiplist), GFP_ATOMIC);
+
+ BUG_ON(!l);
+ l->header = slnode;
+ return l;
+}
+
+void free_skiplist(skiplist *l)
+{
+ skiplist_node *p, *q;
+
+ p = l->header;
+ do {
+ q = p->next[0];
+ p->next[0]->prev[0] = q->prev[0];
+ skiplist_node_init(p);
+ p = q;
+ } while (p != l->header);
+ kfree(l);
+}
+
+void skiplist_node_init(skiplist_node *node)
+{
+ memset(node, 0, sizeof(skiplist_node));
+}
+
+static inline unsigned int randomLevel(const long unsigned int randseed)
+{
+ return find_first_bit(&randseed, MaxLevel) / 2;
+}
+
+void skiplist_insert(skiplist *l, skiplist_node *node, keyType key, valueType value, unsigned int randseed)
+{
+ skiplist_node *update[MaxNumberOfLevels];
+ skiplist_node *p, *q;
+ int k = l->level;
+
+ p = l->header;
+ do {
+ while (q = p->next[k], q->key <= key)
+ p = q;
+ update[k] = p;
+ } while (--k >= 0);
+
+ ++l->entries;
+ k = randomLevel(randseed);
+ if (k > l->level) {
+ k = ++l->level;
+ update[k] = l->header;
+ }
+
+ node->level = k;
+ node->key = key;
+ node->value = value;
+ do {
+ p = update[k];
+ node->next[k] = p->next[k];
+ p->next[k] = node;
+ node->prev[k] = p;
+ node->next[k]->prev[k] = node;
+ } while (--k >= 0);
+}
+
+void skiplist_delete(skiplist *l, skiplist_node *node)
+{
+ int k, m = node->level;
+
+ for (k = 0; k <= m; k++) {
+ node->prev[k]->next[k] = node->next[k];
+ node->next[k]->prev[k] = node->prev[k];
+ }
+ skiplist_node_init(node);
+ if (m == l->level) {
+ while (l->header->next[m] == l->header && l->header->prev[m] == l->header && m > 0)
+ m--;
+ l->level = m;
+ }
+ l->entries--;
+}
diff -Nur a/kernel/sysctl.c b/kernel/sysctl.c
--- a/kernel/sysctl.c 2018-11-03 16:00:51.933620936 +0000
+++ b/kernel/sysctl.c 2018-11-03 16:12:48.444570622 +0000
@@ -133,8 +133,14 @@
static int __maybe_unused two __read_only = 2;
static int __maybe_unused four __read_only = 4;
static unsigned long one_ul __read_only = 1;
-static int one_hundred __read_only = 100;
-static int one_thousand __read_only = 1000;
+static int one_hundred __read_only = 100;
+static int one_thousand __read_only = 1000;
+#ifdef CONFIG_SCHED_MUQSS
+extern int rr_interval;
+extern int sched_interactive;
+extern int sched_iso_cpu;
+extern int sched_yield_type;
+#endif
#ifdef CONFIG_PRINTK
static int ten_thousand __read_only = 10000;
#endif
@@ -296,7 +302,7 @@
{ }
};
-#ifdef CONFIG_SCHED_DEBUG
+#if defined(CONFIG_SCHED_DEBUG) && !defined(CONFIG_SCHED_MUQSS)
static int min_sched_granularity_ns __read_only = 100000; /* 100 usecs */
static int max_sched_granularity_ns __read_only = NSEC_PER_SEC; /* 1 second */
static int min_wakeup_granularity_ns __read_only; /* 0 usecs */
@@ -313,6 +319,7 @@
#endif
static struct ctl_table kern_table[] = {
+#ifndef CONFIG_SCHED_MUQSS
{
.procname = "sched_child_runs_first",
.data = &sysctl_sched_child_runs_first,
@@ -475,6 +482,7 @@
.extra1 = &one,
},
#endif
+#endif /* !CONFIG_SCHED_MUQSS */
#ifdef CONFIG_PROVE_LOCKING
{
.procname = "prove_locking",
@@ -1073,6 +1081,44 @@
.proc_handler = proc_dointvec,
},
#endif
+#ifdef CONFIG_SCHED_MUQSS
+ {
+ .procname = "rr_interval",
+ .data = &rr_interval,
+ .maxlen = sizeof (int),
+ .mode = 0644,
+ .proc_handler = &proc_dointvec_minmax,
+ .extra1 = &one,
+ .extra2 = &one_thousand,
+ },
+ {
+ .procname = "interactive",
+ .data = &sched_interactive,
+ .maxlen = sizeof(int),
+ .mode = 0644,
+ .proc_handler = &proc_dointvec_minmax,
+ .extra1 = &zero,
+ .extra2 = &one,
+ },
+ {
+ .procname = "iso_cpu",
+ .data = &sched_iso_cpu,
+ .maxlen = sizeof (int),
+ .mode = 0644,
+ .proc_handler = &proc_dointvec_minmax,
+ .extra1 = &zero,
+ .extra2 = &one_hundred,
+ },
+ {
+ .procname = "yield_type",
+ .data = &sched_yield_type,
+ .maxlen = sizeof (int),
+ .mode = 0644,
+ .proc_handler = &proc_dointvec_minmax,
+ .extra1 = &zero,
+ .extra2 = &two,
+ },
+#endif
#if defined(CONFIG_S390) && defined(CONFIG_SMP)
{
.procname = "spin_retry",
diff -Nur a/kernel/time/clockevents.c b/kernel/time/clockevents.c
--- a/kernel/time/clockevents.c 2018-10-10 07:54:28.000000000 +0100
+++ b/kernel/time/clockevents.c 2018-11-03 16:06:32.719529160 +0000
@@ -198,8 +198,13 @@
#ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
+#ifdef CONFIG_SCHED_MUQSS
+/* Limit min_delta to 100us */
+#define MIN_DELTA_LIMIT (NSEC_PER_SEC / 10000)
+#else
/* Limit min_delta to a jiffie */
#define MIN_DELTA_LIMIT (NSEC_PER_SEC / HZ)
+#endif
/**
* clockevents_increase_min_delta - raise minimum delta of a clock event device
diff -Nur a/kernel/time/posix-cpu-timers.c b/kernel/time/posix-cpu-timers.c
--- a/kernel/time/posix-cpu-timers.c 2018-10-10 07:54:28.000000000 +0100
+++ b/kernel/time/posix-cpu-timers.c 2018-11-03 16:06:32.719529160 +0000
@@ -818,7 +818,7 @@
tsk_expires->virt_exp = expires;
tsk_expires->sched_exp = check_timers_list(++timers, firing,
- tsk->se.sum_exec_runtime);
+ tsk_seruntime(tsk));
/*
* Check for the special case thread timers.
@@ -828,7 +828,7 @@
unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
if (hard != RLIM_INFINITY &&
- tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
+ tsk_rttimeout(tsk) > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
/*
* At the hard limit, we just die.
* No need to calculate anything else now.
@@ -840,7 +840,7 @@
__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
return;
}
- if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
+ if (tsk_rttimeout(tsk) > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
/*
* At the soft limit, send a SIGXCPU every second.
*/
@@ -1081,7 +1081,7 @@
struct task_cputime task_sample;
task_cputime(tsk, &task_sample.utime, &task_sample.stime);
- task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
+ task_sample.sum_exec_runtime = tsk_seruntime(tsk);
if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
return 1;
}
diff -Nur a/kernel/time/timer.c b/kernel/time/timer.c
--- a/kernel/time/timer.c 2018-11-03 16:00:51.934620967 +0000
+++ b/kernel/time/timer.c 2018-11-03 16:06:32.720529192 +0000
@@ -1434,7 +1434,7 @@
* Check, if the next hrtimer event is before the next timer wheel
* event:
*/
-static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
+static u64 cmp_next_hrtimer_event(struct timer_base *base, u64 basem, u64 expires)
{
u64 nextevt = hrtimer_get_next_event();
@@ -1452,6 +1452,9 @@
if (nextevt <= basem)
return basem;
+ if (nextevt < expires && nextevt - basem <= TICK_NSEC)
+ base->is_idle = false;
+
/*
* Round up to the next jiffie. High resolution timers are
* off, so the hrtimers are expired in the tick and we need to
@@ -1521,7 +1524,7 @@
}
raw_spin_unlock(&base->lock);
- return cmp_next_hrtimer_event(basem, expires);
+ return cmp_next_hrtimer_event(base, basem, expires);
}
/**
diff -Nur a/kernel/trace/trace_selftest.c b/kernel/trace/trace_selftest.c
--- a/kernel/trace/trace_selftest.c 2018-10-10 07:54:28.000000000 +0100
+++ b/kernel/trace/trace_selftest.c 2018-11-03 16:06:32.720529192 +0000
@@ -1041,10 +1041,15 @@
{
/* Make this a -deadline thread */
static const struct sched_attr attr = {
+#ifdef CONFIG_SCHED_MUQSS
+ /* No deadline on MuQSS, use RR */
+ .sched_policy = SCHED_RR,
+#else
.sched_policy = SCHED_DEADLINE,
.sched_runtime = 100000ULL,
.sched_deadline = 10000000ULL,
.sched_period = 10000000ULL
+#endif
};
struct wakeup_test_data *x = data;
|