summaryrefslogtreecommitdiff
path: root/sys-kernel/linux-image-redcore-lts/files/4.19-bfq-sq-mq-v9r1-2K190204-rc1.patch
diff options
context:
space:
mode:
Diffstat (limited to 'sys-kernel/linux-image-redcore-lts/files/4.19-bfq-sq-mq-v9r1-2K190204-rc1.patch')
-rw-r--r--sys-kernel/linux-image-redcore-lts/files/4.19-bfq-sq-mq-v9r1-2K190204-rc1.patch18511
1 files changed, 0 insertions, 18511 deletions
diff --git a/sys-kernel/linux-image-redcore-lts/files/4.19-bfq-sq-mq-v9r1-2K190204-rc1.patch b/sys-kernel/linux-image-redcore-lts/files/4.19-bfq-sq-mq-v9r1-2K190204-rc1.patch
deleted file mode 100644
index 039c8fcd..00000000
--- a/sys-kernel/linux-image-redcore-lts/files/4.19-bfq-sq-mq-v9r1-2K190204-rc1.patch
+++ /dev/null
@@ -1,18511 +0,0 @@
-diff --git a/Documentation/block/bfq-iosched.txt b/Documentation/block/bfq-iosched.txt
-index 8d8d8f06cab2..41d0200944f1 100644
---- a/Documentation/block/bfq-iosched.txt
-+++ b/Documentation/block/bfq-iosched.txt
-@@ -1,3 +1,6 @@
-+[ THIS TREE CONTAINS ALSO THE DEV VERSION OF BFQ.
-+ DETAILS AT THE END OF THIS DOCUMENT. ]
-+
- BFQ (Budget Fair Queueing)
- ==========================
-
-@@ -11,6 +14,15 @@ controllers), BFQ's main features are:
- groups (switching back to time distribution when needed to keep
- throughput high).
-
-+If bfq-mq patches have been applied, then the following three
-+instances of BFQ are available (otherwise only the first instance):
-+- bfq: mainline version of BFQ, for blk-mq
-+- bfq-mq: development version of BFQ for blk-mq; this version contains
-+ also all latest features and fixes not yet landed in mainline, plus many
-+ safety checks
-+- bfq-sq: BFQ for legacy blk; also this version contains latest features
-+ and fixes, as well as safety checks
-+
- In its default configuration, BFQ privileges latency over
- throughput. So, when needed for achieving a lower latency, BFQ builds
- schedules that may lead to a lower throughput. If your main or only
-@@ -22,27 +34,42 @@ latency and throughput, or on how to maximize throughput.
-
- BFQ has a non-null overhead, which limits the maximum IOPS that a CPU
- can process for a device scheduled with BFQ. To give an idea of the
--limits on slow or average CPUs, here are, first, the limits of BFQ for
--three different CPUs, on, respectively, an average laptop, an old
--desktop, and a cheap embedded system, in case full hierarchical
--support is enabled (i.e., CONFIG_BFQ_GROUP_IOSCHED is set), but
-+limits on slow or average CPUs, here are, first, the limits of bfq-mq
-+and bfq for three different CPUs, on, respectively, an average laptop,
-+an old desktop, and a cheap embedded system, in case full hierarchical
-+support is enabled (i.e., CONFIG_MQ_BFQ_GROUP_IOSCHED is set for
-+bfq-mq, or CONFIG_BFQ_GROUP_IOSCHED is set for bfq), but
- CONFIG_DEBUG_BLK_CGROUP is not set (Section 4-2):
- - Intel i7-4850HQ: 400 KIOPS
- - AMD A8-3850: 250 KIOPS
- - ARM CortexTM-A53 Octa-core: 80 KIOPS
-
--If CONFIG_DEBUG_BLK_CGROUP is set (and of course full hierarchical
--support is enabled), then the sustainable throughput with BFQ
--decreases, because all blkio.bfq* statistics are created and updated
--(Section 4-2). For BFQ, this leads to the following maximum
--sustainable throughputs, on the same systems as above:
-+As for bfq-sq, it cannot reach the above IOPS, because of the
-+inherent, lower parallelism of legacy blk and of the components within
-+it (including bfq-sq itself). In particular, results with
-+CONFIG_DEBUG_BLK_CGROUP unset are rather fluctuating. The limits
-+reported below for the case CONFIG_DEBUG_BLK_CGROUP set will however
-+provide a lower bound to the limits of bfq-sq.
-+
-+Turning back to bfq-mq and bfq, If CONFIG_DEBUG_BLK_CGROUP is set (and
-+of course full hierarchical support is enabled), then the sustainable
-+throughput with bfq-mq and bfq decreases, because all blkio.bfq*
-+statistics are created and updated (Section 4-2). For bfq-mq and bfq,
-+this leads to the following maximum sustainable throughputs, on the
-+same systems as above:
- - Intel i7-4850HQ: 310 KIOPS
- - AMD A8-3850: 200 KIOPS
- - ARM CortexTM-A53 Octa-core: 56 KIOPS
-
--BFQ works for multi-queue devices too.
-+Finally, if CONFIG_DEBUG_BLK_CGROUP is set (and full hierarchical
-+support is enabled), then bfq-sq exhibits the following limits:
-+- Intel i7-4850HQ: 250 KIOPS
-+- AMD A8-3850: 170 KIOPS
-+- ARM CortexTM-A53 Octa-core: 45 KIOPS
-
--The table of contents follow. Impatients can just jump to Section 3.
-+BFQ works for multi-queue devices too (bfq and bfq-mq instances).
-+
-+The table of contents follows. Impatients can just jump to Section 3.
-
- CONTENTS
-
-@@ -509,25 +536,27 @@ To get proportional sharing of bandwidth with BFQ for a given device,
- BFQ must of course be the active scheduler for that device.
-
- Within each group directory, the names of the files associated with
--BFQ-specific cgroup parameters and stats begin with the "bfq."
--prefix. So, with cgroups-v1 or cgroups-v2, the full prefix for
--BFQ-specific files is "blkio.bfq." or "io.bfq." For example, the group
--parameter to set the weight of a group with BFQ is blkio.bfq.weight
-+BFQ-specific cgroup parameters and stats begin with the "bfq.",
-+"bfq-sq." or "bfq-mq." prefix, depending on which instance of bfq you
-+want to use. So, with cgroups-v1 or cgroups-v2, the full prefix for
-+BFQ-specific files is "blkio.bfqX." or "io.bfqX.", where X can be ""
-+(i.e., null string), "-sq" or "-mq". For example, the group parameter
-+to set the weight of a group with the mainline BFQ is blkio.bfq.weight
- or io.bfq.weight.
-
- As for cgroups-v1 (blkio controller), the exact set of stat files
--created, and kept up-to-date by bfq, depends on whether
--CONFIG_DEBUG_BLK_CGROUP is set. If it is set, then bfq creates all
-+created, and kept up-to-date by bfq*, depends on whether
-+CONFIG_DEBUG_BLK_CGROUP is set. If it is set, then bfq* creates all
- the stat files documented in
- Documentation/cgroup-v1/blkio-controller.txt. If, instead,
--CONFIG_DEBUG_BLK_CGROUP is not set, then bfq creates only the files
--blkio.bfq.io_service_bytes
--blkio.bfq.io_service_bytes_recursive
--blkio.bfq.io_serviced
--blkio.bfq.io_serviced_recursive
-+CONFIG_DEBUG_BLK_CGROUP is not set, then bfq* creates only the files
-+blkio.bfq*.io_service_bytes
-+blkio.bfq*.io_service_bytes_recursive
-+blkio.bfq*.io_serviced
-+blkio.bfq*.io_serviced_recursive
-
- The value of CONFIG_DEBUG_BLK_CGROUP greatly influences the maximum
--throughput sustainable with bfq, because updating the blkio.bfq.*
-+throughput sustainable with bfq*, because updating the blkio.bfq*
- stats is rather costly, especially for some of the stats enabled by
- CONFIG_DEBUG_BLK_CGROUP.
-
-@@ -536,7 +565,7 @@ Parameters to set
-
- For each group, there is only the following parameter to set.
-
--weight (namely blkio.bfq.weight or io.bfq-weight): the weight of the
-+weight (namely blkio.bfqX.weight or io.bfqX.weight): the weight of the
- group inside its parent. Available values: 1..10000 (default 100). The
- linear mapping between ioprio and weights, described at the beginning
- of the tunable section, is still valid, but all weights higher than
-@@ -559,3 +588,55 @@ applications. Unset this tunable if you need/want to control weights.
- Slightly extended version:
- http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite-
- results.pdf
-+
-+----------------------------------------------------------------------
-+
-+DETAILS ON THE DEV VERSIONS IN THIS TREE
-+
-+The dev version of BFQ is available for both the legacy and the
-+multi-queue block layers, as two additional I/O schedulers, named,
-+respectively, bfq-sq-iosched and bfq-mq-iosched (the latter is
-+available if also the changes introducing bfq-mq-iosched have been
-+applied). In particular, this tree contains the dev version of bfq for
-+Linux mainline 4.19.0, and has been obtained from the dev version for
-+Linux 4.18.0. Rebasing from 4.18 to 4.19 involved two manual
-+interventions.
-+
-+First, some conflicts had to be resolved, as follows:
-+
-+---------------------------------------------------------------
-+
-+diff --cc Makefile
-+index 7727c1bf6fa5,69fa5c0310d8..c7cbdf0ad594
-+--- a/Makefile
-++++ b/Makefile
-+@@@ -1,9 -1,9 +1,9 @@@
-+ # SPDX-License-Identifier: GPL-2.0
-+ VERSION = 4
-+- PATCHLEVEL = 18
-++ PATCHLEVEL = 19
-+ SUBLEVEL = 0
-+ -EXTRAVERSION =
-+ +EXTRAVERSION = -bfq-mq
-+- NAME = Merciless Moray
-++ NAME = "People's Front"
-+
-+ # *DOCUMENTATION*
-+ # To see a list of typical targets execute "make help"
-+diff --cc include/linux/blkdev.h
-+index 897c63322bd7,6980014357d4..8c4568ea6884
-+--- a/include/linux/blkdev.h
-++++ b/include/linux/blkdev.h
-+@@@ -56,7 -54,7 +54,7 @@@ struct blk_stat_callback
-+ * Maximum number of blkcg policies allowed to be registered concurrently.
-+ * Defined here to simplify include dependency.
-+ */
-+--#define BLKCG_MAX_POLS 5
-+++#define BLKCG_MAX_POLS 7
-+
-+ typedef void (rq_end_io_fn)(struct request *, blk_status_t);
-+
-+---------------------------------------------------------------
-+
-+Second, the following port commit had to be made:
-+port commit "block: use ktime_get_ns() instead of sched_clock() for cfq and bfq"
-diff --git a/arch/x86/configs/x86_64_defconfig b/arch/x86/configs/x86_64_defconfig
-index e32fc1f274d8..94cb28eb20ba 100644
---- a/arch/x86/configs/x86_64_defconfig
-+++ b/arch/x86/configs/x86_64_defconfig
-@@ -12,6 +12,11 @@ CONFIG_NO_HZ=y
- CONFIG_HIGH_RES_TIMERS=y
- CONFIG_LOG_BUF_SHIFT=18
- CONFIG_CGROUPS=y
-+CONFIG_BLK_CGROUP=y
-+CONFIG_IOSCHED_BFQ_SQ=y
-+CONFIG_BFQ_SQ_GROUP_IOSCHED=y
-+CONFIG_MQ_IOSCHED_BFQ=y
-+CONFIG_MQ_BFQ_GROUP_IOSCHED=y
- CONFIG_CGROUP_FREEZER=y
- CONFIG_CPUSETS=y
- CONFIG_CGROUP_CPUACCT=y
-diff --git a/block/Kconfig.iosched b/block/Kconfig.iosched
-index a4a8914bf7a4..299a6861fb90 100644
---- a/block/Kconfig.iosched
-+++ b/block/Kconfig.iosched
-@@ -40,6 +40,26 @@ config CFQ_GROUP_IOSCHED
- ---help---
- Enable group IO scheduling in CFQ.
-
-+config IOSCHED_BFQ_SQ
-+ tristate "BFQ-SQ I/O scheduler"
-+ default n
-+ ---help---
-+ The BFQ-SQ I/O scheduler (for legacy blk: SQ stands for
-+ SingleQueue) distributes bandwidth among all processes
-+ according to their weights, regardless of the device
-+ parameters and with any workload. It also guarantees a low
-+ latency to interactive and soft real-time applications.
-+ Details in Documentation/block/bfq-iosched.txt
-+
-+config BFQ_SQ_GROUP_IOSCHED
-+ bool "BFQ-SQ hierarchical scheduling support"
-+ depends on IOSCHED_BFQ_SQ && BLK_CGROUP
-+ default n
-+ ---help---
-+
-+ Enable hierarchical scheduling in BFQ-SQ, using the blkio
-+ (cgroups-v1) or io (cgroups-v2) controller.
-+
- choice
-
- prompt "Default I/O scheduler"
-@@ -54,6 +74,16 @@ choice
- config DEFAULT_CFQ
- bool "CFQ" if IOSCHED_CFQ=y
-
-+ config DEFAULT_BFQ_SQ
-+ bool "BFQ-SQ" if IOSCHED_BFQ_SQ=y
-+ help
-+ Selects BFQ-SQ as the default I/O scheduler which will be
-+ used by default for all block devices.
-+ The BFQ-SQ I/O scheduler aims at distributing the bandwidth
-+ as desired, independently of the disk parameters and with
-+ any workload. It also tries to guarantee low latency to
-+ interactive and soft real-time applications.
-+
- config DEFAULT_NOOP
- bool "No-op"
-
-@@ -63,8 +93,28 @@ config DEFAULT_IOSCHED
- string
- default "deadline" if DEFAULT_DEADLINE
- default "cfq" if DEFAULT_CFQ
-+ default "bfq-sq" if DEFAULT_BFQ_SQ
- default "noop" if DEFAULT_NOOP
-
-+config MQ_IOSCHED_BFQ
-+ tristate "BFQ-MQ I/O Scheduler"
-+ default y
-+ ---help---
-+ BFQ I/O scheduler for BLK-MQ. BFQ-MQ distributes bandwidth
-+ among all processes according to their weights, regardless of
-+ the device parameters and with any workload. It also
-+ guarantees a low latency to interactive and soft real-time
-+ applications. Details in Documentation/block/bfq-iosched.txt
-+
-+config MQ_BFQ_GROUP_IOSCHED
-+ bool "BFQ-MQ hierarchical scheduling support"
-+ depends on MQ_IOSCHED_BFQ && BLK_CGROUP
-+ default n
-+ ---help---
-+
-+ Enable hierarchical scheduling in BFQ-MQ, using the blkio
-+ (cgroups-v1) or io (cgroups-v2) controller.
-+
- config MQ_IOSCHED_DEADLINE
- tristate "MQ deadline I/O scheduler"
- default y
-diff --git a/block/Makefile b/block/Makefile
-index 572b33f32c07..1dd6ffdc2fee 100644
---- a/block/Makefile
-+++ b/block/Makefile
-@@ -25,6 +25,8 @@ obj-$(CONFIG_MQ_IOSCHED_DEADLINE) += mq-deadline.o
- obj-$(CONFIG_MQ_IOSCHED_KYBER) += kyber-iosched.o
- bfq-y := bfq-iosched.o bfq-wf2q.o bfq-cgroup.o
- obj-$(CONFIG_IOSCHED_BFQ) += bfq.o
-+obj-$(CONFIG_IOSCHED_BFQ_SQ) += bfq-sq-iosched.o
-+obj-$(CONFIG_MQ_IOSCHED_BFQ) += bfq-mq-iosched.o
-
- obj-$(CONFIG_BLOCK_COMPAT) += compat_ioctl.o
- obj-$(CONFIG_BLK_CMDLINE_PARSER) += cmdline-parser.o
-diff --git a/block/bfq-cgroup-included.c b/block/bfq-cgroup-included.c
-new file mode 100644
-index 000000000000..15459e50cd6a
---- /dev/null
-+++ b/block/bfq-cgroup-included.c
-@@ -0,0 +1,1359 @@
-+/*
-+ * BFQ: CGROUPS support.
-+ *
-+ * Based on ideas and code from CFQ:
-+ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
-+ *
-+ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
-+ * Paolo Valente <paolo.valente@unimore.it>
-+ *
-+ * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
-+ *
-+ * Copyright (C) 2016 Paolo Valente <paolo.valente@linaro.org>
-+ *
-+ * Licensed under the GPL-2 as detailed in the accompanying COPYING.BFQ
-+ * file.
-+ */
-+
-+#if defined(BFQ_GROUP_IOSCHED_ENABLED) && defined(CONFIG_DEBUG_BLK_CGROUP)
-+
-+/* bfqg stats flags */
-+enum bfqg_stats_flags {
-+ BFQG_stats_waiting = 0,
-+ BFQG_stats_idling,
-+ BFQG_stats_empty,
-+};
-+
-+#define BFQG_FLAG_FNS(name) \
-+static void bfqg_stats_mark_##name(struct bfqg_stats *stats) \
-+{ \
-+ stats->flags |= (1 << BFQG_stats_##name); \
-+} \
-+static void bfqg_stats_clear_##name(struct bfqg_stats *stats) \
-+{ \
-+ stats->flags &= ~(1 << BFQG_stats_##name); \
-+} \
-+static int bfqg_stats_##name(struct bfqg_stats *stats) \
-+{ \
-+ return (stats->flags & (1 << BFQG_stats_##name)) != 0; \
-+} \
-+
-+BFQG_FLAG_FNS(waiting)
-+BFQG_FLAG_FNS(idling)
-+BFQG_FLAG_FNS(empty)
-+#undef BFQG_FLAG_FNS
-+
-+#ifdef BFQ_MQ
-+/* This should be called with the scheduler lock held. */
-+#else
-+/* This should be called with the queue_lock held. */
-+#endif
-+static void bfqg_stats_update_group_wait_time(struct bfqg_stats *stats)
-+{
-+ u64 now;
-+
-+ if (!bfqg_stats_waiting(stats))
-+ return;
-+
-+ now = ktime_get_ns();
-+ if (now > stats->start_group_wait_time)
-+ blkg_stat_add(&stats->group_wait_time,
-+ now - stats->start_group_wait_time);
-+ bfqg_stats_clear_waiting(stats);
-+}
-+
-+#ifdef BFQ_MQ
-+/* This should be called with the scheduler lock held. */
-+#else
-+/* This should be called with the queue_lock held. */
-+#endif
-+static void bfqg_stats_set_start_group_wait_time(struct bfq_group *bfqg,
-+ struct bfq_group *curr_bfqg)
-+{
-+ struct bfqg_stats *stats = &bfqg->stats;
-+
-+ if (bfqg_stats_waiting(stats))
-+ return;
-+ if (bfqg == curr_bfqg)
-+ return;
-+ stats->start_group_wait_time = ktime_get_ns();
-+ bfqg_stats_mark_waiting(stats);
-+}
-+
-+#ifdef BFQ_MQ
-+/* This should be called with the scheduler lock held. */
-+#else
-+/* This should be called with the queue_lock held. */
-+#endif
-+static void bfqg_stats_end_empty_time(struct bfqg_stats *stats)
-+{
-+ u64 now;
-+
-+ if (!bfqg_stats_empty(stats))
-+ return;
-+
-+ now = ktime_get_ns();
-+ if (now > stats->start_empty_time)
-+ blkg_stat_add(&stats->empty_time,
-+ now - stats->start_empty_time);
-+ bfqg_stats_clear_empty(stats);
-+}
-+
-+static void bfqg_stats_update_dequeue(struct bfq_group *bfqg)
-+{
-+ blkg_stat_add(&bfqg->stats.dequeue, 1);
-+}
-+
-+static void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg)
-+{
-+ struct bfqg_stats *stats = &bfqg->stats;
-+
-+ if (blkg_rwstat_total(&stats->queued))
-+ return;
-+
-+ /*
-+ * group is already marked empty. This can happen if bfqq got new
-+ * request in parent group and moved to this group while being added
-+ * to service tree. Just ignore the event and move on.
-+ */
-+ if (bfqg_stats_empty(stats))
-+ return;
-+
-+ stats->start_empty_time = ktime_get_ns();
-+ bfqg_stats_mark_empty(stats);
-+}
-+
-+static void bfqg_stats_update_idle_time(struct bfq_group *bfqg)
-+{
-+ struct bfqg_stats *stats = &bfqg->stats;
-+
-+ if (bfqg_stats_idling(stats)) {
-+ u64 now = ktime_get_ns();
-+
-+ if (now > stats->start_idle_time)
-+ blkg_stat_add(&stats->idle_time,
-+ now - stats->start_idle_time);
-+ bfqg_stats_clear_idling(stats);
-+ }
-+}
-+
-+static void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg)
-+{
-+ struct bfqg_stats *stats = &bfqg->stats;
-+
-+ stats->start_idle_time = ktime_get_ns();
-+ bfqg_stats_mark_idling(stats);
-+}
-+
-+static void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg)
-+{
-+ struct bfqg_stats *stats = &bfqg->stats;
-+
-+ blkg_stat_add(&stats->avg_queue_size_sum,
-+ blkg_rwstat_total(&stats->queued));
-+ blkg_stat_add(&stats->avg_queue_size_samples, 1);
-+ bfqg_stats_update_group_wait_time(stats);
-+}
-+
-+static void bfqg_stats_update_io_add(struct bfq_group *bfqg,
-+ struct bfq_queue *bfqq,
-+ unsigned int op)
-+{
-+ blkg_rwstat_add(&bfqg->stats.queued, op, 1);
-+ bfqg_stats_end_empty_time(&bfqg->stats);
-+ if (!(bfqq == ((struct bfq_data *)bfqg->bfqd)->in_service_queue))
-+ bfqg_stats_set_start_group_wait_time(bfqg, bfqq_group(bfqq));
-+}
-+
-+static void bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op)
-+{
-+ blkg_rwstat_add(&bfqg->stats.queued, op, -1);
-+}
-+
-+static void bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op)
-+{
-+ blkg_rwstat_add(&bfqg->stats.merged, op, 1);
-+}
-+
-+static void bfqg_stats_update_completion(struct bfq_group *bfqg,
-+ u64 start_time_ns,
-+ u64 io_start_time_ns,
-+ unsigned int op)
-+{
-+ struct bfqg_stats *stats = &bfqg->stats;
-+ u64 now = ktime_get_ns();
-+
-+ if (now > io_start_time_ns)
-+ blkg_rwstat_add(&stats->service_time, op,
-+ now - io_start_time_ns);
-+ if (io_start_time_ns > start_time_ns)
-+ blkg_rwstat_add(&stats->wait_time, op,
-+ io_start_time_ns - start_time_ns);
-+}
-+
-+#else /* BFQ_GROUP_IOSCHED_ENABLED && CONFIG_DEBUG_BLK_CGROUP */
-+
-+static inline void bfqg_stats_update_io_add(struct bfq_group *bfqg,
-+ struct bfq_queue *bfqq, unsigned int op) { }
-+static inline void
-+bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op) { }
-+static inline void
-+bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op) { }
-+static inline void bfqg_stats_update_completion(struct bfq_group *bfqg,
-+ u64 start_time_ns,
-+ u64 io_start_time_ns,
-+ unsigned int op) { }
-+static inline void
-+bfqg_stats_set_start_group_wait_time(struct bfq_group *bfqg,
-+ struct bfq_group *curr_bfqg) { }
-+static inline void bfqg_stats_end_empty_time(struct bfqg_stats *stats) { }
-+static inline void bfqg_stats_update_dequeue(struct bfq_group *bfqg) { }
-+static inline void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg) { }
-+static inline void bfqg_stats_update_idle_time(struct bfq_group *bfqg) { }
-+static inline void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg) { }
-+static inline void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg) { }
-+
-+#endif /* BFQ_GROUP_IOSCHED_ENABLED && CONFIG_DEBUG_BLK_CGROUP */
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+static struct blkcg_policy blkcg_policy_bfq;
-+
-+/*
-+ * blk-cgroup policy-related handlers
-+ * The following functions help in converting between blk-cgroup
-+ * internal structures and BFQ-specific structures.
-+ */
-+
-+static struct bfq_group *pd_to_bfqg(struct blkg_policy_data *pd)
-+{
-+ return pd ? container_of(pd, struct bfq_group, pd) : NULL;
-+}
-+
-+static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg)
-+{
-+ return pd_to_blkg(&bfqg->pd);
-+}
-+
-+static struct bfq_group *blkg_to_bfqg(struct blkcg_gq *blkg)
-+{
-+ struct blkg_policy_data *pd = blkg_to_pd(blkg, &blkcg_policy_bfq);
-+
-+ return pd_to_bfqg(pd);
-+}
-+
-+/*
-+ * bfq_group handlers
-+ * The following functions help in navigating the bfq_group hierarchy
-+ * by allowing to find the parent of a bfq_group or the bfq_group
-+ * associated to a bfq_queue.
-+ */
-+
-+static struct bfq_group *bfqg_parent(struct bfq_group *bfqg)
-+{
-+ struct blkcg_gq *pblkg = bfqg_to_blkg(bfqg)->parent;
-+
-+ return pblkg ? blkg_to_bfqg(pblkg) : NULL;
-+}
-+
-+static struct bfq_group *bfqq_group(struct bfq_queue *bfqq)
-+{
-+ struct bfq_entity *group_entity = bfqq->entity.parent;
-+
-+ return group_entity ? container_of(group_entity, struct bfq_group,
-+ entity) :
-+ bfqq->bfqd->root_group;
-+}
-+
-+/*
-+ * The following two functions handle get and put of a bfq_group by
-+ * wrapping the related blk-cgroup hooks.
-+ */
-+
-+static void bfqg_get(struct bfq_group *bfqg)
-+{
-+#ifdef BFQ_MQ
-+ bfqg->ref++;
-+#else
-+ blkg_get(bfqg_to_blkg(bfqg));
-+#endif
-+}
-+
-+static void bfqg_put(struct bfq_group *bfqg)
-+{
-+#ifdef BFQ_MQ
-+ bfqg->ref--;
-+
-+ BUG_ON(bfqg->ref < 0);
-+ if (bfqg->ref == 0)
-+ kfree(bfqg);
-+#else
-+ blkg_put(bfqg_to_blkg(bfqg));
-+#endif
-+}
-+
-+#ifdef BFQ_MQ
-+static void bfqg_and_blkg_get(struct bfq_group *bfqg)
-+{
-+ /* see comments in bfq_bic_update_cgroup for why refcounting bfqg */
-+ bfqg_get(bfqg);
-+
-+ blkg_get(bfqg_to_blkg(bfqg));
-+}
-+
-+static void bfqg_and_blkg_put(struct bfq_group *bfqg)
-+{
-+ blkg_put(bfqg_to_blkg(bfqg));
-+
-+ bfqg_put(bfqg);
-+}
-+#endif
-+
-+/* @stats = 0 */
-+static void bfqg_stats_reset(struct bfqg_stats *stats)
-+{
-+#ifdef CONFIG_DEBUG_BLK_CGROUP
-+ /* queued stats shouldn't be cleared */
-+ blkg_rwstat_reset(&stats->merged);
-+ blkg_rwstat_reset(&stats->service_time);
-+ blkg_rwstat_reset(&stats->wait_time);
-+ blkg_stat_reset(&stats->time);
-+ blkg_stat_reset(&stats->avg_queue_size_sum);
-+ blkg_stat_reset(&stats->avg_queue_size_samples);
-+ blkg_stat_reset(&stats->dequeue);
-+ blkg_stat_reset(&stats->group_wait_time);
-+ blkg_stat_reset(&stats->idle_time);
-+ blkg_stat_reset(&stats->empty_time);
-+#endif
-+}
-+
-+/* @to += @from */
-+static void bfqg_stats_add_aux(struct bfqg_stats *to, struct bfqg_stats *from)
-+{
-+ if (!to || !from)
-+ return;
-+
-+#ifdef CONFIG_DEBUG_BLK_CGROUP
-+ /* queued stats shouldn't be cleared */
-+ blkg_rwstat_add_aux(&to->merged, &from->merged);
-+ blkg_rwstat_add_aux(&to->service_time, &from->service_time);
-+ blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
-+ blkg_stat_add_aux(&from->time, &from->time);
-+ blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
-+ blkg_stat_add_aux(&to->avg_queue_size_samples,
-+ &from->avg_queue_size_samples);
-+ blkg_stat_add_aux(&to->dequeue, &from->dequeue);
-+ blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
-+ blkg_stat_add_aux(&to->idle_time, &from->idle_time);
-+ blkg_stat_add_aux(&to->empty_time, &from->empty_time);
-+#endif
-+}
-+
-+/*
-+ * Transfer @bfqg's stats to its parent's dead_stats so that the ancestors'
-+ * recursive stats can still account for the amount used by this bfqg after
-+ * it's gone.
-+ */
-+static void bfqg_stats_xfer_dead(struct bfq_group *bfqg)
-+{
-+ struct bfq_group *parent;
-+
-+ if (!bfqg) /* root_group */
-+ return;
-+
-+ parent = bfqg_parent(bfqg);
-+
-+ lockdep_assert_held(bfqg_to_blkg(bfqg)->q->queue_lock);
-+
-+ if (unlikely(!parent))
-+ return;
-+
-+ bfqg_stats_add_aux(&parent->stats, &bfqg->stats);
-+ bfqg_stats_reset(&bfqg->stats);
-+}
-+
-+static void bfq_init_entity(struct bfq_entity *entity,
-+ struct bfq_group *bfqg)
-+{
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+
-+ entity->weight = entity->new_weight;
-+ entity->orig_weight = entity->new_weight;
-+ if (bfqq) {
-+ bfqq->ioprio = bfqq->new_ioprio;
-+ bfqq->ioprio_class = bfqq->new_ioprio_class;
-+#ifdef BFQ_MQ
-+ /*
-+ * Make sure that bfqg and its associated blkg do not
-+ * disappear before entity.
-+ */
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "getting bfqg %p and blkg\n",
-+ bfqg);
-+
-+ bfqg_and_blkg_get(bfqg);
-+#else
-+ bfqg_get(bfqg);
-+#endif
-+ }
-+ entity->parent = bfqg->my_entity; /* NULL for root group */
-+ entity->sched_data = &bfqg->sched_data;
-+}
-+
-+static void bfqg_stats_exit(struct bfqg_stats *stats)
-+{
-+#ifdef CONFIG_DEBUG_BLK_CGROUP
-+ blkg_rwstat_exit(&stats->merged);
-+ blkg_rwstat_exit(&stats->service_time);
-+ blkg_rwstat_exit(&stats->wait_time);
-+ blkg_rwstat_exit(&stats->queued);
-+ blkg_stat_exit(&stats->time);
-+ blkg_stat_exit(&stats->avg_queue_size_sum);
-+ blkg_stat_exit(&stats->avg_queue_size_samples);
-+ blkg_stat_exit(&stats->dequeue);
-+ blkg_stat_exit(&stats->group_wait_time);
-+ blkg_stat_exit(&stats->idle_time);
-+ blkg_stat_exit(&stats->empty_time);
-+#endif
-+}
-+
-+static int bfqg_stats_init(struct bfqg_stats *stats, gfp_t gfp)
-+{
-+#ifdef CONFIG_DEBUG_BLK_CGROUP
-+ if (blkg_rwstat_init(&stats->merged, gfp) ||
-+ blkg_rwstat_init(&stats->service_time, gfp) ||
-+ blkg_rwstat_init(&stats->wait_time, gfp) ||
-+ blkg_rwstat_init(&stats->queued, gfp) ||
-+ blkg_stat_init(&stats->time, gfp) ||
-+ blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
-+ blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
-+ blkg_stat_init(&stats->dequeue, gfp) ||
-+ blkg_stat_init(&stats->group_wait_time, gfp) ||
-+ blkg_stat_init(&stats->idle_time, gfp) ||
-+ blkg_stat_init(&stats->empty_time, gfp)) {
-+ bfqg_stats_exit(stats);
-+ return -ENOMEM;
-+ }
-+#endif
-+
-+ return 0;
-+}
-+
-+static struct bfq_group_data *cpd_to_bfqgd(struct blkcg_policy_data *cpd)
-+{
-+ return cpd ? container_of(cpd, struct bfq_group_data, pd) : NULL;
-+}
-+
-+static struct bfq_group_data *blkcg_to_bfqgd(struct blkcg *blkcg)
-+{
-+ return cpd_to_bfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_bfq));
-+}
-+
-+static struct blkcg_policy_data *bfq_cpd_alloc(gfp_t gfp)
-+{
-+ struct bfq_group_data *bgd;
-+
-+ bgd = kzalloc(sizeof(*bgd), gfp);
-+ if (!bgd)
-+ return NULL;
-+ return &bgd->pd;
-+}
-+
-+static void bfq_cpd_init(struct blkcg_policy_data *cpd)
-+{
-+ struct bfq_group_data *d = cpd_to_bfqgd(cpd);
-+
-+ d->weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
-+ CGROUP_WEIGHT_DFL : BFQ_WEIGHT_LEGACY_DFL;
-+}
-+
-+static void bfq_cpd_free(struct blkcg_policy_data *cpd)
-+{
-+ kfree(cpd_to_bfqgd(cpd));
-+}
-+
-+static struct blkg_policy_data *bfq_pd_alloc(gfp_t gfp, int node)
-+{
-+ struct bfq_group *bfqg;
-+
-+ bfqg = kzalloc_node(sizeof(*bfqg), gfp, node);
-+ if (!bfqg)
-+ return NULL;
-+
-+ if (bfqg_stats_init(&bfqg->stats, gfp)) {
-+ kfree(bfqg);
-+ return NULL;
-+ }
-+#ifdef BFQ_MQ
-+ /* see comments in bfq_bic_update_cgroup for why refcounting */
-+ bfqg_get(bfqg);
-+#endif
-+ return &bfqg->pd;
-+}
-+
-+static void bfq_pd_init(struct blkg_policy_data *pd)
-+{
-+ struct blkcg_gq *blkg;
-+ struct bfq_group *bfqg;
-+ struct bfq_data *bfqd;
-+ struct bfq_entity *entity;
-+ struct bfq_group_data *d;
-+
-+ blkg = pd_to_blkg(pd);
-+ BUG_ON(!blkg);
-+ bfqg = blkg_to_bfqg(blkg);
-+ bfqd = blkg->q->elevator->elevator_data;
-+ BUG_ON(bfqg == bfqd->root_group);
-+ entity = &bfqg->entity;
-+ d = blkcg_to_bfqgd(blkg->blkcg);
-+
-+ entity->orig_weight = entity->weight = entity->new_weight = d->weight;
-+ entity->my_sched_data = &bfqg->sched_data;
-+ bfqg->my_entity = entity; /*
-+ * the root_group's will be set to NULL
-+ * in bfq_init_queue()
-+ */
-+ bfqg->bfqd = bfqd;
-+ bfqg->active_entities = 0;
-+ bfqg->rq_pos_tree = RB_ROOT;
-+}
-+
-+static void bfq_pd_free(struct blkg_policy_data *pd)
-+{
-+ struct bfq_group *bfqg = pd_to_bfqg(pd);
-+
-+ bfqg_stats_exit(&bfqg->stats);
-+#ifdef BFQ_MQ
-+ bfqg_put(bfqg);
-+#else
-+ kfree(bfqg);
-+#endif
-+}
-+
-+static void bfq_pd_reset_stats(struct blkg_policy_data *pd)
-+{
-+ struct bfq_group *bfqg = pd_to_bfqg(pd);
-+
-+ bfqg_stats_reset(&bfqg->stats);
-+}
-+
-+static void bfq_group_set_parent(struct bfq_group *bfqg,
-+ struct bfq_group *parent)
-+{
-+ struct bfq_entity *entity;
-+
-+ BUG_ON(!parent);
-+ BUG_ON(!bfqg);
-+ BUG_ON(bfqg == parent);
-+
-+ entity = &bfqg->entity;
-+ entity->parent = parent->my_entity;
-+ entity->sched_data = &parent->sched_data;
-+}
-+
-+static struct bfq_group *bfq_lookup_bfqg(struct bfq_data *bfqd,
-+ struct blkcg *blkcg)
-+{
-+ struct blkcg_gq *blkg;
-+
-+ blkg = blkg_lookup(blkcg, bfqd->queue);
-+ if (likely(blkg))
-+ return blkg_to_bfqg(blkg);
-+ return NULL;
-+}
-+
-+static struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd,
-+ struct blkcg *blkcg)
-+{
-+ struct bfq_group *bfqg, *parent;
-+ struct bfq_entity *entity;
-+
-+ bfqg = bfq_lookup_bfqg(bfqd, blkcg);
-+
-+ if (unlikely(!bfqg))
-+ return NULL;
-+
-+ /*
-+ * Update chain of bfq_groups as we might be handling a leaf group
-+ * which, along with some of its relatives, has not been hooked yet
-+ * to the private hierarchy of BFQ.
-+ */
-+ entity = &bfqg->entity;
-+ for_each_entity(entity) {
-+ bfqg = container_of(entity, struct bfq_group, entity);
-+ BUG_ON(!bfqg);
-+ if (bfqg != bfqd->root_group) {
-+ parent = bfqg_parent(bfqg);
-+ if (!parent)
-+ parent = bfqd->root_group;
-+ BUG_ON(!parent);
-+ bfq_group_set_parent(bfqg, parent);
-+ }
-+ }
-+
-+ return bfqg;
-+}
-+
-+static void bfq_pos_tree_add_move(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq);
-+
-+static void bfq_bfqq_expire(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ bool compensate,
-+ enum bfqq_expiration reason);
-+
-+/**
-+ * bfq_bfqq_move - migrate @bfqq to @bfqg.
-+ * @bfqd: queue descriptor.
-+ * @bfqq: the queue to move.
-+ * @bfqg: the group to move to.
-+ *
-+ * Move @bfqq to @bfqg, deactivating it from its old group and reactivating
-+ * it on the new one. Avoid putting the entity on the old group idle tree.
-+ *
-+#ifdef BFQ_MQ
-+ * Must be called under the scheduler lock, to make sure that the blkg
-+ * owning @bfqg does not disappear (see comments in
-+ * bfq_bic_update_cgroup on guaranteeing the consistency of blkg
-+ * objects).
-+#else
-+ * Must be called under the queue lock; the cgroup owning @bfqg must
-+ * not disappear (by now this just means that we are called under
-+ * rcu_read_lock()).
-+#endif
-+ */
-+static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
-+ struct bfq_group *bfqg)
-+{
-+ struct bfq_entity *entity = &bfqq->entity;
-+
-+ BUG_ON(!bfq_bfqq_busy(bfqq) && !RB_EMPTY_ROOT(&bfqq->sort_list));
-+ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list) && !entity->on_st);
-+ BUG_ON(bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list)
-+ && entity->on_st &&
-+ bfqq != bfqd->in_service_queue);
-+ BUG_ON(!bfq_bfqq_busy(bfqq) && bfqq == bfqd->in_service_queue);
-+
-+ /* If bfqq is empty, then bfq_bfqq_expire also invokes
-+ * bfq_del_bfqq_busy, thereby removing bfqq and its entity
-+ * from data structures related to current group. Otherwise we
-+ * need to remove bfqq explicitly with bfq_deactivate_bfqq, as
-+ * we do below.
-+ */
-+ if (bfqq == bfqd->in_service_queue)
-+ bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
-+ false, BFQ_BFQQ_PREEMPTED);
-+
-+ BUG_ON(entity->on_st && !bfq_bfqq_busy(bfqq)
-+ && &bfq_entity_service_tree(entity)->idle !=
-+ entity->tree);
-+
-+ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_busy(bfqq));
-+
-+ if (bfq_bfqq_busy(bfqq))
-+ bfq_deactivate_bfqq(bfqd, bfqq, false, false);
-+ else if (entity->on_st) {
-+ BUG_ON(&bfq_entity_service_tree(entity)->idle !=
-+ entity->tree);
-+ bfq_put_idle_entity(bfq_entity_service_tree(entity), entity);
-+ }
-+#ifdef BFQ_MQ
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "putting blkg and bfqg %p\n", bfqg);
-+
-+ bfqg_and_blkg_put(bfqq_group(bfqq));
-+#else
-+ bfqg_put(bfqq_group(bfqq));
-+#endif
-+
-+ entity->parent = bfqg->my_entity;
-+ entity->sched_data = &bfqg->sched_data;
-+#ifdef BFQ_MQ
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "getting blkg and bfqg %p\n", bfqg);
-+
-+ /* pin down bfqg and its associated blkg */
-+ bfqg_and_blkg_get(bfqg);
-+#else
-+ bfqg_get(bfqg);
-+#endif
-+
-+ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_busy(bfqq));
-+ if (bfq_bfqq_busy(bfqq)) {
-+ bfq_pos_tree_add_move(bfqd, bfqq);
-+ bfq_activate_bfqq(bfqd, bfqq);
-+ }
-+
-+ if (!bfqd->in_service_queue && !bfqd->rq_in_driver)
-+ bfq_schedule_dispatch(bfqd);
-+ BUG_ON(entity->on_st && !bfq_bfqq_busy(bfqq)
-+ && &bfq_entity_service_tree(entity)->idle !=
-+ entity->tree);
-+}
-+
-+/**
-+ * __bfq_bic_change_cgroup - move @bic to @cgroup.
-+ * @bfqd: the queue descriptor.
-+ * @bic: the bic to move.
-+ * @blkcg: the blk-cgroup to move to.
-+ *
-+#ifdef BFQ_MQ
-+ * Move bic to blkcg, assuming that bfqd->lock is held; which makes
-+ * sure that the reference to cgroup is valid across the call (see
-+ * comments in bfq_bic_update_cgroup on this issue)
-+#else
-+ * Move bic to blkcg, assuming that bfqd->queue is locked; the caller
-+ * has to make sure that the reference to cgroup is valid across the call.
-+#endif
-+ *
-+ * NOTE: an alternative approach might have been to store the current
-+ * cgroup in bfqq and getting a reference to it, reducing the lookup
-+ * time here, at the price of slightly more complex code.
-+ */
-+static struct bfq_group *__bfq_bic_change_cgroup(struct bfq_data *bfqd,
-+ struct bfq_io_cq *bic,
-+ struct blkcg *blkcg)
-+{
-+ struct bfq_queue *async_bfqq = bic_to_bfqq(bic, 0);
-+ struct bfq_queue *sync_bfqq = bic_to_bfqq(bic, 1);
-+ struct bfq_group *bfqg;
-+ struct bfq_entity *entity;
-+
-+ bfqg = bfq_find_set_group(bfqd, blkcg);
-+
-+ if (unlikely(!bfqg))
-+ bfqg = bfqd->root_group;
-+
-+ if (async_bfqq) {
-+ entity = &async_bfqq->entity;
-+
-+ if (entity->sched_data != &bfqg->sched_data) {
-+ bic_set_bfqq(bic, NULL, 0);
-+ bfq_log_bfqq(bfqd, async_bfqq,
-+ "%p %d",
-+ async_bfqq,
-+ async_bfqq->ref);
-+ bfq_put_queue(async_bfqq);
-+ }
-+ }
-+
-+ if (sync_bfqq) {
-+ entity = &sync_bfqq->entity;
-+ if (entity->sched_data != &bfqg->sched_data)
-+ bfq_bfqq_move(bfqd, sync_bfqq, bfqg);
-+ }
-+
-+ return bfqg;
-+}
-+
-+static void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio)
-+{
-+ struct bfq_data *bfqd = bic_to_bfqd(bic);
-+ struct bfq_group *bfqg = NULL;
-+ uint64_t serial_nr;
-+
-+ rcu_read_lock();
-+ serial_nr = bio_blkcg(bio)->css.serial_nr;
-+
-+ /*
-+ * Check whether blkcg has changed. The condition may trigger
-+ * spuriously on a newly created cic but there's no harm.
-+ */
-+ if (unlikely(!bfqd) || likely(bic->blkcg_serial_nr == serial_nr))
-+ goto out;
-+
-+ bfqg = __bfq_bic_change_cgroup(bfqd, bic, bio_blkcg(bio));
-+#ifdef BFQ_MQ
-+ /*
-+ * Update blkg_path for bfq_log_* functions. We cache this
-+ * path, and update it here, for the following
-+ * reasons. Operations on blkg objects in blk-cgroup are
-+ * protected with the request_queue lock, and not with the
-+ * lock that protects the instances of this scheduler
-+ * (bfqd->lock). This exposes BFQ to the following sort of
-+ * race.
-+ *
-+ * The blkg_lookup performed in bfq_get_queue, protected
-+ * through rcu, may happen to return the address of a copy of
-+ * the original blkg. If this is the case, then the
-+ * bfqg_and_blkg_get performed in bfq_get_queue, to pin down
-+ * the blkg, is useless: it does not prevent blk-cgroup code
-+ * from destroying both the original blkg and all objects
-+ * directly or indirectly referred by the copy of the
-+ * blkg.
-+ *
-+ * On the bright side, destroy operations on a blkg invoke, as
-+ * a first step, hooks of the scheduler associated with the
-+ * blkg. And these hooks are executed with bfqd->lock held for
-+ * BFQ. As a consequence, for any blkg associated with the
-+ * request queue this instance of the scheduler is attached
-+ * to, we are guaranteed that such a blkg is not destroyed, and
-+ * that all the pointers it contains are consistent, while we
-+ * are holding bfqd->lock. A blkg_lookup performed with
-+ * bfqd->lock held then returns a fully consistent blkg, which
-+ * remains consistent until this lock is held.
-+ *
-+ * Thanks to the last fact, and to the fact that: (1) bfqg has
-+ * been obtained through a blkg_lookup in the above
-+ * assignment, and (2) bfqd->lock is being held, here we can
-+ * safely use the policy data for the involved blkg (i.e., the
-+ * field bfqg->pd) to get to the blkg associated with bfqg,
-+ * and then we can safely use any field of blkg. After we
-+ * release bfqd->lock, even just getting blkg through this
-+ * bfqg may cause dangling references to be traversed, as
-+ * bfqg->pd may not exist any more.
-+ *
-+ * In view of the above facts, here we cache, in the bfqg, any
-+ * blkg data we may need for this bic, and for its associated
-+ * bfq_queue. As of now, we need to cache only the path of the
-+ * blkg, which is used in the bfq_log_* functions.
-+ *
-+ * Finally, note that bfqg itself needs to be protected from
-+ * destruction on the blkg_free of the original blkg (which
-+ * invokes bfq_pd_free). We use an additional private
-+ * refcounter for bfqg, to let it disappear only after no
-+ * bfq_queue refers to it any longer.
-+ */
-+ blkg_path(bfqg_to_blkg(bfqg), bfqg->blkg_path, sizeof(bfqg->blkg_path));
-+#endif
-+ bic->blkcg_serial_nr = serial_nr;
-+out:
-+ rcu_read_unlock();
-+}
-+
-+/**
-+ * bfq_flush_idle_tree - deactivate any entity on the idle tree of @st.
-+ * @st: the service tree being flushed.
-+ */
-+static void bfq_flush_idle_tree(struct bfq_service_tree *st)
-+{
-+ struct bfq_entity *entity = st->first_idle;
-+
-+ for (; entity ; entity = st->first_idle)
-+ __bfq_deactivate_entity(entity, false);
-+}
-+
-+/**
-+ * bfq_reparent_leaf_entity - move leaf entity to the root_group.
-+ * @bfqd: the device data structure with the root group.
-+ * @entity: the entity to move.
-+ */
-+static void bfq_reparent_leaf_entity(struct bfq_data *bfqd,
-+ struct bfq_entity *entity)
-+{
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+
-+ BUG_ON(!bfqq);
-+ bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
-+}
-+
-+/**
-+ * bfq_reparent_active_entities - move to the root group all active
-+ * entities.
-+ * @bfqd: the device data structure with the root group.
-+ * @bfqg: the group to move from.
-+ * @st: the service tree with the entities.
-+ */
-+static void bfq_reparent_active_entities(struct bfq_data *bfqd,
-+ struct bfq_group *bfqg,
-+ struct bfq_service_tree *st)
-+{
-+ struct rb_root *active = &st->active;
-+ struct bfq_entity *entity = NULL;
-+
-+ if (!RB_EMPTY_ROOT(&st->active))
-+ entity = bfq_entity_of(rb_first(active));
-+
-+ for (; entity ; entity = bfq_entity_of(rb_first(active)))
-+ bfq_reparent_leaf_entity(bfqd, entity);
-+
-+ if (bfqg->sched_data.in_service_entity)
-+ bfq_reparent_leaf_entity(bfqd,
-+ bfqg->sched_data.in_service_entity);
-+}
-+
-+/**
-+ * bfq_pd_offline - deactivate the entity associated with @pd,
-+ * and reparent its children entities.
-+ * @pd: descriptor of the policy going offline.
-+ *
-+ * blkio already grabs the queue_lock for us, so no need to use
-+ * RCU-based magic
-+ */
-+static void bfq_pd_offline(struct blkg_policy_data *pd)
-+{
-+ struct bfq_service_tree *st;
-+ struct bfq_group *bfqg;
-+ struct bfq_data *bfqd;
-+ struct bfq_entity *entity;
-+#ifdef BFQ_MQ
-+ unsigned long flags;
-+#endif
-+ int i;
-+
-+ BUG_ON(!pd);
-+ bfqg = pd_to_bfqg(pd);
-+ BUG_ON(!bfqg);
-+ bfqd = bfqg->bfqd;
-+ BUG_ON(bfqd && !bfqd->root_group);
-+
-+ entity = bfqg->my_entity;
-+
-+#ifdef BFQ_MQ
-+ spin_lock_irqsave(&bfqd->lock, flags);
-+#endif
-+
-+ if (!entity) /* root group */
-+ goto put_async_queues;
-+
-+ /*
-+ * Empty all service_trees belonging to this group before
-+ * deactivating the group itself.
-+ */
-+ for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) {
-+ BUG_ON(!bfqg->sched_data.service_tree);
-+ st = bfqg->sched_data.service_tree + i;
-+ /*
-+ * The idle tree may still contain bfq_queues belonging
-+ * to exited task because they never migrated to a different
-+ * cgroup from the one being destroyed now.
-+ */
-+ bfq_flush_idle_tree(st);
-+
-+ /*
-+ * It may happen that some queues are still active
-+ * (busy) upon group destruction (if the corresponding
-+ * processes have been forced to terminate). We move
-+ * all the leaf entities corresponding to these queues
-+ * to the root_group.
-+ * Also, it may happen that the group has an entity
-+ * in service, which is disconnected from the active
-+ * tree: it must be moved, too.
-+ * There is no need to put the sync queues, as the
-+ * scheduler has taken no reference.
-+ */
-+ bfq_reparent_active_entities(bfqd, bfqg, st);
-+ BUG_ON(!RB_EMPTY_ROOT(&st->active));
-+ BUG_ON(!RB_EMPTY_ROOT(&st->idle));
-+ }
-+ BUG_ON(bfqg->sched_data.next_in_service);
-+ BUG_ON(bfqg->sched_data.in_service_entity);
-+
-+ __bfq_deactivate_entity(entity, false);
-+
-+put_async_queues:
-+ bfq_put_async_queues(bfqd, bfqg);
-+
-+#ifdef BFQ_MQ
-+ spin_unlock_irqrestore(&bfqd->lock, flags);
-+#endif
-+ /*
-+ * @blkg is going offline and will be ignored by
-+ * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
-+ * that they don't get lost. If IOs complete after this point, the
-+ * stats for them will be lost. Oh well...
-+ */
-+ bfqg_stats_xfer_dead(bfqg);
-+}
-+
-+static void bfq_end_wr_async(struct bfq_data *bfqd)
-+{
-+ struct blkcg_gq *blkg;
-+
-+ list_for_each_entry(blkg, &bfqd->queue->blkg_list, q_node) {
-+ struct bfq_group *bfqg = blkg_to_bfqg(blkg);
-+ BUG_ON(!bfqg);
-+
-+ bfq_end_wr_async_queues(bfqd, bfqg);
-+ }
-+ bfq_end_wr_async_queues(bfqd, bfqd->root_group);
-+}
-+
-+static int bfq_io_show_weight(struct seq_file *sf, void *v)
-+{
-+ struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
-+ struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg);
-+ unsigned int val = 0;
-+
-+ if (bfqgd)
-+ val = bfqgd->weight;
-+
-+ seq_printf(sf, "%u\n", val);
-+
-+ return 0;
-+}
-+
-+static int bfq_io_set_weight_legacy(struct cgroup_subsys_state *css,
-+ struct cftype *cftype,
-+ u64 val)
-+{
-+ struct blkcg *blkcg = css_to_blkcg(css);
-+ struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg);
-+ struct blkcg_gq *blkg;
-+ int ret = -ERANGE;
-+
-+ if (val < BFQ_MIN_WEIGHT || val > BFQ_MAX_WEIGHT)
-+ return ret;
-+
-+ ret = 0;
-+ spin_lock_irq(&blkcg->lock);
-+ bfqgd->weight = (unsigned short)val;
-+ hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
-+ struct bfq_group *bfqg = blkg_to_bfqg(blkg);
-+
-+ if (!bfqg)
-+ continue;
-+ /*
-+ * Setting the prio_changed flag of the entity
-+ * to 1 with new_weight == weight would re-set
-+ * the value of the weight to its ioprio mapping.
-+ * Set the flag only if necessary.
-+ */
-+ if ((unsigned short)val != bfqg->entity.new_weight) {
-+ bfqg->entity.new_weight = (unsigned short)val;
-+ /*
-+ * Make sure that the above new value has been
-+ * stored in bfqg->entity.new_weight before
-+ * setting the prio_changed flag. In fact,
-+ * this flag may be read asynchronously (in
-+ * critical sections protected by a different
-+ * lock than that held here), and finding this
-+ * flag set may cause the execution of the code
-+ * for updating parameters whose value may
-+ * depend also on bfqg->entity.new_weight (in
-+ * __bfq_entity_update_weight_prio).
-+ * This barrier makes sure that the new value
-+ * of bfqg->entity.new_weight is correctly
-+ * seen in that code.
-+ */
-+ smp_wmb();
-+ bfqg->entity.prio_changed = 1;
-+ }
-+ }
-+ spin_unlock_irq(&blkcg->lock);
-+
-+ return ret;
-+}
-+
-+static ssize_t bfq_io_set_weight(struct kernfs_open_file *of,
-+ char *buf, size_t nbytes,
-+ loff_t off)
-+{
-+ u64 weight;
-+ /* First unsigned long found in the file is used */
-+ int ret = kstrtoull(strim(buf), 0, &weight);
-+
-+ if (ret)
-+ return ret;
-+
-+ ret = bfq_io_set_weight_legacy(of_css(of), NULL, weight);
-+ return ret ?: nbytes;
-+}
-+
-+#ifdef CONFIG_DEBUG_BLK_CGROUP
-+static int bfqg_print_stat(struct seq_file *sf, void *v)
-+{
-+ blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
-+ &blkcg_policy_bfq, seq_cft(sf)->private, false);
-+ return 0;
-+}
-+
-+static int bfqg_print_rwstat(struct seq_file *sf, void *v)
-+{
-+ blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
-+ &blkcg_policy_bfq, seq_cft(sf)->private, true);
-+ return 0;
-+}
-+
-+static u64 bfqg_prfill_stat_recursive(struct seq_file *sf,
-+ struct blkg_policy_data *pd, int off)
-+{
-+ u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
-+ &blkcg_policy_bfq, off);
-+ return __blkg_prfill_u64(sf, pd, sum);
-+}
-+
-+static u64 bfqg_prfill_rwstat_recursive(struct seq_file *sf,
-+ struct blkg_policy_data *pd, int off)
-+{
-+ struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
-+ &blkcg_policy_bfq,
-+ off);
-+ return __blkg_prfill_rwstat(sf, pd, &sum);
-+}
-+
-+static int bfqg_print_stat_recursive(struct seq_file *sf, void *v)
-+{
-+ blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
-+ bfqg_prfill_stat_recursive, &blkcg_policy_bfq,
-+ seq_cft(sf)->private, false);
-+ return 0;
-+}
-+
-+static int bfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
-+{
-+ blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
-+ bfqg_prfill_rwstat_recursive, &blkcg_policy_bfq,
-+ seq_cft(sf)->private, true);
-+ return 0;
-+}
-+
-+static u64 bfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
-+ int off)
-+{
-+ u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
-+
-+ return __blkg_prfill_u64(sf, pd, sum >> 9);
-+}
-+
-+static int bfqg_print_stat_sectors(struct seq_file *sf, void *v)
-+{
-+ blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
-+ bfqg_prfill_sectors, &blkcg_policy_bfq, 0, false);
-+ return 0;
-+}
-+
-+static u64 bfqg_prfill_sectors_recursive(struct seq_file *sf,
-+ struct blkg_policy_data *pd, int off)
-+{
-+ struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
-+ offsetof(struct blkcg_gq, stat_bytes));
-+ u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
-+ atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
-+
-+ return __blkg_prfill_u64(sf, pd, sum >> 9);
-+}
-+
-+static int bfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
-+{
-+ blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
-+ bfqg_prfill_sectors_recursive, &blkcg_policy_bfq, 0,
-+ false);
-+ return 0;
-+}
-+
-+
-+static u64 bfqg_prfill_avg_queue_size(struct seq_file *sf,
-+ struct blkg_policy_data *pd, int off)
-+{
-+ struct bfq_group *bfqg = pd_to_bfqg(pd);
-+ u64 samples = blkg_stat_read(&bfqg->stats.avg_queue_size_samples);
-+ u64 v = 0;
-+
-+ if (samples) {
-+ v = blkg_stat_read(&bfqg->stats.avg_queue_size_sum);
-+ v = div64_u64(v, samples);
-+ }
-+ __blkg_prfill_u64(sf, pd, v);
-+ return 0;
-+}
-+
-+/* print avg_queue_size */
-+static int bfqg_print_avg_queue_size(struct seq_file *sf, void *v)
-+{
-+ blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
-+ bfqg_prfill_avg_queue_size, &blkcg_policy_bfq,
-+ 0, false);
-+ return 0;
-+}
-+#endif /* CONFIG_DEBUG_BLK_CGROUP */
-+
-+static struct bfq_group *
-+bfq_create_group_hierarchy(struct bfq_data *bfqd, int node)
-+{
-+ int ret;
-+
-+ ret = blkcg_activate_policy(bfqd->queue, &blkcg_policy_bfq);
-+ if (ret)
-+ return NULL;
-+
-+ return blkg_to_bfqg(bfqd->queue->root_blkg);
-+}
-+
-+#ifdef BFQ_MQ
-+#define BFQ_CGROUP_FNAME(param) "bfq-mq."#param
-+#else
-+#define BFQ_CGROUP_FNAME(param) "bfq-sq."#param
-+#endif
-+
-+static struct cftype bfq_blkcg_legacy_files[] = {
-+ {
-+ .name = BFQ_CGROUP_FNAME(weight),
-+ .flags = CFTYPE_NOT_ON_ROOT,
-+ .seq_show = bfq_io_show_weight,
-+ .write_u64 = bfq_io_set_weight_legacy,
-+ },
-+
-+ /* statistics, covers only the tasks in the bfqg */
-+ {
-+ .name = BFQ_CGROUP_FNAME(io_service_bytes),
-+ .private = (unsigned long)&blkcg_policy_bfq,
-+ .seq_show = blkg_print_stat_bytes,
-+ },
-+ {
-+ .name = BFQ_CGROUP_FNAME(io_serviced),
-+ .private = (unsigned long)&blkcg_policy_bfq,
-+ .seq_show = blkg_print_stat_ios,
-+ },
-+#ifdef CONFIG_DEBUG_BLK_CGROUP
-+ {
-+ .name = BFQ_CGROUP_FNAME(time),
-+ .private = offsetof(struct bfq_group, stats.time),
-+ .seq_show = bfqg_print_stat,
-+ },
-+ {
-+ .name = BFQ_CGROUP_FNAME(sectors),
-+ .seq_show = bfqg_print_stat_sectors,
-+ },
-+ {
-+ .name = BFQ_CGROUP_FNAME(io_service_time),
-+ .private = offsetof(struct bfq_group, stats.service_time),
-+ .seq_show = bfqg_print_rwstat,
-+ },
-+ {
-+ .name = BFQ_CGROUP_FNAME(io_wait_time),
-+ .private = offsetof(struct bfq_group, stats.wait_time),
-+ .seq_show = bfqg_print_rwstat,
-+ },
-+ {
-+ .name = BFQ_CGROUP_FNAME(io_merged),
-+ .private = offsetof(struct bfq_group, stats.merged),
-+ .seq_show = bfqg_print_rwstat,
-+ },
-+ {
-+ .name = BFQ_CGROUP_FNAME(io_queued),
-+ .private = offsetof(struct bfq_group, stats.queued),
-+ .seq_show = bfqg_print_rwstat,
-+ },
-+#endif /* CONFIG_DEBUG_BLK_CGROUP */
-+
-+ /* the same statictics which cover the bfqg and its descendants */
-+ {
-+ .name = BFQ_CGROUP_FNAME(io_service_bytes_recursive),
-+ .private = (unsigned long)&blkcg_policy_bfq,
-+ .seq_show = blkg_print_stat_bytes_recursive,
-+ },
-+ {
-+ .name = BFQ_CGROUP_FNAME(io_serviced_recursive),
-+ .private = (unsigned long)&blkcg_policy_bfq,
-+ .seq_show = blkg_print_stat_ios_recursive,
-+ },
-+#ifdef CONFIG_DEBUG_BLK_CGROUP
-+ {
-+ .name = BFQ_CGROUP_FNAME(time_recursive),
-+ .private = offsetof(struct bfq_group, stats.time),
-+ .seq_show = bfqg_print_stat_recursive,
-+ },
-+ {
-+ .name = BFQ_CGROUP_FNAME(sectors_recursive),
-+ .seq_show = bfqg_print_stat_sectors_recursive,
-+ },
-+ {
-+ .name = BFQ_CGROUP_FNAME(io_service_time_recursive),
-+ .private = offsetof(struct bfq_group, stats.service_time),
-+ .seq_show = bfqg_print_rwstat_recursive,
-+ },
-+ {
-+ .name = BFQ_CGROUP_FNAME(io_wait_time_recursive),
-+ .private = offsetof(struct bfq_group, stats.wait_time),
-+ .seq_show = bfqg_print_rwstat_recursive,
-+ },
-+ {
-+ .name = BFQ_CGROUP_FNAME(io_merged_recursive),
-+ .private = offsetof(struct bfq_group, stats.merged),
-+ .seq_show = bfqg_print_rwstat_recursive,
-+ },
-+ {
-+ .name = BFQ_CGROUP_FNAME(io_queued_recursive),
-+ .private = offsetof(struct bfq_group, stats.queued),
-+ .seq_show = bfqg_print_rwstat_recursive,
-+ },
-+ {
-+ .name = BFQ_CGROUP_FNAME(avg_queue_size),
-+ .seq_show = bfqg_print_avg_queue_size,
-+ },
-+ {
-+ .name = BFQ_CGROUP_FNAME(group_wait_time),
-+ .private = offsetof(struct bfq_group, stats.group_wait_time),
-+ .seq_show = bfqg_print_stat,
-+ },
-+ {
-+ .name = BFQ_CGROUP_FNAME(idle_time),
-+ .private = offsetof(struct bfq_group, stats.idle_time),
-+ .seq_show = bfqg_print_stat,
-+ },
-+ {
-+ .name = BFQ_CGROUP_FNAME(empty_time),
-+ .private = offsetof(struct bfq_group, stats.empty_time),
-+ .seq_show = bfqg_print_stat,
-+ },
-+ {
-+ .name = BFQ_CGROUP_FNAME(dequeue),
-+ .private = offsetof(struct bfq_group, stats.dequeue),
-+ .seq_show = bfqg_print_stat,
-+ },
-+#endif /* CONFIG_DEBUG_BLK_CGROUP */
-+ { } /* terminate */
-+};
-+
-+static struct cftype bfq_blkg_files[] = {
-+ {
-+ .name = BFQ_CGROUP_FNAME(weight),
-+ .flags = CFTYPE_NOT_ON_ROOT,
-+ .seq_show = bfq_io_show_weight,
-+ .write = bfq_io_set_weight,
-+ },
-+ {} /* terminate */
-+};
-+
-+#undef BFQ_CGROUP_FNAME
-+
-+#else /* BFQ_GROUP_IOSCHED_ENABLED */
-+
-+static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
-+ struct bfq_group *bfqg) {}
-+
-+static void bfq_init_entity(struct bfq_entity *entity,
-+ struct bfq_group *bfqg)
-+{
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+
-+ entity->weight = entity->new_weight;
-+ entity->orig_weight = entity->new_weight;
-+ if (bfqq) {
-+ bfqq->ioprio = bfqq->new_ioprio;
-+ bfqq->ioprio_class = bfqq->new_ioprio_class;
-+ }
-+ entity->sched_data = &bfqg->sched_data;
-+}
-+
-+static void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio) {}
-+
-+static void bfq_end_wr_async(struct bfq_data *bfqd)
-+{
-+ bfq_end_wr_async_queues(bfqd, bfqd->root_group);
-+}
-+
-+static struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd,
-+ struct blkcg *blkcg)
-+{
-+ return bfqd->root_group;
-+}
-+
-+static struct bfq_group *bfqq_group(struct bfq_queue *bfqq)
-+{
-+ return bfqq->bfqd->root_group;
-+}
-+
-+static struct bfq_group *
-+bfq_create_group_hierarchy(struct bfq_data *bfqd, int node)
-+{
-+ struct bfq_group *bfqg;
-+ int i;
-+
-+ bfqg = kmalloc_node(sizeof(*bfqg), GFP_KERNEL | __GFP_ZERO, node);
-+ if (!bfqg)
-+ return NULL;
-+
-+ for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
-+ bfqg->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
-+
-+ return bfqg;
-+}
-+#endif
-diff --git a/block/bfq-ioc.c b/block/bfq-ioc.c
-new file mode 100644
-index 000000000000..fb7bb8f08b75
---- /dev/null
-+++ b/block/bfq-ioc.c
-@@ -0,0 +1,36 @@
-+/*
-+ * BFQ: I/O context handling.
-+ *
-+ * Based on ideas and code from CFQ:
-+ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
-+ *
-+ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
-+ * Paolo Valente <paolo.valente@unimore.it>
-+ *
-+ * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
-+ */
-+
-+/**
-+ * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
-+ * @icq: the iocontext queue.
-+ */
-+static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
-+{
-+ /* bic->icq is the first member, %NULL will convert to %NULL */
-+ return container_of(icq, struct bfq_io_cq, icq);
-+}
-+
-+/**
-+ * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
-+ * @bfqd: the lookup key.
-+ * @ioc: the io_context of the process doing I/O.
-+ *
-+ * Queue lock must be held.
-+ */
-+static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
-+ struct io_context *ioc)
-+{
-+ if (ioc)
-+ return icq_to_bic(ioc_lookup_icq(ioc, bfqd->queue));
-+ return NULL;
-+}
-diff --git a/block/bfq-mq-iosched.c b/block/bfq-mq-iosched.c
-new file mode 100644
-index 000000000000..47a49d9e6512
---- /dev/null
-+++ b/block/bfq-mq-iosched.c
-@@ -0,0 +1,6548 @@
-+/*
-+ * Budget Fair Queueing (BFQ) I/O scheduler.
-+ *
-+ * Based on ideas and code from CFQ:
-+ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
-+ *
-+ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
-+ * Paolo Valente <paolo.valente@unimore.it>
-+ *
-+ * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
-+ *
-+ * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
-+ *
-+ * Licensed under the GPL-2 as detailed in the accompanying COPYING.BFQ
-+ * file.
-+ *
-+ * BFQ is a proportional-share I/O scheduler, with some extra
-+ * low-latency capabilities. BFQ also supports full hierarchical
-+ * scheduling through cgroups. Next paragraphs provide an introduction
-+ * on BFQ inner workings. Details on BFQ benefits and usage can be
-+ * found in Documentation/block/bfq-iosched.txt.
-+ *
-+ * BFQ is a proportional-share storage-I/O scheduling algorithm based
-+ * on the slice-by-slice service scheme of CFQ. But BFQ assigns
-+ * budgets, measured in number of sectors, to processes instead of
-+ * time slices. The device is not granted to the in-service process
-+ * for a given time slice, but until it has exhausted its assigned
-+ * budget. This change from the time to the service domain enables BFQ
-+ * to distribute the device throughput among processes as desired,
-+ * without any distortion due to throughput fluctuations, or to device
-+ * internal queueing. BFQ uses an ad hoc internal scheduler, called
-+ * B-WF2Q+, to schedule processes according to their budgets. More
-+ * precisely, BFQ schedules queues associated with processes. Thanks to
-+ * the accurate policy of B-WF2Q+, BFQ can afford to assign high
-+ * budgets to I/O-bound processes issuing sequential requests (to
-+ * boost the throughput), and yet guarantee a low latency to
-+ * interactive and soft real-time applications.
-+ *
-+ * In particular, BFQ schedules I/O so as to achieve the latter goal--
-+ * low latency for interactive and soft real-time applications--if the
-+ * low_latency parameter is set (default configuration). To this
-+ * purpose, BFQ constantly tries to detect whether the I/O requests in
-+ * a bfq_queue come from an interactive or a soft real-time
-+ * application. For brevity, in these cases, the queue is said to be
-+ * interactive or soft real-time. In both cases, BFQ privileges the
-+ * service of the queue, over that of non-interactive and
-+ * non-soft-real-time queues. This privileging is performed, mainly,
-+ * by raising the weight of the queue. So, for brevity, we call just
-+ * weight-raising periods the time periods during which a queue is
-+ * privileged, because deemed interactive or soft real-time.
-+ *
-+ * The detection of soft real-time queues/applications is described in
-+ * detail in the comments on the function
-+ * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
-+ * interactive queue works as follows: a queue is deemed interactive
-+ * if it is constantly non empty only for a limited time interval,
-+ * after which it does become empty. The queue may be deemed
-+ * interactive again (for a limited time), if it restarts being
-+ * constantly non empty, provided that this happens only after the
-+ * queue has remained empty for a given minimum idle time.
-+ *
-+ * By default, BFQ computes automatically the above maximum time
-+ * interval, i.e., the time interval after which a constantly
-+ * non-empty queue stops being deemed interactive. Since a queue is
-+ * weight-raised while it is deemed interactive, this maximum time
-+ * interval happens to coincide with the (maximum) duration of the
-+ * weight-raising for interactive queues.
-+ *
-+ * NOTE: if the main or only goal, with a given device, is to achieve
-+ * the maximum-possible throughput at all times, then do switch off
-+ * all low-latency heuristics for that device, by setting low_latency
-+ * to 0.
-+ *
-+ * BFQ is described in [1], where also a reference to the initial,
-+ * more theoretical paper on BFQ can be found. The interested reader
-+ * can find in the latter paper full details on the main algorithm, as
-+ * well as formulas of the guarantees and formal proofs of all the
-+ * properties. With respect to the version of BFQ presented in these
-+ * papers, this implementation adds a few more heuristics, such as the
-+ * one that guarantees a low latency to soft real-time applications,
-+ * and a hierarchical extension based on H-WF2Q+.
-+ *
-+ * B-WF2Q+ is based on WF2Q+, that is described in [2], together with
-+ * H-WF2Q+, while the augmented tree used to implement B-WF2Q+ with O(log N)
-+ * complexity derives from the one introduced with EEVDF in [3].
-+ *
-+ * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
-+ * Scheduler", Proceedings of the First Workshop on Mobile System
-+ * Technologies (MST-2015), May 2015.
-+ * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
-+ *
-+ * http://algogroup.unimo.it/people/paolo/disk_sched/bf1-v1-suite-results.pdf
-+ *
-+ * [2] Jon C.R. Bennett and H. Zhang, ``Hierarchical Packet Fair Queueing
-+ * Algorithms,'' IEEE/ACM Transactions on Networking, 5(5):675-689,
-+ * Oct 1997.
-+ *
-+ * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
-+ *
-+ * [3] I. Stoica and H. Abdel-Wahab, ``Earliest Eligible Virtual Deadline
-+ * First: A Flexible and Accurate Mechanism for Proportional Share
-+ * Resource Allocation,'' technical report.
-+ *
-+ * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
-+ */
-+#include <linux/module.h>
-+#include <linux/slab.h>
-+#include <linux/blkdev.h>
-+#include <linux/cgroup.h>
-+#include <linux/elevator.h>
-+#include <linux/jiffies.h>
-+#include <linux/rbtree.h>
-+#include <linux/ioprio.h>
-+#include <linux/sbitmap.h>
-+#include <linux/delay.h>
-+
-+#include "blk.h"
-+#include "blk-mq.h"
-+#include "blk-mq-tag.h"
-+#include "blk-mq-sched.h"
-+#include "bfq-mq.h"
-+#include "blk-wbt.h"
-+
-+/* Expiration time of sync (0) and async (1) requests, in ns. */
-+static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
-+
-+/* Maximum backwards seek, in KiB. */
-+static const int bfq_back_max = (16 * 1024);
-+
-+/* Penalty of a backwards seek, in number of sectors. */
-+static const int bfq_back_penalty = 2;
-+
-+/* Idling period duration, in ns. */
-+static u32 bfq_slice_idle = (NSEC_PER_SEC / 125);
-+
-+/* Minimum number of assigned budgets for which stats are safe to compute. */
-+static const int bfq_stats_min_budgets = 194;
-+
-+/* Default maximum budget values, in sectors and number of requests. */
-+static const int bfq_default_max_budget = (16 * 1024);
-+
-+/*
-+ * When a sync request is dispatched, the queue that contains that
-+ * request, and all the ancestor entities of that queue, are charged
-+ * with the number of sectors of the request. In constrast, if the
-+ * request is async, then the queue and its ancestor entities are
-+ * charged with the number of sectors of the request, multiplied by
-+ * the factor below. This throttles the bandwidth for async I/O,
-+ * w.r.t. to sync I/O, and it is done to counter the tendency of async
-+ * writes to steal I/O throughput to reads.
-+ *
-+ * The current value of this parameter is the result of a tuning with
-+ * several hardware and software configurations. We tried to find the
-+ * lowest value for which writes do not cause noticeable problems to
-+ * reads. In fact, the lower this parameter, the stabler I/O control,
-+ * in the following respect. The lower this parameter is, the less
-+ * the bandwidth enjoyed by a group decreases
-+ * - when the group does writes, w.r.t. to when it does reads;
-+ * - when other groups do reads, w.r.t. to when they do writes.
-+ */
-+static const int bfq_async_charge_factor = 3;
-+
-+/* Default timeout values, in jiffies, approximating CFQ defaults. */
-+static const int bfq_timeout = (HZ / 8);
-+
-+/*
-+ * Time limit for merging (see comments in bfq_setup_cooperator). Set
-+ * to the slowest value that, in our tests, proved to be effective in
-+ * removing false positives, while not causing true positives to miss
-+ * queue merging.
-+ *
-+ * As can be deduced from the low time limit below, queue merging, if
-+ * successful, happens at the very beggining of the I/O of the involved
-+ * cooperating processes, as a consequence of the arrival of the very
-+ * first requests from each cooperator. After that, there is very
-+ * little chance to find cooperators.
-+ */
-+static const unsigned long bfq_merge_time_limit = HZ/10;
-+
-+#define MAX_LENGTH_REASON_NAME 25
-+
-+static const char reason_name[][MAX_LENGTH_REASON_NAME] = {"TOO_IDLE",
-+"BUDGET_TIMEOUT", "BUDGET_EXHAUSTED", "NO_MORE_REQUESTS",
-+"PREEMPTED"};
-+
-+static struct kmem_cache *bfq_pool;
-+
-+/* Below this threshold (in ns), we consider thinktime immediate. */
-+#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
-+
-+/* hw_tag detection: parallel requests threshold and min samples needed. */
-+#define BFQ_HW_QUEUE_THRESHOLD 3
-+#define BFQ_HW_QUEUE_SAMPLES 32
-+
-+#define BFQQ_SEEK_THR (sector_t)(8 * 100)
-+#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
-+#define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
-+ (get_sdist(last_pos, rq) > \
-+ BFQQ_SEEK_THR && \
-+ (!blk_queue_nonrot(bfqd->queue) || \
-+ blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
-+#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
-+#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 19)
-+
-+/* Min number of samples required to perform peak-rate update */
-+#define BFQ_RATE_MIN_SAMPLES 32
-+/* Min observation time interval required to perform a peak-rate update (ns) */
-+#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
-+/* Target observation time interval for a peak-rate update (ns) */
-+#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
-+
-+/*
-+ * Shift used for peak-rate fixed precision calculations.
-+ * With
-+ * - the current shift: 16 positions
-+ * - the current type used to store rate: u32
-+ * - the current unit of measure for rate: [sectors/usec], or, more precisely,
-+ * [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
-+ * the range of rates that can be stored is
-+ * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
-+ * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
-+ * [15, 65G] sectors/sec
-+ * Which, assuming a sector size of 512B, corresponds to a range of
-+ * [7.5K, 33T] B/sec
-+ */
-+#define BFQ_RATE_SHIFT 16
-+
-+/*
-+ * When configured for computing the duration of the weight-raising
-+ * for interactive queues automatically (see the comments at the
-+ * beginning of this file), BFQ does it using the following formula:
-+ * duration = (ref_rate / r) * ref_wr_duration,
-+ * where r is the peak rate of the device, and ref_rate and
-+ * ref_wr_duration are two reference parameters. In particular,
-+ * ref_rate is the peak rate of the reference storage device (see
-+ * below), and ref_wr_duration is about the maximum time needed, with
-+ * BFQ and while reading two files in parallel, to load typical large
-+ * applications on the reference device (see the comments on
-+ * max_service_from_wr below, for more details on how ref_wr_duration
-+ * is obtained). In practice, the slower/faster the device at hand
-+ * is, the more/less it takes to load applications with respect to the
-+ * reference device. Accordingly, the longer/shorter BFQ grants
-+ * weight raising to interactive applications.
-+ *
-+ * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
-+ * depending on whether the device is rotational or non-rotational.
-+ *
-+ * In the following definitions, ref_rate[0] and ref_wr_duration[0]
-+ * are the reference values for a rotational device, whereas
-+ * ref_rate[1] and ref_wr_duration[1] are the reference values for a
-+ * non-rotational device. The reference rates are not the actual peak
-+ * rates of the devices used as a reference, but slightly lower
-+ * values. The reason for using slightly lower values is that the
-+ * peak-rate estimator tends to yield slightly lower values than the
-+ * actual peak rate (it can yield the actual peak rate only if there
-+ * is only one process doing I/O, and the process does sequential
-+ * I/O).
-+ *
-+ * The reference peak rates are measured in sectors/usec, left-shifted
-+ * by BFQ_RATE_SHIFT.
-+ */
-+static int ref_rate[2] = {14000, 33000};
-+/*
-+ * To improve readability, a conversion function is used to initialize
-+ * the following array, which entails that the array can be
-+ * initialized only in a function.
-+ */
-+static int ref_wr_duration[2];
-+
-+/*
-+ * BFQ uses the above-detailed, time-based weight-raising mechanism to
-+ * privilege interactive tasks. This mechanism is vulnerable to the
-+ * following false positives: I/O-bound applications that will go on
-+ * doing I/O for much longer than the duration of weight
-+ * raising. These applications have basically no benefit from being
-+ * weight-raised at the beginning of their I/O. On the opposite end,
-+ * while being weight-raised, these applications
-+ * a) unjustly steal throughput to applications that may actually need
-+ * low latency;
-+ * b) make BFQ uselessly perform device idling; device idling results
-+ * in loss of device throughput with most flash-based storage, and may
-+ * increase latencies when used purposelessly.
-+ *
-+ * BFQ tries to reduce these problems, by adopting the following
-+ * countermeasure. To introduce this countermeasure, we need first to
-+ * finish explaining how the duration of weight-raising for
-+ * interactive tasks is computed.
-+ *
-+ * For a bfq_queue deemed as interactive, the duration of weight
-+ * raising is dynamically adjusted, as a function of the estimated
-+ * peak rate of the device, so as to be equal to the time needed to
-+ * execute the 'largest' interactive task we benchmarked so far. By
-+ * largest task, we mean the task for which each involved process has
-+ * to do more I/O than for any of the other tasks we benchmarked. This
-+ * reference interactive task is the start-up of LibreOffice Writer,
-+ * and in this task each process/bfq_queue needs to have at most ~110K
-+ * sectors transferred.
-+ *
-+ * This last piece of information enables BFQ to reduce the actual
-+ * duration of weight-raising for at least one class of I/O-bound
-+ * applications: those doing sequential or quasi-sequential I/O. An
-+ * example is file copy. In fact, once started, the main I/O-bound
-+ * processes of these applications usually consume the above 110K
-+ * sectors in much less time than the processes of an application that
-+ * is starting, because these I/O-bound processes will greedily devote
-+ * almost all their CPU cycles only to their target,
-+ * throughput-friendly I/O operations. This is even more true if BFQ
-+ * happens to be underestimating the device peak rate, and thus
-+ * overestimating the duration of weight raising. But, according to
-+ * our measurements, once transferred 110K sectors, these processes
-+ * have no right to be weight-raised any longer.
-+ *
-+ * Basing on the last consideration, BFQ ends weight-raising for a
-+ * bfq_queue if the latter happens to have received an amount of
-+ * service at least equal to the following constant. The constant is
-+ * set to slightly more than 110K, to have a minimum safety margin.
-+ *
-+ * This early ending of weight-raising reduces the amount of time
-+ * during which interactive false positives cause the two problems
-+ * described at the beginning of these comments.
-+ */
-+static const unsigned long max_service_from_wr = 120000;
-+
-+#define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \
-+ { RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 })
-+
-+#define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
-+#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
-+
-+/**
-+ * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
-+ * @icq: the iocontext queue.
-+ */
-+static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
-+{
-+ /* bic->icq is the first member, %NULL will convert to %NULL */
-+ return container_of(icq, struct bfq_io_cq, icq);
-+}
-+
-+/**
-+ * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
-+ * @bfqd: the lookup key.
-+ * @ioc: the io_context of the process doing I/O.
-+ * @q: the request queue.
-+ */
-+static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
-+ struct io_context *ioc,
-+ struct request_queue *q)
-+{
-+ if (ioc) {
-+ unsigned long flags;
-+ struct bfq_io_cq *icq;
-+
-+ spin_lock_irqsave(q->queue_lock, flags);
-+ icq = icq_to_bic(ioc_lookup_icq(ioc, q));
-+ spin_unlock_irqrestore(q->queue_lock, flags);
-+
-+ return icq;
-+ }
-+
-+ return NULL;
-+}
-+
-+/*
-+ * Scheduler run of queue, if there are requests pending and no one in the
-+ * driver that will restart queueing.
-+ */
-+static void bfq_schedule_dispatch(struct bfq_data *bfqd)
-+{
-+ if (bfqd->queued != 0) {
-+ bfq_log(bfqd, "");
-+ blk_mq_run_hw_queues(bfqd->queue, true);
-+ }
-+}
-+
-+#define BFQ_MQ
-+#include "bfq-sched.c"
-+#include "bfq-cgroup-included.c"
-+
-+#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
-+#define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
-+
-+#define bfq_sample_valid(samples) ((samples) > 80)
-+
-+/*
-+ * Lifted from AS - choose which of rq1 and rq2 that is best served now.
-+ * We choose the request that is closesr to the head right now. Distance
-+ * behind the head is penalized and only allowed to a certain extent.
-+ */
-+static struct request *bfq_choose_req(struct bfq_data *bfqd,
-+ struct request *rq1,
-+ struct request *rq2,
-+ sector_t last)
-+{
-+ sector_t s1, s2, d1 = 0, d2 = 0;
-+ unsigned long back_max;
-+#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
-+#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
-+ unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
-+
-+ if (!rq1 || rq1 == rq2)
-+ return rq2;
-+ if (!rq2)
-+ return rq1;
-+
-+ if (rq_is_sync(rq1) && !rq_is_sync(rq2))
-+ return rq1;
-+ else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
-+ return rq2;
-+ if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
-+ return rq1;
-+ else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
-+ return rq2;
-+
-+ s1 = blk_rq_pos(rq1);
-+ s2 = blk_rq_pos(rq2);
-+
-+ /*
-+ * By definition, 1KiB is 2 sectors.
-+ */
-+ back_max = bfqd->bfq_back_max * 2;
-+
-+ /*
-+ * Strict one way elevator _except_ in the case where we allow
-+ * short backward seeks which are biased as twice the cost of a
-+ * similar forward seek.
-+ */
-+ if (s1 >= last)
-+ d1 = s1 - last;
-+ else if (s1 + back_max >= last)
-+ d1 = (last - s1) * bfqd->bfq_back_penalty;
-+ else
-+ wrap |= BFQ_RQ1_WRAP;
-+
-+ if (s2 >= last)
-+ d2 = s2 - last;
-+ else if (s2 + back_max >= last)
-+ d2 = (last - s2) * bfqd->bfq_back_penalty;
-+ else
-+ wrap |= BFQ_RQ2_WRAP;
-+
-+ /* Found required data */
-+
-+ /*
-+ * By doing switch() on the bit mask "wrap" we avoid having to
-+ * check two variables for all permutations: --> faster!
-+ */
-+ switch (wrap) {
-+ case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
-+ if (d1 < d2)
-+ return rq1;
-+ else if (d2 < d1)
-+ return rq2;
-+
-+ if (s1 >= s2)
-+ return rq1;
-+ else
-+ return rq2;
-+
-+ case BFQ_RQ2_WRAP:
-+ return rq1;
-+ case BFQ_RQ1_WRAP:
-+ return rq2;
-+ case (BFQ_RQ1_WRAP|BFQ_RQ2_WRAP): /* both rqs wrapped */
-+ default:
-+ /*
-+ * Since both rqs are wrapped,
-+ * start with the one that's further behind head
-+ * (--> only *one* back seek required),
-+ * since back seek takes more time than forward.
-+ */
-+ if (s1 <= s2)
-+ return rq1;
-+ else
-+ return rq2;
-+ }
-+}
-+
-+/*
-+ * Async I/O can easily starve sync I/O (both sync reads and sync
-+ * writes), by consuming all tags. Similarly, storms of sync writes,
-+ * such as those that sync(2) may trigger, can starve sync reads.
-+ * Limit depths of async I/O and sync writes so as to counter both
-+ * problems.
-+ */
-+static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
-+{
-+ struct bfq_data *bfqd = data->q->elevator->elevator_data;
-+
-+ if (op_is_sync(op) && !op_is_write(op))
-+ return;
-+
-+ data->shallow_depth =
-+ bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
-+
-+ bfq_log(bfqd, "wr_busy %d sync %d depth %u",
-+ bfqd->wr_busy_queues, op_is_sync(op),
-+ data->shallow_depth);
-+}
-+
-+static struct bfq_queue *
-+bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
-+ sector_t sector, struct rb_node **ret_parent,
-+ struct rb_node ***rb_link)
-+{
-+ struct rb_node **p, *parent;
-+ struct bfq_queue *bfqq = NULL;
-+
-+ parent = NULL;
-+ p = &root->rb_node;
-+ while (*p) {
-+ struct rb_node **n;
-+
-+ parent = *p;
-+ bfqq = rb_entry(parent, struct bfq_queue, pos_node);
-+
-+ /*
-+ * Sort strictly based on sector. Smallest to the left,
-+ * largest to the right.
-+ */
-+ if (sector > blk_rq_pos(bfqq->next_rq))
-+ n = &(*p)->rb_right;
-+ else if (sector < blk_rq_pos(bfqq->next_rq))
-+ n = &(*p)->rb_left;
-+ else
-+ break;
-+ p = n;
-+ bfqq = NULL;
-+ }
-+
-+ *ret_parent = parent;
-+ if (rb_link)
-+ *rb_link = p;
-+
-+ bfq_log(bfqd, "%llu: returning %d",
-+ (unsigned long long) sector,
-+ bfqq ? bfqq->pid : 0);
-+
-+ return bfqq;
-+}
-+
-+static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
-+{
-+ return bfqq->service_from_backlogged > 0 &&
-+ time_is_before_jiffies(bfqq->first_IO_time +
-+ bfq_merge_time_limit);
-+}
-+
-+static void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
-+{
-+ struct rb_node **p, *parent;
-+ struct bfq_queue *__bfqq;
-+
-+ if (bfqq->pos_root) {
-+ rb_erase(&bfqq->pos_node, bfqq->pos_root);
-+ bfqq->pos_root = NULL;
-+ }
-+
-+ /*
-+ * bfqq cannot be merged any longer (see comments in
-+ * bfq_setup_cooperator): no point in adding bfqq into the
-+ * position tree.
-+ */
-+ if (bfq_too_late_for_merging(bfqq))
-+ return;
-+
-+ if (bfq_class_idle(bfqq))
-+ return;
-+ if (!bfqq->next_rq)
-+ return;
-+
-+ bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
-+ __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
-+ blk_rq_pos(bfqq->next_rq), &parent, &p);
-+ if (!__bfqq) {
-+ rb_link_node(&bfqq->pos_node, parent, p);
-+ rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
-+ } else
-+ bfqq->pos_root = NULL;
-+}
-+
-+/*
-+ * The following function returns true if every queue must receive the
-+ * same share of the throughput (this condition is used when deciding
-+ * whether idling may be disabled, see the comments in the function
-+ * bfq_better_to_idle()).
-+ *
-+ * Such a scenario occurs when:
-+ * 1) all active queues have the same weight,
-+ * 2) all active queues belong to the same I/O-priority class,
-+ * 3) all active groups at the same level in the groups tree have the same
-+ * weight,
-+ * 4) all active groups at the same level in the groups tree have the same
-+ * number of children.
-+ *
-+ * Unfortunately, keeping the necessary state for evaluating exactly
-+ * the last two symmetry sub-conditions above would be quite complex
-+ * and time consuming. Therefore this function evaluates, instead,
-+ * only the following stronger three sub-conditions, for which it is
-+ * much easier to maintain the needed state:
-+ * 1) all active queues have the same weight,
-+ * 2) all active queues belong to the same I/O-priority class,
-+ * 3) there are no active groups.
-+ * In particular, the last condition is always true if hierarchical
-+ * support or the cgroups interface are not enabled, thus no state
-+ * needs to be maintained in this case.
-+ */
-+static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
-+{
-+ /*
-+ * For queue weights to differ, queue_weights_tree must contain
-+ * at least two nodes.
-+ */
-+ bool varied_queue_weights = !RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
-+ (bfqd->queue_weights_tree.rb_node->rb_left ||
-+ bfqd->queue_weights_tree.rb_node->rb_right);
-+
-+ bool multiple_classes_busy =
-+ (bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
-+ (bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
-+ (bfqd->busy_queues[1] && bfqd->busy_queues[2]);
-+
-+ bfq_log(bfqd, "varied_queue_weights %d mul_classes %d",
-+ varied_queue_weights, multiple_classes_busy);
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ bfq_log(bfqd, "num_groups_with_pending_reqs %u",
-+ bfqd->num_groups_with_pending_reqs);
-+#endif
-+
-+ return !(varied_queue_weights || multiple_classes_busy
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ || bfqd->num_groups_with_pending_reqs > 0
-+#endif
-+ );
-+}
-+
-+/*
-+ * If the weight-counter tree passed as input contains no counter for
-+ * the weight of the input queue, then add that counter; otherwise just
-+ * increment the existing counter.
-+ *
-+ * Note that weight-counter trees contain few nodes in mostly symmetric
-+ * scenarios. For example, if all queues have the same weight, then the
-+ * weight-counter tree for the queues may contain at most one node.
-+ * This holds even if low_latency is on, because weight-raised queues
-+ * are not inserted in the tree.
-+ * In most scenarios, the rate at which nodes are created/destroyed
-+ * should be low too.
-+ */
-+static void bfq_weights_tree_add(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ struct rb_root *root)
-+{
-+ struct bfq_entity *entity = &bfqq->entity;
-+ struct rb_node **new = &(root->rb_node), *parent = NULL;
-+
-+ /*
-+ * Do not insert if the queue is already associated with a
-+ * counter, which happens if:
-+ * 1) a request arrival has caused the queue to become both
-+ * non-weight-raised, and hence change its weight, and
-+ * backlogged; in this respect, each of the two events
-+ * causes an invocation of this function,
-+ * 2) this is the invocation of this function caused by the
-+ * second event. This second invocation is actually useless,
-+ * and we handle this fact by exiting immediately. More
-+ * efficient or clearer solutions might possibly be adopted.
-+ */
-+ if (bfqq->weight_counter)
-+ return;
-+
-+ while (*new) {
-+ struct bfq_weight_counter *__counter = container_of(*new,
-+ struct bfq_weight_counter,
-+ weights_node);
-+ parent = *new;
-+
-+ if (entity->weight == __counter->weight) {
-+ bfqq->weight_counter = __counter;
-+ goto inc_counter;
-+ }
-+ if (entity->weight < __counter->weight)
-+ new = &((*new)->rb_left);
-+ else
-+ new = &((*new)->rb_right);
-+ }
-+
-+ bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
-+ GFP_ATOMIC);
-+
-+ /*
-+ * In the unlucky event of an allocation failure, we just
-+ * exit. This will cause the weight of queue to not be
-+ * considered in bfq_symmetric_scenario, which, in its turn,
-+ * causes the scenario to be deemed wrongly symmetric in case
-+ * bfqq's weight would have been the only weight making the
-+ * scenario asymmetric. On the bright side, no unbalance will
-+ * however occur when bfqq becomes inactive again (the
-+ * invocation of this function is triggered by an activation
-+ * of queue). In fact, bfq_weights_tree_remove does nothing
-+ * if !bfqq->weight_counter.
-+ */
-+ if (unlikely(!bfqq->weight_counter))
-+ return;
-+
-+ bfqq->weight_counter->weight = entity->weight;
-+ rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
-+ rb_insert_color(&bfqq->weight_counter->weights_node, root);
-+
-+inc_counter:
-+ bfqq->weight_counter->num_active++;
-+ bfqq->ref++;
-+
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "refs %d weight %d symmetric %d",
-+ bfqq->ref,
-+ entity->weight,
-+ bfq_symmetric_scenario(bfqd));
-+}
-+
-+/*
-+ * Decrement the weight counter associated with the queue, and, if the
-+ * counter reaches 0, remove the counter from the tree.
-+ * See the comments to the function bfq_weights_tree_add() for considerations
-+ * about overhead.
-+ */
-+static void __bfq_weights_tree_remove(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ struct rb_root *root)
-+{
-+ struct bfq_entity *entity = &bfqq->entity;
-+
-+ if (!bfqq->weight_counter)
-+ return;
-+
-+ BUG_ON(RB_EMPTY_ROOT(root));
-+ BUG_ON(bfqq->weight_counter->weight != entity->weight);
-+
-+ BUG_ON(!bfqq->weight_counter->num_active);
-+ bfqq->weight_counter->num_active--;
-+
-+ if (bfqq->weight_counter->num_active > 0)
-+ goto reset_entity_pointer;
-+
-+ rb_erase(&bfqq->weight_counter->weights_node, root);
-+ kfree(bfqq->weight_counter);
-+
-+reset_entity_pointer:
-+ bfqq->weight_counter = NULL;
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "refs %d weight %d symmetric %d",
-+ bfqq->ref,
-+ entity->weight,
-+ bfq_symmetric_scenario(bfqd));
-+ bfq_put_queue(bfqq);
-+}
-+
-+/*
-+ * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
-+ * of active groups for each queue's inactive parent entity.
-+ */
-+static void bfq_weights_tree_remove(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ struct bfq_entity *entity = bfqq->entity.parent;
-+
-+ for_each_entity(entity) {
-+ struct bfq_sched_data *sd = entity->my_sched_data;
-+
-+ BUG_ON(entity->sched_data == NULL); /*
-+ * It would mean
-+ * that this is
-+ * the root group.
-+ */
-+
-+ if (sd->next_in_service || sd->in_service_entity) {
-+ BUG_ON(!entity->in_groups_with_pending_reqs);
-+ /*
-+ * entity is still active, because either
-+ * next_in_service or in_service_entity is not
-+ * NULL (see the comments on the definition of
-+ * next_in_service for details on why
-+ * in_service_entity must be checked too).
-+ *
-+ * As a consequence, its parent entities are
-+ * active as well, and thus this loop must
-+ * stop here.
-+ */
-+ break;
-+ }
-+
-+ BUG_ON(!bfqd->num_groups_with_pending_reqs &&
-+ entity->in_groups_with_pending_reqs);
-+ /*
-+ * The decrement of num_groups_with_pending_reqs is
-+ * not performed immediately upon the deactivation of
-+ * entity, but it is delayed to when it also happens
-+ * that the first leaf descendant bfqq of entity gets
-+ * all its pending requests completed. The following
-+ * instructions perform this delayed decrement, if
-+ * needed. See the comments on
-+ * num_groups_with_pending_reqs for details.
-+ */
-+ if (entity->in_groups_with_pending_reqs) {
-+ entity->in_groups_with_pending_reqs = false;
-+ bfqd->num_groups_with_pending_reqs--;
-+ }
-+ bfq_log_bfqq(bfqd, bfqq, "num_groups_with_pending_reqs %u",
-+ bfqd->num_groups_with_pending_reqs);
-+ }
-+
-+ /*
-+ * Next function is invoked last, because it causes bfqq to be
-+ * freed if the following holds: bfqq is not in service and
-+ * has no dispatched request. DO NOT use bfqq after the next
-+ * function invocation.
-+ */
-+ __bfq_weights_tree_remove(bfqd, bfqq,
-+ &bfqd->queue_weights_tree);
-+}
-+
-+/*
-+ * Return expired entry, or NULL to just start from scratch in rbtree.
-+ */
-+static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
-+ struct request *last)
-+{
-+ struct request *rq;
-+
-+ if (bfq_bfqq_fifo_expire(bfqq))
-+ return NULL;
-+
-+ bfq_mark_bfqq_fifo_expire(bfqq);
-+
-+ rq = rq_entry_fifo(bfqq->fifo.next);
-+
-+ if (rq == last || ktime_get_ns() < rq->fifo_time)
-+ return NULL;
-+
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "returned %p", rq);
-+ BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
-+ return rq;
-+}
-+
-+static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ struct request *last)
-+{
-+ struct rb_node *rbnext = rb_next(&last->rb_node);
-+ struct rb_node *rbprev = rb_prev(&last->rb_node);
-+ struct request *next, *prev = NULL;
-+
-+ BUG_ON(list_empty(&bfqq->fifo));
-+
-+ /* Follow expired path, else get first next available. */
-+ next = bfq_check_fifo(bfqq, last);
-+ if (next) {
-+ BUG_ON(next == last);
-+ return next;
-+ }
-+
-+ BUG_ON(RB_EMPTY_NODE(&last->rb_node));
-+
-+ if (rbprev)
-+ prev = rb_entry_rq(rbprev);
-+
-+ if (rbnext)
-+ next = rb_entry_rq(rbnext);
-+ else {
-+ rbnext = rb_first(&bfqq->sort_list);
-+ if (rbnext && rbnext != &last->rb_node)
-+ next = rb_entry_rq(rbnext);
-+ }
-+
-+ return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
-+}
-+
-+/* see the definition of bfq_async_charge_factor for details */
-+static unsigned long bfq_serv_to_charge(struct request *rq,
-+ struct bfq_queue *bfqq)
-+{
-+ if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
-+ !bfq_symmetric_scenario(bfqq->bfqd))
-+ return blk_rq_sectors(rq);
-+
-+ return blk_rq_sectors(rq) * bfq_async_charge_factor;
-+}
-+
-+/**
-+ * bfq_updated_next_req - update the queue after a new next_rq selection.
-+ * @bfqd: the device data the queue belongs to.
-+ * @bfqq: the queue to update.
-+ *
-+ * If the first request of a queue changes we make sure that the queue
-+ * has enough budget to serve at least its first request (if the
-+ * request has grown). We do this because if the queue has not enough
-+ * budget for its first request, it has to go through two dispatch
-+ * rounds to actually get it dispatched.
-+ */
-+static void bfq_updated_next_req(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ struct bfq_entity *entity = &bfqq->entity;
-+ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
-+ struct request *next_rq = bfqq->next_rq;
-+ unsigned long new_budget;
-+
-+ if (!next_rq)
-+ return;
-+
-+ if (bfqq == bfqd->in_service_queue)
-+ /*
-+ * In order not to break guarantees, budgets cannot be
-+ * changed after an entity has been selected.
-+ */
-+ return;
-+
-+ BUG_ON(entity->tree != &st->active);
-+ BUG_ON(entity == entity->sched_data->in_service_entity);
-+
-+ new_budget = max_t(unsigned long,
-+ max_t(unsigned long, bfqq->max_budget,
-+ bfq_serv_to_charge(next_rq, bfqq)),
-+ entity->service);
-+ if (entity->budget != new_budget) {
-+ entity->budget = new_budget;
-+ bfq_log_bfqq(bfqd, bfqq, "new budget %lu",
-+ new_budget);
-+ bfq_requeue_bfqq(bfqd, bfqq, false);
-+ }
-+}
-+
-+static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
-+{
-+ u64 dur;
-+
-+ if (bfqd->bfq_wr_max_time > 0)
-+ return bfqd->bfq_wr_max_time;
-+
-+ dur = bfqd->rate_dur_prod;
-+ do_div(dur, bfqd->peak_rate);
-+
-+ /*
-+ * Limit duration between 3 and 25 seconds. The upper limit
-+ * has been conservatively set after the following worst case:
-+ * on a QEMU/KVM virtual machine
-+ * - running in a slow PC
-+ * - with a virtual disk stacked on a slow low-end 5400rpm HDD
-+ * - serving a heavy I/O workload, such as the sequential reading
-+ * of several files
-+ * mplayer took 23 seconds to start, if constantly weight-raised.
-+ *
-+ * As for higher values than that accomodating the above bad
-+ * scenario, tests show that higher values would often yield
-+ * the opposite of the desired result, i.e., would worsen
-+ * responsiveness by allowing non-interactive applications to
-+ * preserve weight raising for too long.
-+ *
-+ * On the other end, lower values than 3 seconds make it
-+ * difficult for most interactive tasks to complete their jobs
-+ * before weight-raising finishes.
-+ */
-+ return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
-+}
-+
-+/* switch back from soft real-time to interactive weight raising */
-+static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
-+ struct bfq_data *bfqd)
-+{
-+ bfqq->wr_coeff = bfqd->bfq_wr_coeff;
-+ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
-+ bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
-+}
-+
-+static void
-+bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
-+ struct bfq_io_cq *bic, bool bfq_already_existing)
-+{
-+ unsigned int old_wr_coeff;
-+ bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
-+
-+ if (bic->saved_has_short_ttime)
-+ bfq_mark_bfqq_has_short_ttime(bfqq);
-+ else
-+ bfq_clear_bfqq_has_short_ttime(bfqq);
-+
-+ if (bic->saved_IO_bound)
-+ bfq_mark_bfqq_IO_bound(bfqq);
-+ else
-+ bfq_clear_bfqq_IO_bound(bfqq);
-+
-+ if (unlikely(busy))
-+ old_wr_coeff = bfqq->wr_coeff;
-+
-+ bfqq->ttime = bic->saved_ttime;
-+ bfqq->wr_coeff = bic->saved_wr_coeff;
-+ bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
-+ BUG_ON(time_is_after_jiffies(bfqq->wr_start_at_switch_to_srt));
-+ bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
-+ bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
-+ BUG_ON(time_is_after_jiffies(bfqq->last_wr_start_finish));
-+
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "bic %p wr_coeff %d start_finish %lu max_time %lu",
-+ bic, bfqq->wr_coeff, bfqq->last_wr_start_finish,
-+ bfqq->wr_cur_max_time);
-+
-+ if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
-+ time_is_before_jiffies(bfqq->last_wr_start_finish +
-+ bfqq->wr_cur_max_time))) {
-+ if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
-+ !bfq_bfqq_in_large_burst(bfqq) &&
-+ time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
-+ bfq_wr_duration(bfqd))) {
-+ switch_back_to_interactive_wr(bfqq, bfqd);
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "switching back to interactive");
-+ } else {
-+ bfqq->wr_coeff = 1;
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "switching off wr (%lu + %lu < %lu)",
-+ bfqq->last_wr_start_finish, bfqq->wr_cur_max_time,
-+ jiffies);
-+ }
-+ }
-+
-+ /* make sure weight will be updated, however we got here */
-+ bfqq->entity.prio_changed = 1;
-+
-+ if (likely(!busy))
-+ return;
-+
-+ if (old_wr_coeff == 1 && bfqq->wr_coeff > 1) {
-+ bfqd->wr_busy_queues++;
-+ BUG_ON(bfqd->wr_busy_queues > bfq_tot_busy_queues(bfqd));
-+ } else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1) {
-+ bfqd->wr_busy_queues--;
-+ BUG_ON(bfqd->wr_busy_queues < 0);
-+ }
-+}
-+
-+static int bfqq_process_refs(struct bfq_queue *bfqq)
-+{
-+ int process_refs, io_refs;
-+
-+ lockdep_assert_held(&bfqq->bfqd->lock);
-+
-+ io_refs = bfqq->allocated;
-+ process_refs = bfqq->ref - io_refs - bfqq->entity.on_st -
-+ (bfqq->weight_counter != NULL);
-+ BUG_ON(process_refs < 0);
-+ return process_refs;
-+}
-+
-+/* Empty burst list and add just bfqq (see comments to bfq_handle_burst) */
-+static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
-+{
-+ struct bfq_queue *item;
-+ struct hlist_node *n;
-+
-+ hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
-+ hlist_del_init(&item->burst_list_node);
-+ hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
-+ bfqd->burst_size = 1;
-+ bfqd->burst_parent_entity = bfqq->entity.parent;
-+}
-+
-+/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
-+static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
-+{
-+ /* Increment burst size to take into account also bfqq */
-+ bfqd->burst_size++;
-+
-+ bfq_log_bfqq(bfqd, bfqq, "%d", bfqd->burst_size);
-+
-+ BUG_ON(bfqd->burst_size > bfqd->bfq_large_burst_thresh);
-+
-+ if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
-+ struct bfq_queue *pos, *bfqq_item;
-+ struct hlist_node *n;
-+
-+ /*
-+ * Enough queues have been activated shortly after each
-+ * other to consider this burst as large.
-+ */
-+ bfqd->large_burst = true;
-+ bfq_log_bfqq(bfqd, bfqq, "large burst started");
-+
-+ /*
-+ * We can now mark all queues in the burst list as
-+ * belonging to a large burst.
-+ */
-+ hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
-+ burst_list_node) {
-+ bfq_mark_bfqq_in_large_burst(bfqq_item);
-+ bfq_log_bfqq(bfqd, bfqq_item, "marked in large burst");
-+ }
-+ bfq_mark_bfqq_in_large_burst(bfqq);
-+ bfq_log_bfqq(bfqd, bfqq, "marked in large burst");
-+
-+ /*
-+ * From now on, and until the current burst finishes, any
-+ * new queue being activated shortly after the last queue
-+ * was inserted in the burst can be immediately marked as
-+ * belonging to a large burst. So the burst list is not
-+ * needed any more. Remove it.
-+ */
-+ hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
-+ burst_list_node)
-+ hlist_del_init(&pos->burst_list_node);
-+ } else /*
-+ * Burst not yet large: add bfqq to the burst list. Do
-+ * not increment the ref counter for bfqq, because bfqq
-+ * is removed from the burst list before freeing bfqq
-+ * in put_queue.
-+ */
-+ hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
-+}
-+
-+/*
-+ * If many queues belonging to the same group happen to be created
-+ * shortly after each other, then the processes associated with these
-+ * queues have typically a common goal. In particular, bursts of queue
-+ * creations are usually caused by services or applications that spawn
-+ * many parallel threads/processes. Examples are systemd during boot,
-+ * or git grep. To help these processes get their job done as soon as
-+ * possible, it is usually better to not grant either weight-raising
-+ * or device idling to their queues.
-+ *
-+ * In this comment we describe, firstly, the reasons why this fact
-+ * holds, and, secondly, the next function, which implements the main
-+ * steps needed to properly mark these queues so that they can then be
-+ * treated in a different way.
-+ *
-+ * The above services or applications benefit mostly from a high
-+ * throughput: the quicker the requests of the activated queues are
-+ * cumulatively served, the sooner the target job of these queues gets
-+ * completed. As a consequence, weight-raising any of these queues,
-+ * which also implies idling the device for it, is almost always
-+ * counterproductive. In most cases it just lowers throughput.
-+ *
-+ * On the other hand, a burst of queue creations may be caused also by
-+ * the start of an application that does not consist of a lot of
-+ * parallel I/O-bound threads. In fact, with a complex application,
-+ * several short processes may need to be executed to start-up the
-+ * application. In this respect, to start an application as quickly as
-+ * possible, the best thing to do is in any case to privilege the I/O
-+ * related to the application with respect to all other
-+ * I/O. Therefore, the best strategy to start as quickly as possible
-+ * an application that causes a burst of queue creations is to
-+ * weight-raise all the queues created during the burst. This is the
-+ * exact opposite of the best strategy for the other type of bursts.
-+ *
-+ * In the end, to take the best action for each of the two cases, the
-+ * two types of bursts need to be distinguished. Fortunately, this
-+ * seems relatively easy, by looking at the sizes of the bursts. In
-+ * particular, we found a threshold such that only bursts with a
-+ * larger size than that threshold are apparently caused by
-+ * services or commands such as systemd or git grep. For brevity,
-+ * hereafter we call just 'large' these bursts. BFQ *does not*
-+ * weight-raise queues whose creation occurs in a large burst. In
-+ * addition, for each of these queues BFQ performs or does not perform
-+ * idling depending on which choice boosts the throughput more. The
-+ * exact choice depends on the device and request pattern at
-+ * hand.
-+ *
-+ * Unfortunately, false positives may occur while an interactive task
-+ * is starting (e.g., an application is being started). The
-+ * consequence is that the queues associated with the task do not
-+ * enjoy weight raising as expected. Fortunately these false positives
-+ * are very rare. They typically occur if some service happens to
-+ * start doing I/O exactly when the interactive task starts.
-+ *
-+ * Turning back to the next function, it implements all the steps
-+ * needed to detect the occurrence of a large burst and to properly
-+ * mark all the queues belonging to it (so that they can then be
-+ * treated in a different way). This goal is achieved by maintaining a
-+ * "burst list" that holds, temporarily, the queues that belong to the
-+ * burst in progress. The list is then used to mark these queues as
-+ * belonging to a large burst if the burst does become large. The main
-+ * steps are the following.
-+ *
-+ * . when the very first queue is created, the queue is inserted into the
-+ * list (as it could be the first queue in a possible burst)
-+ *
-+ * . if the current burst has not yet become large, and a queue Q that does
-+ * not yet belong to the burst is activated shortly after the last time
-+ * at which a new queue entered the burst list, then the function appends
-+ * Q to the burst list
-+ *
-+ * . if, as a consequence of the previous step, the burst size reaches
-+ * the large-burst threshold, then
-+ *
-+ * . all the queues in the burst list are marked as belonging to a
-+ * large burst
-+ *
-+ * . the burst list is deleted; in fact, the burst list already served
-+ * its purpose (keeping temporarily track of the queues in a burst,
-+ * so as to be able to mark them as belonging to a large burst in the
-+ * previous sub-step), and now is not needed any more
-+ *
-+ * . the device enters a large-burst mode
-+ *
-+ * . if a queue Q that does not belong to the burst is created while
-+ * the device is in large-burst mode and shortly after the last time
-+ * at which a queue either entered the burst list or was marked as
-+ * belonging to the current large burst, then Q is immediately marked
-+ * as belonging to a large burst.
-+ *
-+ * . if a queue Q that does not belong to the burst is created a while
-+ * later, i.e., not shortly after, than the last time at which a queue
-+ * either entered the burst list or was marked as belonging to the
-+ * current large burst, then the current burst is deemed as finished and:
-+ *
-+ * . the large-burst mode is reset if set
-+ *
-+ * . the burst list is emptied
-+ *
-+ * . Q is inserted in the burst list, as Q may be the first queue
-+ * in a possible new burst (then the burst list contains just Q
-+ * after this step).
-+ */
-+static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
-+{
-+ /*
-+ * If bfqq is already in the burst list or is part of a large
-+ * burst, or finally has just been split, then there is
-+ * nothing else to do.
-+ */
-+ if (!hlist_unhashed(&bfqq->burst_list_node) ||
-+ bfq_bfqq_in_large_burst(bfqq) ||
-+ time_is_after_eq_jiffies(bfqq->split_time +
-+ msecs_to_jiffies(10)))
-+ return;
-+
-+ /*
-+ * If bfqq's creation happens late enough, or bfqq belongs to
-+ * a different group than the burst group, then the current
-+ * burst is finished, and related data structures must be
-+ * reset.
-+ *
-+ * In this respect, consider the special case where bfqq is
-+ * the very first queue created after BFQ is selected for this
-+ * device. In this case, last_ins_in_burst and
-+ * burst_parent_entity are not yet significant when we get
-+ * here. But it is easy to verify that, whether or not the
-+ * following condition is true, bfqq will end up being
-+ * inserted into the burst list. In particular the list will
-+ * happen to contain only bfqq. And this is exactly what has
-+ * to happen, as bfqq may be the first queue of the first
-+ * burst.
-+ */
-+ if (time_is_before_jiffies(bfqd->last_ins_in_burst +
-+ bfqd->bfq_burst_interval) ||
-+ bfqq->entity.parent != bfqd->burst_parent_entity) {
-+ bfqd->large_burst = false;
-+ bfq_reset_burst_list(bfqd, bfqq);
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "late activation or different group");
-+ goto end;
-+ }
-+
-+ /*
-+ * If we get here, then bfqq is being activated shortly after the
-+ * last queue. So, if the current burst is also large, we can mark
-+ * bfqq as belonging to this large burst immediately.
-+ */
-+ if (bfqd->large_burst) {
-+ bfq_log_bfqq(bfqd, bfqq, "marked in burst");
-+ bfq_mark_bfqq_in_large_burst(bfqq);
-+ goto end;
-+ }
-+
-+ /*
-+ * If we get here, then a large-burst state has not yet been
-+ * reached, but bfqq is being activated shortly after the last
-+ * queue. Then we add bfqq to the burst.
-+ */
-+ bfq_add_to_burst(bfqd, bfqq);
-+end:
-+ /*
-+ * At this point, bfqq either has been added to the current
-+ * burst or has caused the current burst to terminate and a
-+ * possible new burst to start. In particular, in the second
-+ * case, bfqq has become the first queue in the possible new
-+ * burst. In both cases last_ins_in_burst needs to be moved
-+ * forward.
-+ */
-+ bfqd->last_ins_in_burst = jiffies;
-+
-+}
-+
-+static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
-+{
-+ struct bfq_entity *entity = &bfqq->entity;
-+
-+ if (entity->budget < entity->service) {
-+ pr_crit("budget %d service %d\n",
-+ entity->budget, entity->service);
-+ BUG();
-+ }
-+ return entity->budget - entity->service;
-+}
-+
-+/*
-+ * If enough samples have been computed, return the current max budget
-+ * stored in bfqd, which is dynamically updated according to the
-+ * estimated disk peak rate; otherwise return the default max budget
-+ */
-+static int bfq_max_budget(struct bfq_data *bfqd)
-+{
-+ if (bfqd->budgets_assigned < bfq_stats_min_budgets)
-+ return bfq_default_max_budget;
-+ else
-+ return bfqd->bfq_max_budget;
-+}
-+
-+/*
-+ * Return min budget, which is a fraction of the current or default
-+ * max budget (trying with 1/32)
-+ */
-+static int bfq_min_budget(struct bfq_data *bfqd)
-+{
-+ if (bfqd->budgets_assigned < bfq_stats_min_budgets)
-+ return bfq_default_max_budget / 32;
-+ else
-+ return bfqd->bfq_max_budget / 32;
-+}
-+
-+static void bfq_bfqq_expire(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ bool compensate,
-+ enum bfqq_expiration reason);
-+
-+/*
-+ * The next function, invoked after the input queue bfqq switches from
-+ * idle to busy, updates the budget of bfqq. The function also tells
-+ * whether the in-service queue should be expired, by returning
-+ * true. The purpose of expiring the in-service queue is to give bfqq
-+ * the chance to possibly preempt the in-service queue, and the reason
-+ * for preempting the in-service queue is to achieve one of the two
-+ * goals below.
-+ *
-+ * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
-+ * expired because it has remained idle. In particular, bfqq may have
-+ * expired for one of the following two reasons:
-+ *
-+ * - BFQ_BFQQ_NO_MORE_REQUEST bfqq did not enjoy any device idling and
-+ * did not make it to issue a new request before its last request
-+ * was served;
-+ *
-+ * - BFQ_BFQQ_TOO_IDLE bfqq did enjoy device idling, but did not issue
-+ * a new request before the expiration of the idling-time.
-+ *
-+ * Even if bfqq has expired for one of the above reasons, the process
-+ * associated with the queue may be however issuing requests greedily,
-+ * and thus be sensitive to the bandwidth it receives (bfqq may have
-+ * remained idle for other reasons: CPU high load, bfqq not enjoying
-+ * idling, I/O throttling somewhere in the path from the process to
-+ * the I/O scheduler, ...). But if, after every expiration for one of
-+ * the above two reasons, bfqq has to wait for the service of at least
-+ * one full budget of another queue before being served again, then
-+ * bfqq is likely to get a much lower bandwidth or resource time than
-+ * its reserved ones. To address this issue, two countermeasures need
-+ * to be taken.
-+ *
-+ * First, the budget and the timestamps of bfqq need to be updated in
-+ * a special way on bfqq reactivation: they need to be updated as if
-+ * bfqq did not remain idle and did not expire. In fact, if they are
-+ * computed as if bfqq expired and remained idle until reactivation,
-+ * then the process associated with bfqq is treated as if, instead of
-+ * being greedy, it stopped issuing requests when bfqq remained idle,
-+ * and restarts issuing requests only on this reactivation. In other
-+ * words, the scheduler does not help the process recover the "service
-+ * hole" between bfqq expiration and reactivation. As a consequence,
-+ * the process receives a lower bandwidth than its reserved one. In
-+ * contrast, to recover this hole, the budget must be updated as if
-+ * bfqq was not expired at all before this reactivation, i.e., it must
-+ * be set to the value of the remaining budget when bfqq was
-+ * expired. Along the same line, timestamps need to be assigned the
-+ * value they had the last time bfqq was selected for service, i.e.,
-+ * before last expiration. Thus timestamps need to be back-shifted
-+ * with respect to their normal computation (see [1] for more details
-+ * on this tricky aspect).
-+ *
-+ * Secondly, to allow the process to recover the hole, the in-service
-+ * queue must be expired too, to give bfqq the chance to preempt it
-+ * immediately. In fact, if bfqq has to wait for a full budget of the
-+ * in-service queue to be completed, then it may become impossible to
-+ * let the process recover the hole, even if the back-shifted
-+ * timestamps of bfqq are lower than those of the in-service queue. If
-+ * this happens for most or all of the holes, then the process may not
-+ * receive its reserved bandwidth. In this respect, it is worth noting
-+ * that, being the service of outstanding requests unpreemptible, a
-+ * little fraction of the holes may however be unrecoverable, thereby
-+ * causing a little loss of bandwidth.
-+ *
-+ * The last important point is detecting whether bfqq does need this
-+ * bandwidth recovery. In this respect, the next function deems the
-+ * process associated with bfqq greedy, and thus allows it to recover
-+ * the hole, if: 1) the process is waiting for the arrival of a new
-+ * request (which implies that bfqq expired for one of the above two
-+ * reasons), and 2) such a request has arrived soon. The first
-+ * condition is controlled through the flag non_blocking_wait_rq,
-+ * while the second through the flag arrived_in_time. If both
-+ * conditions hold, then the function computes the budget in the
-+ * above-described special way, and signals that the in-service queue
-+ * should be expired. Timestamp back-shifting is done later in
-+ * __bfq_activate_entity.
-+ *
-+ * 2. Reduce latency. Even if timestamps are not backshifted to let
-+ * the process associated with bfqq recover a service hole, bfqq may
-+ * however happen to have, after being (re)activated, a lower finish
-+ * timestamp than the in-service queue. That is, the next budget of
-+ * bfqq may have to be completed before the one of the in-service
-+ * queue. If this is the case, then preempting the in-service queue
-+ * allows this goal to be achieved, apart from the unpreemptible,
-+ * outstanding requests mentioned above.
-+ *
-+ * Unfortunately, regardless of which of the above two goals one wants
-+ * to achieve, service trees need first to be updated to know whether
-+ * the in-service queue must be preempted. To have service trees
-+ * correctly updated, the in-service queue must be expired and
-+ * rescheduled, and bfqq must be scheduled too. This is one of the
-+ * most costly operations (in future versions, the scheduling
-+ * mechanism may be re-designed in such a way to make it possible to
-+ * know whether preemption is needed without needing to update service
-+ * trees). In addition, queue preemptions almost always cause random
-+ * I/O, and thus loss of throughput. Because of these facts, the next
-+ * function adopts the following simple scheme to avoid both costly
-+ * operations and too frequent preemptions: it requests the expiration
-+ * of the in-service queue (unconditionally) only for queues that need
-+ * to recover a hole, or that either are weight-raised or deserve to
-+ * be weight-raised.
-+ */
-+static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ bool arrived_in_time,
-+ bool wr_or_deserves_wr)
-+{
-+ struct bfq_entity *entity = &bfqq->entity;
-+
-+ /*
-+ * In the next compound condition, we check also whether there
-+ * is some budget left, because otherwise there is no point in
-+ * trying to go on serving bfqq with this same budget: bfqq
-+ * would be expired immediately after being selected for
-+ * service. This would only cause useless overhead.
-+ */
-+ if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
-+ bfq_bfqq_budget_left(bfqq) > 0) {
-+ /*
-+ * We do not clear the flag non_blocking_wait_rq here, as
-+ * the latter is used in bfq_activate_bfqq to signal
-+ * that timestamps need to be back-shifted (and is
-+ * cleared right after).
-+ */
-+
-+ /*
-+ * In next assignment we rely on that either
-+ * entity->service or entity->budget are not updated
-+ * on expiration if bfqq is empty (see
-+ * __bfq_bfqq_recalc_budget). Thus both quantities
-+ * remain unchanged after such an expiration, and the
-+ * following statement therefore assigns to
-+ * entity->budget the remaining budget on such an
-+ * expiration.
-+ */
-+ BUG_ON(bfqq->max_budget < 0);
-+ entity->budget = min_t(unsigned long,
-+ bfq_bfqq_budget_left(bfqq),
-+ bfqq->max_budget);
-+
-+ BUG_ON(entity->budget < 0);
-+
-+ /*
-+ * At this point, we have used entity->service to get
-+ * the budget left (needed for updating
-+ * entity->budget). Thus we finally can, and have to,
-+ * reset entity->service. The latter must be reset
-+ * because bfqq would otherwise be charged again for
-+ * the service it has received during its previous
-+ * service slot(s).
-+ */
-+ entity->service = 0;
-+
-+ return true;
-+ }
-+
-+ /*
-+ * We can finally complete expiration, by setting service to 0.
-+ */
-+ entity->service = 0;
-+ BUG_ON(bfqq->max_budget < 0);
-+ entity->budget = max_t(unsigned long, bfqq->max_budget,
-+ bfq_serv_to_charge(bfqq->next_rq, bfqq));
-+ BUG_ON(entity->budget < 0);
-+
-+ bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
-+ return wr_or_deserves_wr;
-+}
-+
-+/*
-+ * Return the farthest past time instant according to jiffies
-+ * macros.
-+ */
-+static unsigned long bfq_smallest_from_now(void)
-+{
-+ return jiffies - MAX_JIFFY_OFFSET;
-+}
-+
-+static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ unsigned int old_wr_coeff,
-+ bool wr_or_deserves_wr,
-+ bool interactive,
-+ bool in_burst,
-+ bool soft_rt)
-+{
-+ if (old_wr_coeff == 1 && wr_or_deserves_wr) {
-+ /* start a weight-raising period */
-+ if (interactive) {
-+ bfqq->service_from_wr = 0;
-+ bfqq->wr_coeff = bfqd->bfq_wr_coeff;
-+ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
-+ } else {
-+ /*
-+ * No interactive weight raising in progress
-+ * here: assign minus infinity to
-+ * wr_start_at_switch_to_srt, to make sure
-+ * that, at the end of the soft-real-time
-+ * weight raising periods that is starting
-+ * now, no interactive weight-raising period
-+ * may be wrongly considered as still in
-+ * progress (and thus actually started by
-+ * mistake).
-+ */
-+ bfqq->wr_start_at_switch_to_srt =
-+ bfq_smallest_from_now();
-+ bfqq->wr_coeff = bfqd->bfq_wr_coeff *
-+ BFQ_SOFTRT_WEIGHT_FACTOR;
-+ bfqq->wr_cur_max_time =
-+ bfqd->bfq_wr_rt_max_time;
-+ }
-+ /*
-+ * If needed, further reduce budget to make sure it is
-+ * close to bfqq's backlog, so as to reduce the
-+ * scheduling-error component due to a too large
-+ * budget. Do not care about throughput consequences,
-+ * but only about latency. Finally, do not assign a
-+ * too small budget either, to avoid increasing
-+ * latency by causing too frequent expirations.
-+ */
-+ bfqq->entity.budget = min_t(unsigned long,
-+ bfqq->entity.budget,
-+ 2 * bfq_min_budget(bfqd));
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "wrais starting at %lu, rais_max_time %u",
-+ jiffies,
-+ jiffies_to_msecs(bfqq->wr_cur_max_time));
-+ } else if (old_wr_coeff > 1) {
-+ if (interactive) { /* update wr coeff and duration */
-+ bfqq->wr_coeff = bfqd->bfq_wr_coeff;
-+ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
-+ } else if (in_burst) {
-+ bfqq->wr_coeff = 1;
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "wrais ending at %lu, rais_max_time %u",
-+ jiffies,
-+ jiffies_to_msecs(bfqq->
-+ wr_cur_max_time));
-+ } else if (soft_rt) {
-+ /*
-+ * The application is now or still meeting the
-+ * requirements for being deemed soft rt. We
-+ * can then correctly and safely (re)charge
-+ * the weight-raising duration for the
-+ * application with the weight-raising
-+ * duration for soft rt applications.
-+ *
-+ * In particular, doing this recharge now, i.e.,
-+ * before the weight-raising period for the
-+ * application finishes, reduces the probability
-+ * of the following negative scenario:
-+ * 1) the weight of a soft rt application is
-+ * raised at startup (as for any newly
-+ * created application),
-+ * 2) since the application is not interactive,
-+ * at a certain time weight-raising is
-+ * stopped for the application,
-+ * 3) at that time the application happens to
-+ * still have pending requests, and hence
-+ * is destined to not have a chance to be
-+ * deemed soft rt before these requests are
-+ * completed (see the comments to the
-+ * function bfq_bfqq_softrt_next_start()
-+ * for details on soft rt detection),
-+ * 4) these pending requests experience a high
-+ * latency because the application is not
-+ * weight-raised while they are pending.
-+ */
-+ if (bfqq->wr_cur_max_time !=
-+ bfqd->bfq_wr_rt_max_time) {
-+ bfqq->wr_start_at_switch_to_srt =
-+ bfqq->last_wr_start_finish;
-+ BUG_ON(time_is_after_jiffies(bfqq->last_wr_start_finish));
-+
-+ bfqq->wr_cur_max_time =
-+ bfqd->bfq_wr_rt_max_time;
-+ bfqq->wr_coeff = bfqd->bfq_wr_coeff *
-+ BFQ_SOFTRT_WEIGHT_FACTOR;
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "switching to soft_rt wr");
-+ } else
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "moving forward soft_rt wr duration");
-+ bfqq->last_wr_start_finish = jiffies;
-+ }
-+ }
-+}
-+
-+static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ return bfqq->dispatched == 0 &&
-+ time_is_before_jiffies(
-+ bfqq->budget_timeout +
-+ bfqd->bfq_wr_min_idle_time);
-+}
-+
-+static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ int old_wr_coeff,
-+ struct request *rq,
-+ bool *interactive)
-+{
-+ bool soft_rt, in_burst, wr_or_deserves_wr,
-+ bfqq_wants_to_preempt,
-+ idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
-+ /*
-+ * See the comments on
-+ * bfq_bfqq_update_budg_for_activation for
-+ * details on the usage of the next variable.
-+ */
-+ arrived_in_time = ktime_get_ns() <=
-+ bfqq->ttime.last_end_request +
-+ bfqd->bfq_slice_idle * 3;
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "bfq_add_request non-busy: "
-+ "jiffies %lu, in_time %d, idle_long %d busyw %d "
-+ "wr_coeff %u",
-+ jiffies, arrived_in_time,
-+ idle_for_long_time,
-+ bfq_bfqq_non_blocking_wait_rq(bfqq),
-+ old_wr_coeff);
-+
-+ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
-+
-+ BUG_ON(bfqq == bfqd->in_service_queue);
-+
-+ /*
-+ * bfqq deserves to be weight-raised if:
-+ * - it is sync,
-+ * - it does not belong to a large burst,
-+ * - it has been idle for enough time or is soft real-time,
-+ * - is linked to a bfq_io_cq (it is not shared in any sense)
-+ */
-+ in_burst = bfq_bfqq_in_large_burst(bfqq);
-+ soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
-+ !in_burst &&
-+ time_is_before_jiffies(bfqq->soft_rt_next_start) &&
-+ bfqq->dispatched == 0;
-+ *interactive =
-+ !in_burst &&
-+ idle_for_long_time;
-+ wr_or_deserves_wr = bfqd->low_latency &&
-+ (bfqq->wr_coeff > 1 ||
-+ (bfq_bfqq_sync(bfqq) &&
-+ bfqq->bic && (*interactive || soft_rt)));
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "bfq_add_request: "
-+ "in_burst %d, "
-+ "soft_rt %d (next %lu), inter %d, bic %p",
-+ bfq_bfqq_in_large_burst(bfqq), soft_rt,
-+ bfqq->soft_rt_next_start,
-+ *interactive,
-+ bfqq->bic);
-+
-+ /*
-+ * Using the last flag, update budget and check whether bfqq
-+ * may want to preempt the in-service queue.
-+ */
-+ bfqq_wants_to_preempt =
-+ bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
-+ arrived_in_time,
-+ wr_or_deserves_wr);
-+
-+ /*
-+ * If bfqq happened to be activated in a burst, but has been
-+ * idle for much more than an interactive queue, then we
-+ * assume that, in the overall I/O initiated in the burst, the
-+ * I/O associated with bfqq is finished. So bfqq does not need
-+ * to be treated as a queue belonging to a burst
-+ * anymore. Accordingly, we reset bfqq's in_large_burst flag
-+ * if set, and remove bfqq from the burst list if it's
-+ * there. We do not decrement burst_size, because the fact
-+ * that bfqq does not need to belong to the burst list any
-+ * more does not invalidate the fact that bfqq was created in
-+ * a burst.
-+ */
-+ if (likely(!bfq_bfqq_just_created(bfqq)) &&
-+ idle_for_long_time &&
-+ time_is_before_jiffies(
-+ bfqq->budget_timeout +
-+ msecs_to_jiffies(10000))) {
-+ hlist_del_init(&bfqq->burst_list_node);
-+ bfq_clear_bfqq_in_large_burst(bfqq);
-+ }
-+
-+ bfq_clear_bfqq_just_created(bfqq);
-+
-+ if (!bfq_bfqq_IO_bound(bfqq)) {
-+ if (arrived_in_time) {
-+ bfqq->requests_within_timer++;
-+ if (bfqq->requests_within_timer >=
-+ bfqd->bfq_requests_within_timer)
-+ bfq_mark_bfqq_IO_bound(bfqq);
-+ } else
-+ bfqq->requests_within_timer = 0;
-+ bfq_log_bfqq(bfqd, bfqq, "requests in time %d",
-+ bfqq->requests_within_timer);
-+ }
-+
-+ if (bfqd->low_latency) {
-+ if (unlikely(time_is_after_jiffies(bfqq->split_time)))
-+ /* wraparound */
-+ bfqq->split_time =
-+ jiffies - bfqd->bfq_wr_min_idle_time - 1;
-+
-+ if (time_is_before_jiffies(bfqq->split_time +
-+ bfqd->bfq_wr_min_idle_time)) {
-+ bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
-+ old_wr_coeff,
-+ wr_or_deserves_wr,
-+ *interactive,
-+ in_burst,
-+ soft_rt);
-+
-+ if (old_wr_coeff != bfqq->wr_coeff)
-+ bfqq->entity.prio_changed = 1;
-+ }
-+ }
-+
-+ bfqq->last_idle_bklogged = jiffies;
-+ bfqq->service_from_backlogged = 0;
-+ bfq_clear_bfqq_softrt_update(bfqq);
-+
-+ bfq_add_bfqq_busy(bfqd, bfqq);
-+
-+ /*
-+ * Expire in-service queue only if preemption may be needed
-+ * for guarantees. In this respect, the function
-+ * next_queue_may_preempt just checks a simple, necessary
-+ * condition, and not a sufficient condition based on
-+ * timestamps. In fact, for the latter condition to be
-+ * evaluated, timestamps would need first to be updated, and
-+ * this operation is quite costly (see the comments on the
-+ * function bfq_bfqq_update_budg_for_activation).
-+ */
-+ if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
-+ bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
-+ next_queue_may_preempt(bfqd)) {
-+ struct bfq_queue *in_serv =
-+ bfqd->in_service_queue;
-+ BUG_ON(in_serv == bfqq);
-+
-+ bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
-+ false, BFQ_BFQQ_PREEMPTED);
-+ }
-+}
-+
-+static void bfq_add_request(struct request *rq)
-+{
-+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
-+ struct bfq_data *bfqd = bfqq->bfqd;
-+ struct request *next_rq, *prev;
-+ unsigned int old_wr_coeff = bfqq->wr_coeff;
-+ bool interactive = false;
-+
-+ bfq_log_bfqq(bfqd, bfqq, "size %u %s",
-+ blk_rq_sectors(rq), rq_is_sync(rq) ? "S" : "A");
-+
-+ if (bfqq->wr_coeff > 1) /* queue is being weight-raised */
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
-+ jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
-+ jiffies_to_msecs(bfqq->wr_cur_max_time),
-+ bfqq->wr_coeff,
-+ bfqq->entity.weight, bfqq->entity.orig_weight);
-+
-+ bfqq->queued[rq_is_sync(rq)]++;
-+ bfqd->queued++;
-+
-+ BUG_ON(!RQ_BFQQ(rq));
-+ BUG_ON(RQ_BFQQ(rq) != bfqq);
-+ WARN_ON(blk_rq_sectors(rq) == 0);
-+
-+ elv_rb_add(&bfqq->sort_list, rq);
-+
-+ /*
-+ * Check if this request is a better next-to-serve candidate.
-+ */
-+ prev = bfqq->next_rq;
-+ next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
-+ BUG_ON(!next_rq);
-+ BUG_ON(!RQ_BFQQ(next_rq));
-+ BUG_ON(RQ_BFQQ(next_rq) != bfqq);
-+ bfqq->next_rq = next_rq;
-+
-+ /*
-+ * Adjust priority tree position, if next_rq changes.
-+ */
-+ if (prev != bfqq->next_rq)
-+ bfq_pos_tree_add_move(bfqd, bfqq);
-+
-+ if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
-+ bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
-+ rq, &interactive);
-+ else {
-+ if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
-+ time_is_before_jiffies(
-+ bfqq->last_wr_start_finish +
-+ bfqd->bfq_wr_min_inter_arr_async)) {
-+ bfqq->wr_coeff = bfqd->bfq_wr_coeff;
-+ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
-+
-+ bfqd->wr_busy_queues++;
-+ BUG_ON(bfqd->wr_busy_queues > bfq_tot_busy_queues(bfqd));
-+ bfqq->entity.prio_changed = 1;
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "non-idle wrais starting, "
-+ "wr_max_time %u wr_busy %d",
-+ jiffies_to_msecs(bfqq->wr_cur_max_time),
-+ bfqd->wr_busy_queues);
-+ }
-+ if (prev != bfqq->next_rq)
-+ bfq_updated_next_req(bfqd, bfqq);
-+ }
-+
-+ /*
-+ * Assign jiffies to last_wr_start_finish in the following
-+ * cases:
-+ *
-+ * . if bfqq is not going to be weight-raised, because, for
-+ * non weight-raised queues, last_wr_start_finish stores the
-+ * arrival time of the last request; as of now, this piece
-+ * of information is used only for deciding whether to
-+ * weight-raise async queues
-+ *
-+ * . if bfqq is not weight-raised, because, if bfqq is now
-+ * switching to weight-raised, then last_wr_start_finish
-+ * stores the time when weight-raising starts
-+ *
-+ * . if bfqq is interactive, because, regardless of whether
-+ * bfqq is currently weight-raised, the weight-raising
-+ * period must start or restart (this case is considered
-+ * separately because it is not detected by the above
-+ * conditions, if bfqq is already weight-raised)
-+ *
-+ * last_wr_start_finish has to be updated also if bfqq is soft
-+ * real-time, because the weight-raising period is constantly
-+ * restarted on idle-to-busy transitions for these queues, but
-+ * this is already done in bfq_bfqq_handle_idle_busy_switch if
-+ * needed.
-+ */
-+ if (bfqd->low_latency &&
-+ (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
-+ bfqq->last_wr_start_finish = jiffies;
-+}
-+
-+static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
-+ struct bio *bio,
-+ struct request_queue *q)
-+{
-+ struct bfq_queue *bfqq = bfqd->bio_bfqq;
-+
-+ BUG_ON(!bfqd->bio_bfqq_set);
-+
-+ if (bfqq)
-+ return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
-+
-+ return NULL;
-+}
-+
-+static sector_t get_sdist(sector_t last_pos, struct request *rq)
-+{
-+ sector_t sdist = 0;
-+
-+ if (last_pos) {
-+ if (last_pos < blk_rq_pos(rq))
-+ sdist = blk_rq_pos(rq) - last_pos;
-+ else
-+ sdist = last_pos - blk_rq_pos(rq);
-+ }
-+
-+ return sdist;
-+}
-+
-+#if 0 /* Still not clear if we can do without next two functions */
-+static void bfq_activate_request(struct request_queue *q, struct request *rq)
-+{
-+ struct bfq_data *bfqd = q->elevator->elevator_data;
-+ bfqd->rq_in_driver++;
-+}
-+
-+static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
-+{
-+ struct bfq_data *bfqd = q->elevator->elevator_data;
-+
-+ BUG_ON(bfqd->rq_in_driver == 0);
-+ bfqd->rq_in_driver--;
-+}
-+#endif
-+
-+static void bfq_remove_request(struct request_queue *q,
-+ struct request *rq)
-+{
-+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
-+ struct bfq_data *bfqd = bfqq->bfqd;
-+ const int sync = rq_is_sync(rq);
-+
-+ BUG_ON(bfqq->entity.service > bfqq->entity.budget);
-+
-+ if (bfqq->next_rq == rq) {
-+ bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
-+ if (bfqq->next_rq && !RQ_BFQQ(bfqq->next_rq)) {
-+ pr_crit("no bfqq! for next rq %p bfqq %p\n",
-+ bfqq->next_rq, bfqq);
-+ }
-+
-+ BUG_ON(bfqq->next_rq && !RQ_BFQQ(bfqq->next_rq));
-+ if (bfqq->next_rq && RQ_BFQQ(bfqq->next_rq) != bfqq) {
-+ pr_crit(
-+ "wrong bfqq! for next rq %p, rq_bfqq %p bfqq %p\n",
-+ bfqq->next_rq, RQ_BFQQ(bfqq->next_rq), bfqq);
-+ }
-+ BUG_ON(bfqq->next_rq && RQ_BFQQ(bfqq->next_rq) != bfqq);
-+
-+ bfq_updated_next_req(bfqd, bfqq);
-+ }
-+
-+ if (rq->queuelist.prev != &rq->queuelist)
-+ list_del_init(&rq->queuelist);
-+ BUG_ON(bfqq->queued[sync] == 0);
-+ bfqq->queued[sync]--;
-+ bfqd->queued--;
-+ elv_rb_del(&bfqq->sort_list, rq);
-+
-+ elv_rqhash_del(q, rq);
-+ if (q->last_merge == rq)
-+ q->last_merge = NULL;
-+
-+ if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
-+ bfqq->next_rq = NULL;
-+
-+ BUG_ON(bfqq->entity.budget < 0);
-+
-+ if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
-+ BUG_ON(bfqq->ref < 2); /* referred by rq and on tree */
-+ bfq_del_bfqq_busy(bfqd, bfqq, false);
-+ /*
-+ * bfqq emptied. In normal operation, when
-+ * bfqq is empty, bfqq->entity.service and
-+ * bfqq->entity.budget must contain,
-+ * respectively, the service received and the
-+ * budget used last time bfqq emptied. These
-+ * facts do not hold in this case, as at least
-+ * this last removal occurred while bfqq is
-+ * not in service. To avoid inconsistencies,
-+ * reset both bfqq->entity.service and
-+ * bfqq->entity.budget, if bfqq has still a
-+ * process that may issue I/O requests to it.
-+ */
-+ bfqq->entity.budget = bfqq->entity.service = 0;
-+ }
-+
-+ /*
-+ * Remove queue from request-position tree as it is empty.
-+ */
-+ if (bfqq->pos_root) {
-+ rb_erase(&bfqq->pos_node, bfqq->pos_root);
-+ bfqq->pos_root = NULL;
-+ }
-+ } else {
-+ BUG_ON(!bfqq->next_rq);
-+ bfq_pos_tree_add_move(bfqd, bfqq);
-+ }
-+
-+ if (rq->cmd_flags & REQ_META) {
-+ BUG_ON(bfqq->meta_pending == 0);
-+ bfqq->meta_pending--;
-+ }
-+}
-+
-+static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
-+{
-+ struct request_queue *q = hctx->queue;
-+ struct bfq_data *bfqd = q->elevator->elevator_data;
-+ struct request *free = NULL;
-+ /*
-+ * bfq_bic_lookup grabs the queue_lock: invoke it now and
-+ * store its return value for later use, to avoid nesting
-+ * queue_lock inside the bfqd->lock. We assume that the bic
-+ * returned by bfq_bic_lookup does not go away before
-+ * bfqd->lock is taken.
-+ */
-+ struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
-+ bool ret;
-+
-+ spin_lock_irq(&bfqd->lock);
-+
-+ if (bic)
-+ bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
-+ else
-+ bfqd->bio_bfqq = NULL;
-+ bfqd->bio_bic = bic;
-+ /* Set next flag just for testing purposes */
-+ bfqd->bio_bfqq_set = true;
-+
-+ ret = blk_mq_sched_try_merge(q, bio, &free);
-+
-+ /*
-+ * XXX Not yet freeing without lock held, to avoid an
-+ * inconsistency with respect to the lock-protected invocation
-+ * of blk_mq_sched_try_insert_merge in bfq_bio_merge. Waiting
-+ * for clarifications from Jens.
-+ */
-+ if (free)
-+ blk_mq_free_request(free);
-+ bfqd->bio_bfqq_set = false;
-+ spin_unlock_irq(&bfqd->lock);
-+
-+ return ret;
-+}
-+
-+static int bfq_request_merge(struct request_queue *q, struct request **req,
-+ struct bio *bio)
-+{
-+ struct bfq_data *bfqd = q->elevator->elevator_data;
-+ struct request *__rq;
-+
-+ __rq = bfq_find_rq_fmerge(bfqd, bio, q);
-+ if (__rq && elv_bio_merge_ok(__rq, bio)) {
-+ *req = __rq;
-+ bfq_log(bfqd, "req %p", __rq);
-+
-+ return ELEVATOR_FRONT_MERGE;
-+ }
-+
-+ return ELEVATOR_NO_MERGE;
-+}
-+
-+static struct bfq_queue *bfq_init_rq(struct request *rq);
-+
-+static void bfq_request_merged(struct request_queue *q, struct request *req,
-+ enum elv_merge type)
-+{
-+ BUG_ON(req->rq_flags & RQF_DISP_LIST);
-+
-+ if (type == ELEVATOR_FRONT_MERGE &&
-+ rb_prev(&req->rb_node) &&
-+ blk_rq_pos(req) <
-+ blk_rq_pos(container_of(rb_prev(&req->rb_node),
-+ struct request, rb_node))) {
-+ struct bfq_queue *bfqq = bfq_init_rq(req);
-+ struct bfq_data *bfqd = bfqq->bfqd;
-+ struct request *prev, *next_rq;
-+
-+ /* Reposition request in its sort_list */
-+ elv_rb_del(&bfqq->sort_list, req);
-+ BUG_ON(!RQ_BFQQ(req));
-+ BUG_ON(RQ_BFQQ(req) != bfqq);
-+ elv_rb_add(&bfqq->sort_list, req);
-+
-+ /* Choose next request to be served for bfqq */
-+ prev = bfqq->next_rq;
-+ next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
-+ bfqd->last_position);
-+ BUG_ON(!next_rq);
-+
-+ bfqq->next_rq = next_rq;
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "req %p prev %p next_rq %p bfqq %p",
-+ req, prev, next_rq, bfqq);
-+
-+ /*
-+ * If next_rq changes, update both the queue's budget to
-+ * fit the new request and the queue's position in its
-+ * rq_pos_tree.
-+ */
-+ if (prev != bfqq->next_rq) {
-+ bfq_updated_next_req(bfqd, bfqq);
-+ bfq_pos_tree_add_move(bfqd, bfqq);
-+ }
-+ }
-+}
-+
-+/*
-+ * This function is called to notify the scheduler that the requests
-+ * rq and 'next' have been merged, with 'next' going away. BFQ
-+ * exploits this hook to address the following issue: if 'next' has a
-+ * fifo_time lower that rq, then the fifo_time of rq must be set to
-+ * the value of 'next', to not forget the greater age of 'next'.
-+ *
-+ * NOTE: in this function we assume that rq is in a bfq_queue, basing
-+ * on that rq is picked from the hash table q->elevator->hash, which,
-+ * in its turn, is filled only with I/O requests present in
-+ * bfq_queues, while BFQ is in use for the request queue q. In fact,
-+ * the function that fills this hash table (elv_rqhash_add) is called
-+ * only by bfq_insert_request.
-+ */
-+static void bfq_requests_merged(struct request_queue *q, struct request *rq,
-+ struct request *next)
-+{
-+ struct bfq_queue *bfqq = bfq_init_rq(rq),
-+ *next_bfqq = bfq_init_rq(next);
-+
-+ BUG_ON(!RQ_BFQQ(rq));
-+ BUG_ON(!RQ_BFQQ(next)); /* this does not imply next is in a bfqq */
-+ BUG_ON(rq->rq_flags & RQF_DISP_LIST);
-+ BUG_ON(next->rq_flags & RQF_DISP_LIST);
-+
-+ lockdep_assert_held(&bfqq->bfqd->lock);
-+
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "rq %p next %p bfqq %p next_bfqq %p",
-+ rq, next, bfqq, next_bfqq);
-+
-+ /*
-+ * If next and rq belong to the same bfq_queue and next is older
-+ * than rq, then reposition rq in the fifo (by substituting next
-+ * with rq). Otherwise, if next and rq belong to different
-+ * bfq_queues, never reposition rq: in fact, we would have to
-+ * reposition it with respect to next's position in its own fifo,
-+ * which would most certainly be too expensive with respect to
-+ * the benefits.
-+ */
-+ if (bfqq == next_bfqq &&
-+ !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
-+ next->fifo_time < rq->fifo_time) {
-+ list_del_init(&rq->queuelist);
-+ list_replace_init(&next->queuelist, &rq->queuelist);
-+ rq->fifo_time = next->fifo_time;
-+ }
-+
-+ if (bfqq->next_rq == next)
-+ bfqq->next_rq = rq;
-+
-+ bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
-+}
-+
-+/* Must be called with bfqq != NULL */
-+static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
-+{
-+ BUG_ON(!bfqq);
-+
-+ if (bfq_bfqq_busy(bfqq)) {
-+ bfqq->bfqd->wr_busy_queues--;
-+ BUG_ON(bfqq->bfqd->wr_busy_queues < 0);
-+ }
-+ bfqq->wr_coeff = 1;
-+ bfqq->wr_cur_max_time = 0;
-+ bfqq->last_wr_start_finish = jiffies;
-+ /*
-+ * Trigger a weight change on the next invocation of
-+ * __bfq_entity_update_weight_prio.
-+ */
-+ bfqq->entity.prio_changed = 1;
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "wrais ending at %lu, rais_max_time %u",
-+ bfqq->last_wr_start_finish,
-+ jiffies_to_msecs(bfqq->wr_cur_max_time));
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "wr_busy %d",
-+ bfqq->bfqd->wr_busy_queues);
-+}
-+
-+static void bfq_end_wr_async_queues(struct bfq_data *bfqd,
-+ struct bfq_group *bfqg)
-+{
-+ int i, j;
-+
-+ for (i = 0; i < 2; i++)
-+ for (j = 0; j < IOPRIO_BE_NR; j++)
-+ if (bfqg->async_bfqq[i][j])
-+ bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
-+ if (bfqg->async_idle_bfqq)
-+ bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
-+}
-+
-+static void bfq_end_wr(struct bfq_data *bfqd)
-+{
-+ struct bfq_queue *bfqq;
-+
-+ spin_lock_irq(&bfqd->lock);
-+
-+ list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
-+ bfq_bfqq_end_wr(bfqq);
-+ list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
-+ bfq_bfqq_end_wr(bfqq);
-+ bfq_end_wr_async(bfqd);
-+
-+ spin_unlock_irq(&bfqd->lock);
-+}
-+
-+static sector_t bfq_io_struct_pos(void *io_struct, bool request)
-+{
-+ if (request)
-+ return blk_rq_pos(io_struct);
-+ else
-+ return ((struct bio *)io_struct)->bi_iter.bi_sector;
-+}
-+
-+static int bfq_rq_close_to_sector(void *io_struct, bool request,
-+ sector_t sector)
-+{
-+ return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
-+ BFQQ_CLOSE_THR;
-+}
-+
-+static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ sector_t sector)
-+{
-+ struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
-+ struct rb_node *parent, *node;
-+ struct bfq_queue *__bfqq;
-+
-+ if (RB_EMPTY_ROOT(root))
-+ return NULL;
-+
-+ /*
-+ * First, if we find a request starting at the end of the last
-+ * request, choose it.
-+ */
-+ __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
-+ if (__bfqq)
-+ return __bfqq;
-+
-+ /*
-+ * If the exact sector wasn't found, the parent of the NULL leaf
-+ * will contain the closest sector (rq_pos_tree sorted by
-+ * next_request position).
-+ */
-+ __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
-+ if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
-+ return __bfqq;
-+
-+ if (blk_rq_pos(__bfqq->next_rq) < sector)
-+ node = rb_next(&__bfqq->pos_node);
-+ else
-+ node = rb_prev(&__bfqq->pos_node);
-+ if (!node)
-+ return NULL;
-+
-+ __bfqq = rb_entry(node, struct bfq_queue, pos_node);
-+ if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
-+ return __bfqq;
-+
-+ return NULL;
-+}
-+
-+static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
-+ struct bfq_queue *cur_bfqq,
-+ sector_t sector)
-+{
-+ struct bfq_queue *bfqq;
-+
-+ /*
-+ * We shall notice if some of the queues are cooperating,
-+ * e.g., working closely on the same area of the device. In
-+ * that case, we can group them together and: 1) don't waste
-+ * time idling, and 2) serve the union of their requests in
-+ * the best possible order for throughput.
-+ */
-+ bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
-+ if (!bfqq || bfqq == cur_bfqq)
-+ return NULL;
-+
-+ return bfqq;
-+}
-+
-+static struct bfq_queue *
-+bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
-+{
-+ int process_refs, new_process_refs;
-+ struct bfq_queue *__bfqq;
-+
-+ /*
-+ * If there are no process references on the new_bfqq, then it is
-+ * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
-+ * may have dropped their last reference (not just their last process
-+ * reference).
-+ */
-+ if (!bfqq_process_refs(new_bfqq))
-+ return NULL;
-+
-+ /* Avoid a circular list and skip interim queue merges. */
-+ while ((__bfqq = new_bfqq->new_bfqq)) {
-+ if (__bfqq == bfqq)
-+ return NULL;
-+ new_bfqq = __bfqq;
-+ }
-+
-+ process_refs = bfqq_process_refs(bfqq);
-+ new_process_refs = bfqq_process_refs(new_bfqq);
-+ /*
-+ * If the process for the bfqq has gone away, there is no
-+ * sense in merging the queues.
-+ */
-+ if (process_refs == 0 || new_process_refs == 0)
-+ return NULL;
-+
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
-+ new_bfqq->pid);
-+
-+ /*
-+ * Merging is just a redirection: the requests of the process
-+ * owning one of the two queues are redirected to the other queue.
-+ * The latter queue, in its turn, is set as shared if this is the
-+ * first time that the requests of some process are redirected to
-+ * it.
-+ *
-+ * We redirect bfqq to new_bfqq and not the opposite, because
-+ * we are in the context of the process owning bfqq, thus we
-+ * have the io_cq of this process. So we can immediately
-+ * configure this io_cq to redirect the requests of the
-+ * process to new_bfqq. In contrast, the io_cq of new_bfqq is
-+ * not available any more (new_bfqq->bic == NULL).
-+ *
-+ * Anyway, even in case new_bfqq coincides with the in-service
-+ * queue, redirecting requests the in-service queue is the
-+ * best option, as we feed the in-service queue with new
-+ * requests close to the last request served and, by doing so,
-+ * are likely to increase the throughput.
-+ */
-+ bfqq->new_bfqq = new_bfqq;
-+ new_bfqq->ref += process_refs;
-+ return new_bfqq;
-+}
-+
-+static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
-+ struct bfq_queue *new_bfqq)
-+{
-+ if (bfq_too_late_for_merging(new_bfqq)) {
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "too late for bfq%d to be merged",
-+ new_bfqq->pid);
-+ return false;
-+ }
-+
-+ if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
-+ (bfqq->ioprio_class != new_bfqq->ioprio_class))
-+ return false;
-+
-+ /*
-+ * If either of the queues has already been detected as seeky,
-+ * then merging it with the other queue is unlikely to lead to
-+ * sequential I/O.
-+ */
-+ if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
-+ return false;
-+
-+ /*
-+ * Interleaved I/O is known to be done by (some) applications
-+ * only for reads, so it does not make sense to merge async
-+ * queues.
-+ */
-+ if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
-+ return false;
-+
-+ return true;
-+}
-+
-+/*
-+ * Attempt to schedule a merge of bfqq with the currently in-service
-+ * queue or with a close queue among the scheduled queues. Return
-+ * NULL if no merge was scheduled, a pointer to the shared bfq_queue
-+ * structure otherwise.
-+ *
-+ * The OOM queue is not allowed to participate to cooperation: in fact, since
-+ * the requests temporarily redirected to the OOM queue could be redirected
-+ * again to dedicated queues at any time, the state needed to correctly
-+ * handle merging with the OOM queue would be quite complex and expensive
-+ * to maintain. Besides, in such a critical condition as an out of memory,
-+ * the benefits of queue merging may be little relevant, or even negligible.
-+ *
-+ * WARNING: queue merging may impair fairness among non-weight raised
-+ * queues, for at least two reasons: 1) the original weight of a
-+ * merged queue may change during the merged state, 2) even being the
-+ * weight the same, a merged queue may be bloated with many more
-+ * requests than the ones produced by its originally-associated
-+ * process.
-+ */
-+static struct bfq_queue *
-+bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
-+ void *io_struct, bool request)
-+{
-+ struct bfq_queue *in_service_bfqq, *new_bfqq;
-+
-+ /*
-+ * Prevent bfqq from being merged if it has been created too
-+ * long ago. The idea is that true cooperating processes, and
-+ * thus their associated bfq_queues, are supposed to be
-+ * created shortly after each other. This is the case, e.g.,
-+ * for KVM/QEMU and dump I/O threads. Basing on this
-+ * assumption, the following filtering greatly reduces the
-+ * probability that two non-cooperating processes, which just
-+ * happen to do close I/O for some short time interval, have
-+ * their queues merged by mistake.
-+ */
-+ if (bfq_too_late_for_merging(bfqq)) {
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "would have looked for coop, but too late");
-+ return NULL;
-+ }
-+
-+ if (bfqq->new_bfqq)
-+ return bfqq->new_bfqq;
-+
-+ if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
-+ return NULL;
-+
-+ /* If there is only one backlogged queue, don't search. */
-+ if (bfq_tot_busy_queues(bfqd) == 1)
-+ return NULL;
-+
-+ in_service_bfqq = bfqd->in_service_queue;
-+
-+ if (in_service_bfqq && in_service_bfqq != bfqq &&
-+ likely(in_service_bfqq != &bfqd->oom_bfqq) &&
-+ bfq_rq_close_to_sector(io_struct, request, bfqd->in_serv_last_pos) &&
-+ bfqq->entity.parent == in_service_bfqq->entity.parent &&
-+ bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
-+ new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
-+ if (new_bfqq)
-+ return new_bfqq;
-+ }
-+ /*
-+ * Check whether there is a cooperator among currently scheduled
-+ * queues. The only thing we need is that the bio/request is not
-+ * NULL, as we need it to establish whether a cooperator exists.
-+ */
-+ new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
-+ bfq_io_struct_pos(io_struct, request));
-+
-+ BUG_ON(new_bfqq && bfqq->entity.parent != new_bfqq->entity.parent);
-+
-+ if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
-+ bfq_may_be_close_cooperator(bfqq, new_bfqq))
-+ return bfq_setup_merge(bfqq, new_bfqq);
-+
-+ return NULL;
-+}
-+
-+static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
-+{
-+ struct bfq_io_cq *bic = bfqq->bic;
-+
-+ /*
-+ * If !bfqq->bic, the queue is already shared or its requests
-+ * have already been redirected to a shared queue; both idle window
-+ * and weight raising state have already been saved. Do nothing.
-+ */
-+ if (!bic)
-+ return;
-+
-+ bic->saved_ttime = bfqq->ttime;
-+ bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
-+ bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
-+ bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
-+ bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
-+ if (unlikely(bfq_bfqq_just_created(bfqq) &&
-+ !bfq_bfqq_in_large_burst(bfqq) &&
-+ bfqq->bfqd->low_latency)) {
-+ /*
-+ * bfqq being merged ritgh after being created: bfqq
-+ * would have deserved interactive weight raising, but
-+ * did not make it to be set in a weight-raised state,
-+ * because of this early merge. Store directly the
-+ * weight-raising state that would have been assigned
-+ * to bfqq, so that to avoid that bfqq unjustly fails
-+ * to enjoy weight raising if split soon.
-+ */
-+ bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
-+ bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
-+ bic->saved_last_wr_start_finish = jiffies;
-+ } else {
-+ bic->saved_wr_coeff = bfqq->wr_coeff;
-+ bic->saved_wr_start_at_switch_to_srt =
-+ bfqq->wr_start_at_switch_to_srt;
-+ bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
-+ bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
-+ }
-+ BUG_ON(time_is_after_jiffies(bfqq->last_wr_start_finish));
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "bic %p wr_coeff %d start_finish %lu max_time %lu",
-+ bic, bfqq->wr_coeff, bfqq->last_wr_start_finish,
-+ bfqq->wr_cur_max_time);
-+}
-+
-+static void
-+bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
-+ struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
-+{
-+ bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
-+ (unsigned long) new_bfqq->pid);
-+ BUG_ON(bfqq->bic && bfqq->bic == new_bfqq->bic);
-+ /* Save weight raising and idle window of the merged queues */
-+ bfq_bfqq_save_state(bfqq);
-+ bfq_bfqq_save_state(new_bfqq);
-+
-+ if (bfq_bfqq_IO_bound(bfqq))
-+ bfq_mark_bfqq_IO_bound(new_bfqq);
-+ bfq_clear_bfqq_IO_bound(bfqq);
-+
-+ /*
-+ * If bfqq is weight-raised, then let new_bfqq inherit
-+ * weight-raising. To reduce false positives, neglect the case
-+ * where bfqq has just been created, but has not yet made it
-+ * to be weight-raised (which may happen because EQM may merge
-+ * bfqq even before bfq_add_request is executed for the first
-+ * time for bfqq). Handling this case would however be very
-+ * easy, thanks to the flag just_created.
-+ */
-+ if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
-+ new_bfqq->wr_coeff = bfqq->wr_coeff;
-+ new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
-+ new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
-+ new_bfqq->wr_start_at_switch_to_srt =
-+ bfqq->wr_start_at_switch_to_srt;
-+ if (bfq_bfqq_busy(new_bfqq)) {
-+ bfqd->wr_busy_queues++;
-+ BUG_ON(bfqd->wr_busy_queues >
-+ bfq_tot_busy_queues(bfqd));
-+ }
-+
-+ new_bfqq->entity.prio_changed = 1;
-+ bfq_log_bfqq(bfqd, new_bfqq,
-+ "wr start after merge with %d, rais_max_time %u",
-+ bfqq->pid,
-+ jiffies_to_msecs(bfqq->wr_cur_max_time));
-+ }
-+
-+ if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
-+ bfqq->wr_coeff = 1;
-+ bfqq->entity.prio_changed = 1;
-+ if (bfq_bfqq_busy(bfqq)) {
-+ bfqd->wr_busy_queues--;
-+ BUG_ON(bfqd->wr_busy_queues < 0);
-+ }
-+
-+ }
-+
-+ bfq_log_bfqq(bfqd, new_bfqq, "wr_busy %d",
-+ bfqd->wr_busy_queues);
-+
-+ /*
-+ * Merge queues (that is, let bic redirect its requests to new_bfqq)
-+ */
-+ bic_set_bfqq(bic, new_bfqq, 1);
-+ bfq_mark_bfqq_coop(new_bfqq);
-+ /*
-+ * new_bfqq now belongs to at least two bics (it is a shared queue):
-+ * set new_bfqq->bic to NULL. bfqq either:
-+ * - does not belong to any bic any more, and hence bfqq->bic must
-+ * be set to NULL, or
-+ * - is a queue whose owning bics have already been redirected to a
-+ * different queue, hence the queue is destined to not belong to
-+ * any bic soon and bfqq->bic is already NULL (therefore the next
-+ * assignment causes no harm).
-+ */
-+ new_bfqq->bic = NULL;
-+ bfqq->bic = NULL;
-+ /* release process reference to bfqq */
-+ bfq_put_queue(bfqq);
-+}
-+
-+static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
-+ struct bio *bio)
-+{
-+ struct bfq_data *bfqd = q->elevator->elevator_data;
-+ bool is_sync = op_is_sync(bio->bi_opf);
-+ struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
-+
-+ assert_spin_locked(&bfqd->lock);
-+ /*
-+ * Disallow merge of a sync bio into an async request.
-+ */
-+ if (is_sync && !rq_is_sync(rq))
-+ return false;
-+
-+ /*
-+ * Lookup the bfqq that this bio will be queued with. Allow
-+ * merge only if rq is queued there.
-+ */
-+ BUG_ON(!bfqd->bio_bfqq_set);
-+ if (!bfqq)
-+ return false;
-+
-+ /*
-+ * We take advantage of this function to perform an early merge
-+ * of the queues of possible cooperating processes.
-+ */
-+ new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
-+ BUG_ON(new_bfqq == bfqq);
-+ if (new_bfqq) {
-+ /*
-+ * bic still points to bfqq, then it has not yet been
-+ * redirected to some other bfq_queue, and a queue
-+ * merge beween bfqq and new_bfqq can be safely
-+ * fulfillled, i.e., bic can be redirected to new_bfqq
-+ * and bfqq can be put.
-+ */
-+ bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
-+ new_bfqq);
-+ /*
-+ * If we get here, bio will be queued into new_queue,
-+ * so use new_bfqq to decide whether bio and rq can be
-+ * merged.
-+ */
-+ bfqq = new_bfqq;
-+
-+ /*
-+ * Change also bqfd->bio_bfqq, as
-+ * bfqd->bio_bic now points to new_bfqq, and
-+ * this function may be invoked again (and then may
-+ * use again bqfd->bio_bfqq).
-+ */
-+ bfqd->bio_bfqq = bfqq;
-+ }
-+ return bfqq == RQ_BFQQ(rq);
-+}
-+
-+/*
-+ * Set the maximum time for the in-service queue to consume its
-+ * budget. This prevents seeky processes from lowering the throughput.
-+ * In practice, a time-slice service scheme is used with seeky
-+ * processes.
-+ */
-+static void bfq_set_budget_timeout(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ unsigned int timeout_coeff;
-+
-+ if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
-+ timeout_coeff = 1;
-+ else
-+ timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
-+
-+ bfqd->last_budget_start = ktime_get();
-+
-+ bfqq->budget_timeout = jiffies +
-+ bfqd->bfq_timeout * timeout_coeff;
-+
-+ bfq_log_bfqq(bfqd, bfqq, "%u",
-+ jiffies_to_msecs(bfqd->bfq_timeout * timeout_coeff));
-+}
-+
-+static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ if (bfqq) {
-+ bfq_clear_bfqq_fifo_expire(bfqq);
-+
-+ bfqd->budgets_assigned = (bfqd->budgets_assigned*7 + 256) / 8;
-+
-+ BUG_ON(bfqq == bfqd->in_service_queue);
-+ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
-+
-+ if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
-+ bfqq->wr_coeff > 1 &&
-+ bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
-+ time_is_before_jiffies(bfqq->budget_timeout)) {
-+ /*
-+ * For soft real-time queues, move the start
-+ * of the weight-raising period forward by the
-+ * time the queue has not received any
-+ * service. Otherwise, a relatively long
-+ * service delay is likely to cause the
-+ * weight-raising period of the queue to end,
-+ * because of the short duration of the
-+ * weight-raising period of a soft real-time
-+ * queue. It is worth noting that this move
-+ * is not so dangerous for the other queues,
-+ * because soft real-time queues are not
-+ * greedy.
-+ *
-+ * To not add a further variable, we use the
-+ * overloaded field budget_timeout to
-+ * determine for how long the queue has not
-+ * received service, i.e., how much time has
-+ * elapsed since the queue expired. However,
-+ * this is a little imprecise, because
-+ * budget_timeout is set to jiffies if bfqq
-+ * not only expires, but also remains with no
-+ * request.
-+ */
-+ if (time_after(bfqq->budget_timeout,
-+ bfqq->last_wr_start_finish))
-+ bfqq->last_wr_start_finish +=
-+ jiffies - bfqq->budget_timeout;
-+ else
-+ bfqq->last_wr_start_finish = jiffies;
-+
-+ if (time_is_after_jiffies(bfqq->last_wr_start_finish)) {
-+ pr_crit(
-+ "BFQ WARNING:last %lu budget %lu jiffies %lu",
-+ bfqq->last_wr_start_finish,
-+ bfqq->budget_timeout,
-+ jiffies);
-+ pr_crit("diff %lu", jiffies -
-+ max_t(unsigned long,
-+ bfqq->last_wr_start_finish,
-+ bfqq->budget_timeout));
-+ bfqq->last_wr_start_finish = jiffies;
-+ }
-+ }
-+
-+ bfq_set_budget_timeout(bfqd, bfqq);
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "cur-budget = %d prio_class %d",
-+ bfqq->entity.budget, bfqq->ioprio_class);
-+ } else
-+ bfq_log(bfqd, "NULL");
-+
-+ bfqd->in_service_queue = bfqq;
-+}
-+
-+/*
-+ * Get and set a new queue for service.
-+ */
-+static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
-+{
-+ struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
-+
-+ __bfq_set_in_service_queue(bfqd, bfqq);
-+ return bfqq;
-+}
-+
-+static void bfq_arm_slice_timer(struct bfq_data *bfqd)
-+{
-+ struct bfq_queue *bfqq = bfqd->in_service_queue;
-+ u32 sl;
-+
-+ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
-+
-+ bfq_mark_bfqq_wait_request(bfqq);
-+
-+ /*
-+ * We don't want to idle for seeks, but we do want to allow
-+ * fair distribution of slice time for a process doing back-to-back
-+ * seeks. So allow a little bit of time for him to submit a new rq.
-+ *
-+ * To prevent processes with (partly) seeky workloads from
-+ * being too ill-treated, grant them a small fraction of the
-+ * assigned budget before reducing the waiting time to
-+ * BFQ_MIN_TT. This happened to help reduce latency.
-+ */
-+ sl = bfqd->bfq_slice_idle;
-+ /*
-+ * Unless the queue is being weight-raised or the scenario is
-+ * asymmetric, grant only minimum idle time if the queue
-+ * is seeky. A long idling is preserved for a weight-raised
-+ * queue, or, more in general, in an asymemtric scenario,
-+ * because a long idling is needed for guaranteeing to a queue
-+ * its reserved share of the throughput (in particular, it is
-+ * needed if the queue has a higher weight than some other
-+ * queue).
-+ */
-+ if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
-+ bfq_symmetric_scenario(bfqd))
-+ sl = min_t(u32, sl, BFQ_MIN_TT);
-+
-+ bfqd->last_idling_start = ktime_get();
-+ hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
-+ HRTIMER_MODE_REL);
-+ bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
-+ bfq_log(bfqd, "arm idle: %ld/%ld ms",
-+ sl / NSEC_PER_MSEC, bfqd->bfq_slice_idle / NSEC_PER_MSEC);
-+}
-+
-+/*
-+ * In autotuning mode, max_budget is dynamically recomputed as the
-+ * amount of sectors transferred in timeout at the estimated peak
-+ * rate. This enables BFQ to utilize a full timeslice with a full
-+ * budget, even if the in-service queue is served at peak rate. And
-+ * this maximises throughput with sequential workloads.
-+ */
-+static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
-+{
-+ return (u64)bfqd->peak_rate * USEC_PER_MSEC *
-+ jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
-+}
-+
-+/*
-+ * Update parameters related to throughput and responsiveness, as a
-+ * function of the estimated peak rate. See comments on
-+ * bfq_calc_max_budget(), and on the ref_wr_duration array.
-+ */
-+static void update_thr_responsiveness_params(struct bfq_data *bfqd)
-+{
-+ if (bfqd->bfq_user_max_budget == 0) {
-+ bfqd->bfq_max_budget =
-+ bfq_calc_max_budget(bfqd);
-+ BUG_ON(bfqd->bfq_max_budget < 0);
-+ bfq_log(bfqd, "new max_budget = %d",
-+ bfqd->bfq_max_budget);
-+ }
-+}
-+
-+static void bfq_reset_rate_computation(struct bfq_data *bfqd, struct request *rq)
-+{
-+ if (rq != NULL) { /* new rq dispatch now, reset accordingly */
-+ bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns() ;
-+ bfqd->peak_rate_samples = 1;
-+ bfqd->sequential_samples = 0;
-+ bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
-+ blk_rq_sectors(rq);
-+ } else /* no new rq dispatched, just reset the number of samples */
-+ bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
-+
-+ bfq_log(bfqd,
-+ "at end, sample %u/%u tot_sects %llu",
-+ bfqd->peak_rate_samples, bfqd->sequential_samples,
-+ bfqd->tot_sectors_dispatched);
-+}
-+
-+static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
-+{
-+ u32 rate, weight, divisor;
-+
-+ /*
-+ * For the convergence property to hold (see comments on
-+ * bfq_update_peak_rate()) and for the assessment to be
-+ * reliable, a minimum number of samples must be present, and
-+ * a minimum amount of time must have elapsed. If not so, do
-+ * not compute new rate. Just reset parameters, to get ready
-+ * for a new evaluation attempt.
-+ */
-+ if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
-+ bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL) {
-+ bfq_log(bfqd,
-+ "only resetting, delta_first %lluus samples %d",
-+ bfqd->delta_from_first>>10, bfqd->peak_rate_samples);
-+ goto reset_computation;
-+ }
-+
-+ /*
-+ * If a new request completion has occurred after last
-+ * dispatch, then, to approximate the rate at which requests
-+ * have been served by the device, it is more precise to
-+ * extend the observation interval to the last completion.
-+ */
-+ bfqd->delta_from_first =
-+ max_t(u64, bfqd->delta_from_first,
-+ bfqd->last_completion - bfqd->first_dispatch);
-+
-+ BUG_ON(bfqd->delta_from_first == 0);
-+ /*
-+ * Rate computed in sects/usec, and not sects/nsec, for
-+ * precision issues.
-+ */
-+ rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
-+ div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
-+
-+ bfq_log(bfqd,
-+"tot_sects %llu delta_first %lluus rate %llu sects/s (%d)",
-+ bfqd->tot_sectors_dispatched, bfqd->delta_from_first>>10,
-+ ((USEC_PER_SEC*(u64)rate)>>BFQ_RATE_SHIFT),
-+ rate > 20<<BFQ_RATE_SHIFT);
-+
-+ /*
-+ * Peak rate not updated if:
-+ * - the percentage of sequential dispatches is below 3/4 of the
-+ * total, and rate is below the current estimated peak rate
-+ * - rate is unreasonably high (> 20M sectors/sec)
-+ */
-+ if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
-+ rate <= bfqd->peak_rate) ||
-+ rate > 20<<BFQ_RATE_SHIFT) {
-+ bfq_log(bfqd,
-+ "goto reset, samples %u/%u rate/peak %llu/%llu",
-+ bfqd->peak_rate_samples, bfqd->sequential_samples,
-+ ((USEC_PER_SEC*(u64)rate)>>BFQ_RATE_SHIFT),
-+ ((USEC_PER_SEC*(u64)bfqd->peak_rate)>>BFQ_RATE_SHIFT));
-+ goto reset_computation;
-+ } else {
-+ bfq_log(bfqd,
-+ "do update, samples %u/%u rate/peak %llu/%llu",
-+ bfqd->peak_rate_samples, bfqd->sequential_samples,
-+ ((USEC_PER_SEC*(u64)rate)>>BFQ_RATE_SHIFT),
-+ ((USEC_PER_SEC*(u64)bfqd->peak_rate)>>BFQ_RATE_SHIFT));
-+ }
-+
-+ /*
-+ * We have to update the peak rate, at last! To this purpose,
-+ * we use a low-pass filter. We compute the smoothing constant
-+ * of the filter as a function of the 'weight' of the new
-+ * measured rate.
-+ *
-+ * As can be seen in next formulas, we define this weight as a
-+ * quantity proportional to how sequential the workload is,
-+ * and to how long the observation time interval is.
-+ *
-+ * The weight runs from 0 to 8. The maximum value of the
-+ * weight, 8, yields the minimum value for the smoothing
-+ * constant. At this minimum value for the smoothing constant,
-+ * the measured rate contributes for half of the next value of
-+ * the estimated peak rate.
-+ *
-+ * So, the first step is to compute the weight as a function
-+ * of how sequential the workload is. Note that the weight
-+ * cannot reach 9, because bfqd->sequential_samples cannot
-+ * become equal to bfqd->peak_rate_samples, which, in its
-+ * turn, holds true because bfqd->sequential_samples is not
-+ * incremented for the first sample.
-+ */
-+ weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
-+
-+ /*
-+ * Second step: further refine the weight as a function of the
-+ * duration of the observation interval.
-+ */
-+ weight = min_t(u32, 8,
-+ div_u64(weight * bfqd->delta_from_first,
-+ BFQ_RATE_REF_INTERVAL));
-+
-+ /*
-+ * Divisor ranging from 10, for minimum weight, to 2, for
-+ * maximum weight.
-+ */
-+ divisor = 10 - weight;
-+ BUG_ON(divisor == 0);
-+
-+ /*
-+ * Finally, update peak rate:
-+ *
-+ * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
-+ */
-+ bfqd->peak_rate *= divisor-1;
-+ bfqd->peak_rate /= divisor;
-+ rate /= divisor; /* smoothing constant alpha = 1/divisor */
-+
-+ bfq_log(bfqd,
-+ "divisor %d tmp_peak_rate %llu tmp_rate %u",
-+ divisor,
-+ ((USEC_PER_SEC*(u64)bfqd->peak_rate)>>BFQ_RATE_SHIFT),
-+ (u32)((USEC_PER_SEC*(u64)rate)>>BFQ_RATE_SHIFT));
-+
-+ BUG_ON(bfqd->peak_rate == 0);
-+ BUG_ON(bfqd->peak_rate > 20<<BFQ_RATE_SHIFT);
-+
-+ bfqd->peak_rate += rate;
-+
-+ /*
-+ * For a very slow device, bfqd->peak_rate can reach 0 (see
-+ * the minimum representable values reported in the comments
-+ * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
-+ * divisions by zero where bfqd->peak_rate is used as a
-+ * divisor.
-+ */
-+ bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
-+
-+ update_thr_responsiveness_params(bfqd);
-+ BUG_ON(bfqd->peak_rate > 20<<BFQ_RATE_SHIFT);
-+
-+reset_computation:
-+ bfq_reset_rate_computation(bfqd, rq);
-+}
-+
-+/*
-+ * Update the read/write peak rate (the main quantity used for
-+ * auto-tuning, see update_thr_responsiveness_params()).
-+ *
-+ * It is not trivial to estimate the peak rate (correctly): because of
-+ * the presence of sw and hw queues between the scheduler and the
-+ * device components that finally serve I/O requests, it is hard to
-+ * say exactly when a given dispatched request is served inside the
-+ * device, and for how long. As a consequence, it is hard to know
-+ * precisely at what rate a given set of requests is actually served
-+ * by the device.
-+ *
-+ * On the opposite end, the dispatch time of any request is trivially
-+ * available, and, from this piece of information, the "dispatch rate"
-+ * of requests can be immediately computed. So, the idea in the next
-+ * function is to use what is known, namely request dispatch times
-+ * (plus, when useful, request completion times), to estimate what is
-+ * unknown, namely in-device request service rate.
-+ *
-+ * The main issue is that, because of the above facts, the rate at
-+ * which a certain set of requests is dispatched over a certain time
-+ * interval can vary greatly with respect to the rate at which the
-+ * same requests are then served. But, since the size of any
-+ * intermediate queue is limited, and the service scheme is lossless
-+ * (no request is silently dropped), the following obvious convergence
-+ * property holds: the number of requests dispatched MUST become
-+ * closer and closer to the number of requests completed as the
-+ * observation interval grows. This is the key property used in
-+ * the next function to estimate the peak service rate as a function
-+ * of the observed dispatch rate. The function assumes to be invoked
-+ * on every request dispatch.
-+ */
-+static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
-+{
-+ u64 now_ns = ktime_get_ns();
-+
-+ if (bfqd->peak_rate_samples == 0) { /* first dispatch */
-+ bfq_log(bfqd,
-+ "goto reset, samples %d",
-+ bfqd->peak_rate_samples) ;
-+ bfq_reset_rate_computation(bfqd, rq);
-+ goto update_last_values; /* will add one sample */
-+ }
-+
-+ /*
-+ * Device idle for very long: the observation interval lasting
-+ * up to this dispatch cannot be a valid observation interval
-+ * for computing a new peak rate (similarly to the late-
-+ * completion event in bfq_completed_request()). Go to
-+ * update_rate_and_reset to have the following three steps
-+ * taken:
-+ * - close the observation interval at the last (previous)
-+ * request dispatch or completion
-+ * - compute rate, if possible, for that observation interval
-+ * - start a new observation interval with this dispatch
-+ */
-+ if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
-+ bfqd->rq_in_driver == 0) {
-+ bfq_log(bfqd,
-+"jumping to updating&resetting delta_last %lluus samples %d",
-+ (now_ns - bfqd->last_dispatch)>>10,
-+ bfqd->peak_rate_samples) ;
-+ goto update_rate_and_reset;
-+ }
-+
-+ /* Update sampling information */
-+ bfqd->peak_rate_samples++;
-+
-+ if ((bfqd->rq_in_driver > 0 ||
-+ now_ns - bfqd->last_completion < BFQ_MIN_TT)
-+ && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
-+ bfqd->sequential_samples++;
-+
-+ bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
-+
-+ /* Reset max observed rq size every 32 dispatches */
-+ if (likely(bfqd->peak_rate_samples % 32))
-+ bfqd->last_rq_max_size =
-+ max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
-+ else
-+ bfqd->last_rq_max_size = blk_rq_sectors(rq);
-+
-+ bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
-+
-+ bfq_log(bfqd,
-+ "added samples %u/%u tot_sects %llu delta_first %lluus",
-+ bfqd->peak_rate_samples, bfqd->sequential_samples,
-+ bfqd->tot_sectors_dispatched,
-+ bfqd->delta_from_first>>10);
-+
-+ /* Target observation interval not yet reached, go on sampling */
-+ if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
-+ goto update_last_values;
-+
-+update_rate_and_reset:
-+ bfq_update_rate_reset(bfqd, rq);
-+update_last_values:
-+ bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
-+ if (RQ_BFQQ(rq) == bfqd->in_service_queue)
-+ bfqd->in_serv_last_pos = bfqd->last_position;
-+ bfqd->last_dispatch = now_ns;
-+
-+ bfq_log(bfqd,
-+ "delta_first %lluus last_pos %llu peak_rate %llu",
-+ (now_ns - bfqd->first_dispatch)>>10,
-+ (unsigned long long) bfqd->last_position,
-+ ((USEC_PER_SEC*(u64)bfqd->peak_rate)>>BFQ_RATE_SHIFT));
-+ bfq_log(bfqd,
-+ "samples at end %d", bfqd->peak_rate_samples);
-+}
-+
-+/*
-+ * Remove request from internal lists.
-+ */
-+static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
-+{
-+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
-+
-+ /*
-+ * For consistency, the next instruction should have been
-+ * executed after removing the request from the queue and
-+ * dispatching it. We execute instead this instruction before
-+ * bfq_remove_request() (and hence introduce a temporary
-+ * inconsistency), for efficiency. In fact, should this
-+ * dispatch occur for a non in-service bfqq, this anticipated
-+ * increment prevents two counters related to bfqq->dispatched
-+ * from risking to be, first, uselessly decremented, and then
-+ * incremented again when the (new) value of bfqq->dispatched
-+ * happens to be taken into account.
-+ */
-+ bfqq->dispatched++;
-+ bfq_update_peak_rate(q->elevator->elevator_data, rq);
-+
-+ bfq_remove_request(q, rq);
-+}
-+
-+static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
-+{
-+ BUG_ON(bfqq != bfqd->in_service_queue);
-+
-+ /*
-+ * If this bfqq is shared between multiple processes, check
-+ * to make sure that those processes are still issuing I/Os
-+ * within the mean seek distance. If not, it may be time to
-+ * break the queues apart again.
-+ */
-+ if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
-+ bfq_mark_bfqq_split_coop(bfqq);
-+
-+ if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
-+ if (bfqq->dispatched == 0)
-+ /*
-+ * Overloading budget_timeout field to store
-+ * the time at which the queue remains with no
-+ * backlog and no outstanding request; used by
-+ * the weight-raising mechanism.
-+ */
-+ bfqq->budget_timeout = jiffies;
-+
-+ bfq_del_bfqq_busy(bfqd, bfqq, true);
-+ } else {
-+ bfq_requeue_bfqq(bfqd, bfqq, true);
-+ /*
-+ * Resort priority tree of potential close cooperators.
-+ */
-+ bfq_pos_tree_add_move(bfqd, bfqq);
-+ }
-+
-+ /*
-+ * All in-service entities must have been properly deactivated
-+ * or requeued before executing the next function, which
-+ * resets all in-service entites as no more in service.
-+ */
-+ __bfq_bfqd_reset_in_service(bfqd);
-+}
-+
-+/**
-+ * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
-+ * @bfqd: device data.
-+ * @bfqq: queue to update.
-+ * @reason: reason for expiration.
-+ *
-+ * Handle the feedback on @bfqq budget at queue expiration.
-+ * See the body for detailed comments.
-+ */
-+static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ enum bfqq_expiration reason)
-+{
-+ struct request *next_rq;
-+ int budget, min_budget;
-+
-+ BUG_ON(bfqq != bfqd->in_service_queue);
-+
-+ min_budget = bfq_min_budget(bfqd);
-+
-+ if (bfqq->wr_coeff == 1)
-+ budget = bfqq->max_budget;
-+ else /*
-+ * Use a constant, low budget for weight-raised queues,
-+ * to help achieve a low latency. Keep it slightly higher
-+ * than the minimum possible budget, to cause a little
-+ * bit fewer expirations.
-+ */
-+ budget = 2 * min_budget;
-+
-+ bfq_log_bfqq(bfqd, bfqq, "last budg %d, budg left %d",
-+ bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
-+ bfq_log_bfqq(bfqd, bfqq, "last max_budg %d, min budg %d",
-+ budget, bfq_min_budget(bfqd));
-+ bfq_log_bfqq(bfqd, bfqq, "sync %d, seeky %d",
-+ bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
-+
-+ if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
-+ switch (reason) {
-+ /*
-+ * Caveat: in all the following cases we trade latency
-+ * for throughput.
-+ */
-+ case BFQ_BFQQ_TOO_IDLE:
-+ /*
-+ * This is the only case where we may reduce
-+ * the budget: if there is no request of the
-+ * process still waiting for completion, then
-+ * we assume (tentatively) that the timer has
-+ * expired because the batch of requests of
-+ * the process could have been served with a
-+ * smaller budget. Hence, betting that
-+ * process will behave in the same way when it
-+ * becomes backlogged again, we reduce its
-+ * next budget. As long as we guess right,
-+ * this budget cut reduces the latency
-+ * experienced by the process.
-+ *
-+ * However, if there are still outstanding
-+ * requests, then the process may have not yet
-+ * issued its next request just because it is
-+ * still waiting for the completion of some of
-+ * the still outstanding ones. So in this
-+ * subcase we do not reduce its budget, on the
-+ * contrary we increase it to possibly boost
-+ * the throughput, as discussed in the
-+ * comments to the BUDGET_TIMEOUT case.
-+ */
-+ if (bfqq->dispatched > 0) /* still outstanding reqs */
-+ budget = min(budget * 2, bfqd->bfq_max_budget);
-+ else {
-+ if (budget > 5 * min_budget)
-+ budget -= 4 * min_budget;
-+ else
-+ budget = min_budget;
-+ }
-+ break;
-+ case BFQ_BFQQ_BUDGET_TIMEOUT:
-+ /*
-+ * We double the budget here because it gives
-+ * the chance to boost the throughput if this
-+ * is not a seeky process (and has bumped into
-+ * this timeout because of, e.g., ZBR).
-+ */
-+ budget = min(budget * 2, bfqd->bfq_max_budget);
-+ break;
-+ case BFQ_BFQQ_BUDGET_EXHAUSTED:
-+ /*
-+ * The process still has backlog, and did not
-+ * let either the budget timeout or the disk
-+ * idling timeout expire. Hence it is not
-+ * seeky, has a short thinktime and may be
-+ * happy with a higher budget too. So
-+ * definitely increase the budget of this good
-+ * candidate to boost the disk throughput.
-+ */
-+ budget = min(budget * 4, bfqd->bfq_max_budget);
-+ break;
-+ case BFQ_BFQQ_NO_MORE_REQUESTS:
-+ /*
-+ * For queues that expire for this reason, it
-+ * is particularly important to keep the
-+ * budget close to the actual service they
-+ * need. Doing so reduces the timestamp
-+ * misalignment problem described in the
-+ * comments in the body of
-+ * __bfq_activate_entity. In fact, suppose
-+ * that a queue systematically expires for
-+ * BFQ_BFQQ_NO_MORE_REQUESTS and presents a
-+ * new request in time to enjoy timestamp
-+ * back-shifting. The larger the budget of the
-+ * queue is with respect to the service the
-+ * queue actually requests in each service
-+ * slot, the more times the queue can be
-+ * reactivated with the same virtual finish
-+ * time. It follows that, even if this finish
-+ * time is pushed to the system virtual time
-+ * to reduce the consequent timestamp
-+ * misalignment, the queue unjustly enjoys for
-+ * many re-activations a lower finish time
-+ * than all newly activated queues.
-+ *
-+ * The service needed by bfqq is measured
-+ * quite precisely by bfqq->entity.service.
-+ * Since bfqq does not enjoy device idling,
-+ * bfqq->entity.service is equal to the number
-+ * of sectors that the process associated with
-+ * bfqq requested to read/write before waiting
-+ * for request completions, or blocking for
-+ * other reasons.
-+ */
-+ budget = max_t(int, bfqq->entity.service, min_budget);
-+ break;
-+ default:
-+ return;
-+ }
-+ } else if (!bfq_bfqq_sync(bfqq))
-+ /*
-+ * Async queues get always the maximum possible
-+ * budget, as for them we do not care about latency
-+ * (in addition, their ability to dispatch is limited
-+ * by the charging factor).
-+ */
-+ budget = bfqd->bfq_max_budget;
-+
-+ bfqq->max_budget = budget;
-+
-+ if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
-+ !bfqd->bfq_user_max_budget)
-+ bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
-+
-+ /*
-+ * If there is still backlog, then assign a new budget, making
-+ * sure that it is large enough for the next request. Since
-+ * the finish time of bfqq must be kept in sync with the
-+ * budget, be sure to call __bfq_bfqq_expire() *after* this
-+ * update.
-+ *
-+ * If there is no backlog, then no need to update the budget;
-+ * it will be updated on the arrival of a new request.
-+ */
-+ next_rq = bfqq->next_rq;
-+ if (next_rq) {
-+ BUG_ON(reason == BFQ_BFQQ_TOO_IDLE ||
-+ reason == BFQ_BFQQ_NO_MORE_REQUESTS);
-+ bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
-+ bfq_serv_to_charge(next_rq, bfqq));
-+ BUG_ON(!bfq_bfqq_busy(bfqq));
-+ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
-+ }
-+
-+ bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
-+ next_rq ? blk_rq_sectors(next_rq) : 0,
-+ bfqq->entity.budget);
-+}
-+
-+/*
-+ * Return true if the process associated with bfqq is "slow". The slow
-+ * flag is used, in addition to the budget timeout, to reduce the
-+ * amount of service provided to seeky processes, and thus reduce
-+ * their chances to lower the throughput. More details in the comments
-+ * on the function bfq_bfqq_expire().
-+ *
-+ * An important observation is in order: as discussed in the comments
-+ * on the function bfq_update_peak_rate(), with devices with internal
-+ * queues, it is hard if ever possible to know when and for how long
-+ * an I/O request is processed by the device (apart from the trivial
-+ * I/O pattern where a new request is dispatched only after the
-+ * previous one has been completed). This makes it hard to evaluate
-+ * the real rate at which the I/O requests of each bfq_queue are
-+ * served. In fact, for an I/O scheduler like BFQ, serving a
-+ * bfq_queue means just dispatching its requests during its service
-+ * slot (i.e., until the budget of the queue is exhausted, or the
-+ * queue remains idle, or, finally, a timeout fires). But, during the
-+ * service slot of a bfq_queue, around 100 ms at most, the device may
-+ * be even still processing requests of bfq_queues served in previous
-+ * service slots. On the opposite end, the requests of the in-service
-+ * bfq_queue may be completed after the service slot of the queue
-+ * finishes.
-+ *
-+ * Anyway, unless more sophisticated solutions are used
-+ * (where possible), the sum of the sizes of the requests dispatched
-+ * during the service slot of a bfq_queue is probably the only
-+ * approximation available for the service received by the bfq_queue
-+ * during its service slot. And this sum is the quantity used in this
-+ * function to evaluate the I/O speed of a process.
-+ */
-+static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
-+ bool compensate, enum bfqq_expiration reason,
-+ unsigned long *delta_ms)
-+{
-+ ktime_t delta_ktime;
-+ u32 delta_usecs;
-+ bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
-+
-+ if (!bfq_bfqq_sync(bfqq))
-+ return false;
-+
-+ if (compensate)
-+ delta_ktime = bfqd->last_idling_start;
-+ else
-+ delta_ktime = ktime_get();
-+ delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
-+ delta_usecs = ktime_to_us(delta_ktime);
-+
-+ /* don't use too short time intervals */
-+ if (delta_usecs < 1000) {
-+ if (blk_queue_nonrot(bfqd->queue))
-+ /*
-+ * give same worst-case guarantees as idling
-+ * for seeky
-+ */
-+ *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
-+ else /* charge at least one seek */
-+ *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
-+
-+ bfq_log(bfqd, "too short %u", delta_usecs);
-+
-+ return slow;
-+ }
-+
-+ *delta_ms = delta_usecs / USEC_PER_MSEC;
-+
-+ /*
-+ * Use only long (> 20ms) intervals to filter out excessive
-+ * spikes in service rate estimation.
-+ */
-+ if (delta_usecs > 20000) {
-+ /*
-+ * Caveat for rotational devices: processes doing I/O
-+ * in the slower disk zones tend to be slow(er) even
-+ * if not seeky. In this respect, the estimated peak
-+ * rate is likely to be an average over the disk
-+ * surface. Accordingly, to not be too harsh with
-+ * unlucky processes, a process is deemed slow only if
-+ * its rate has been lower than half of the estimated
-+ * peak rate.
-+ */
-+ slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
-+ bfq_log(bfqd, "relative rate %d/%d",
-+ bfqq->entity.service, bfqd->bfq_max_budget);
-+ }
-+
-+ bfq_log_bfqq(bfqd, bfqq, "slow %d", slow);
-+
-+ return slow;
-+}
-+
-+/*
-+ * To be deemed as soft real-time, an application must meet two
-+ * requirements. First, the application must not require an average
-+ * bandwidth higher than the approximate bandwidth required to playback or
-+ * record a compressed high-definition video.
-+ * The next function is invoked on the completion of the last request of a
-+ * batch, to compute the next-start time instant, soft_rt_next_start, such
-+ * that, if the next request of the application does not arrive before
-+ * soft_rt_next_start, then the above requirement on the bandwidth is met.
-+ *
-+ * The second requirement is that the request pattern of the application is
-+ * isochronous, i.e., that, after issuing a request or a batch of requests,
-+ * the application stops issuing new requests until all its pending requests
-+ * have been completed. After that, the application may issue a new batch,
-+ * and so on.
-+ * For this reason the next function is invoked to compute
-+ * soft_rt_next_start only for applications that meet this requirement,
-+ * whereas soft_rt_next_start is set to infinity for applications that do
-+ * not.
-+ *
-+ * Unfortunately, even a greedy (i.e., I/O-bound) application may
-+ * happen to meet, occasionally or systematically, both the above
-+ * bandwidth and isochrony requirements. This may happen at least in
-+ * the following circumstances. First, if the CPU load is high. The
-+ * application may stop issuing requests while the CPUs are busy
-+ * serving other processes, then restart, then stop again for a while,
-+ * and so on. The other circumstances are related to the storage
-+ * device: the storage device is highly loaded or reaches a low-enough
-+ * throughput with the I/O of the application (e.g., because the I/O
-+ * is random and/or the device is slow). In all these cases, the
-+ * I/O of the application may be simply slowed down enough to meet
-+ * the bandwidth and isochrony requirements. To reduce the probability
-+ * that greedy applications are deemed as soft real-time in these
-+ * corner cases, a further rule is used in the computation of
-+ * soft_rt_next_start: the return value of this function is forced to
-+ * be higher than the maximum between the following two quantities.
-+ *
-+ * (a) Current time plus: (1) the maximum time for which the arrival
-+ * of a request is waited for when a sync queue becomes idle,
-+ * namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
-+ * postpone for a moment the reason for adding a few extra
-+ * jiffies; we get back to it after next item (b). Lower-bounding
-+ * the return value of this function with the current time plus
-+ * bfqd->bfq_slice_idle tends to filter out greedy applications,
-+ * because the latter issue their next request as soon as possible
-+ * after the last one has been completed. In contrast, a soft
-+ * real-time application spends some time processing data, after a
-+ * batch of its requests has been completed.
-+ *
-+ * (b) Current value of bfqq->soft_rt_next_start. As pointed out
-+ * above, greedy applications may happen to meet both the
-+ * bandwidth and isochrony requirements under heavy CPU or
-+ * storage-device load. In more detail, in these scenarios, these
-+ * applications happen, only for limited time periods, to do I/O
-+ * slowly enough to meet all the requirements described so far,
-+ * including the filtering in above item (a). These slow-speed
-+ * time intervals are usually interspersed between other time
-+ * intervals during which these applications do I/O at a very high
-+ * speed. Fortunately, exactly because of the high speed of the
-+ * I/O in the high-speed intervals, the values returned by this
-+ * function happen to be so high, near the end of any such
-+ * high-speed interval, to be likely to fall *after* the end of
-+ * the low-speed time interval that follows. These high values are
-+ * stored in bfqq->soft_rt_next_start after each invocation of
-+ * this function. As a consequence, if the last value of
-+ * bfqq->soft_rt_next_start is constantly used to lower-bound the
-+ * next value that this function may return, then, from the very
-+ * beginning of a low-speed interval, bfqq->soft_rt_next_start is
-+ * likely to be constantly kept so high that any I/O request
-+ * issued during the low-speed interval is considered as arriving
-+ * to soon for the application to be deemed as soft
-+ * real-time. Then, in the high-speed interval that follows, the
-+ * application will not be deemed as soft real-time, just because
-+ * it will do I/O at a high speed. And so on.
-+ *
-+ * Getting back to the filtering in item (a), in the following two
-+ * cases this filtering might be easily passed by a greedy
-+ * application, if the reference quantity was just
-+ * bfqd->bfq_slice_idle:
-+ * 1) HZ is so low that the duration of a jiffy is comparable to or
-+ * higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
-+ * devices with HZ=100. The time granularity may be so coarse
-+ * that the approximation, in jiffies, of bfqd->bfq_slice_idle
-+ * is rather lower than the exact value.
-+ * 2) jiffies, instead of increasing at a constant rate, may stop increasing
-+ * for a while, then suddenly 'jump' by several units to recover the lost
-+ * increments. This seems to happen, e.g., inside virtual machines.
-+ * To address this issue, in the filtering in (a) we do not use as a
-+ * reference time interval just bfqd->bfq_slice_idle, but
-+ * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
-+ * minimum number of jiffies for which the filter seems to be quite
-+ * precise also in embedded systems and KVM/QEMU virtual machines.
-+ */
-+static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ bfq_log_bfqq(bfqd, bfqq,
-+"service_blkg %lu soft_rate %u sects/sec interval %u",
-+ bfqq->service_from_backlogged,
-+ bfqd->bfq_wr_max_softrt_rate,
-+ jiffies_to_msecs(HZ * bfqq->service_from_backlogged /
-+ bfqd->bfq_wr_max_softrt_rate));
-+
-+ return max3(bfqq->soft_rt_next_start,
-+ bfqq->last_idle_bklogged +
-+ HZ * bfqq->service_from_backlogged /
-+ bfqd->bfq_wr_max_softrt_rate,
-+ jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
-+}
-+
-+static bool bfq_bfqq_injectable(struct bfq_queue *bfqq)
-+{
-+ return BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
-+ blk_queue_nonrot(bfqq->bfqd->queue) &&
-+ bfqq->bfqd->hw_tag;
-+}
-+
-+/**
-+ * bfq_bfqq_expire - expire a queue.
-+ * @bfqd: device owning the queue.
-+ * @bfqq: the queue to expire.
-+ * @compensate: if true, compensate for the time spent idling.
-+ * @reason: the reason causing the expiration.
-+ *
-+ * If the process associated with bfqq does slow I/O (e.g., because it
-+ * issues random requests), we charge bfqq with the time it has been
-+ * in service instead of the service it has received (see
-+ * bfq_bfqq_charge_time for details on how this goal is achieved). As
-+ * a consequence, bfqq will typically get higher timestamps upon
-+ * reactivation, and hence it will be rescheduled as if it had
-+ * received more service than what it has actually received. In the
-+ * end, bfqq receives less service in proportion to how slowly its
-+ * associated process consumes its budgets (and hence how seriously it
-+ * tends to lower the throughput). In addition, this time-charging
-+ * strategy guarantees time fairness among slow processes. In
-+ * contrast, if the process associated with bfqq is not slow, we
-+ * charge bfqq exactly with the service it has received.
-+ *
-+ * Charging time to the first type of queues and the exact service to
-+ * the other has the effect of using the WF2Q+ policy to schedule the
-+ * former on a timeslice basis, without violating service domain
-+ * guarantees among the latter.
-+ */
-+static void bfq_bfqq_expire(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ bool compensate,
-+ enum bfqq_expiration reason)
-+{
-+ bool slow;
-+ unsigned long delta = 0;
-+ struct bfq_entity *entity = &bfqq->entity;
-+ int ref;
-+
-+ BUG_ON(bfqq != bfqd->in_service_queue);
-+
-+ /*
-+ * Check whether the process is slow (see bfq_bfqq_is_slow).
-+ */
-+ slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
-+
-+ /*
-+ * As above explained, charge slow (typically seeky) and
-+ * timed-out queues with the time and not the service
-+ * received, to favor sequential workloads.
-+ *
-+ * Processes doing I/O in the slower disk zones will tend to
-+ * be slow(er) even if not seeky. Therefore, since the
-+ * estimated peak rate is actually an average over the disk
-+ * surface, these processes may timeout just for bad luck. To
-+ * avoid punishing them, do not charge time to processes that
-+ * succeeded in consuming at least 2/3 of their budget. This
-+ * allows BFQ to preserve enough elasticity to still perform
-+ * bandwidth, and not time, distribution with little unlucky
-+ * or quasi-sequential processes.
-+ */
-+ if (bfqq->wr_coeff == 1 &&
-+ (slow ||
-+ (reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
-+ bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
-+ bfq_bfqq_charge_time(bfqd, bfqq, delta);
-+
-+ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
-+
-+ if (reason == BFQ_BFQQ_TOO_IDLE &&
-+ entity->service <= 2 * entity->budget / 10)
-+ bfq_clear_bfqq_IO_bound(bfqq);
-+
-+ if (bfqd->low_latency && bfqq->wr_coeff == 1)
-+ bfqq->last_wr_start_finish = jiffies;
-+
-+ if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
-+ RB_EMPTY_ROOT(&bfqq->sort_list)) {
-+ /*
-+ * If we get here, and there are no outstanding
-+ * requests, then the request pattern is isochronous
-+ * (see the comments on the function
-+ * bfq_bfqq_softrt_next_start()). Thus we can compute
-+ * soft_rt_next_start. And we do it, unless bfqq is in
-+ * interactive weight raising. We do not do it in the
-+ * latter subcase, for the following reason. bfqq may
-+ * be conveying the I/O needed to load a soft
-+ * real-time application. Such an application will
-+ * actually exhibit a soft real-time I/O pattern after
-+ * it finally starts doing its job. But, if
-+ * soft_rt_next_start is computed here for an
-+ * interactive bfqq, and bfqq had received a lot of
-+ * service before remaining with no outstanding
-+ * request (likely to happen on a fast device), then
-+ * soft_rt_next_start would be assigned such a high
-+ * value that, for a very long time, bfqq would be
-+ * prevented from being possibly considered as soft
-+ * real time.
-+ *
-+ * If, instead, the queue still has outstanding
-+ * requests, then we have to wait for the completion
-+ * of all the outstanding requests to discover whether
-+ * the request pattern is actually isochronous.
-+ */
-+ BUG_ON(bfq_tot_busy_queues(bfqd) < 1);
-+ if (bfqq->dispatched == 0 &&
-+ bfqq->wr_coeff != bfqd->bfq_wr_coeff) {
-+ bfqq->soft_rt_next_start =
-+ bfq_bfqq_softrt_next_start(bfqd, bfqq);
-+ bfq_log_bfqq(bfqd, bfqq, "new soft_rt_next %lu",
-+ bfqq->soft_rt_next_start);
-+ } else if (bfqq->dispatched > 0) {
-+ /*
-+ * Schedule an update of soft_rt_next_start to when
-+ * the task may be discovered to be isochronous.
-+ */
-+ bfq_mark_bfqq_softrt_update(bfqq);
-+ }
-+ }
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "expire (%s, slow %d, num_disp %d, short %d, weight %d, serv %d/%d)",
-+ reason_name[reason], slow, bfqq->dispatched,
-+ bfq_bfqq_has_short_ttime(bfqq), entity->weight,
-+ entity->service, entity->budget);
-+
-+ /*
-+ * Increase, decrease or leave budget unchanged according to
-+ * reason.
-+ */
-+ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
-+ __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
-+ BUG_ON(bfqq->next_rq == NULL &&
-+ bfqq->entity.budget < bfqq->entity.service);
-+ ref = bfqq->ref;
-+ __bfq_bfqq_expire(bfqd, bfqq);
-+
-+ if (ref == 1) /* bfqq is gone, no more actions on it */
-+ return;
-+
-+ BUG_ON(ref > 1 &&
-+ !bfq_bfqq_busy(bfqq) && reason == BFQ_BFQQ_BUDGET_EXHAUSTED &&
-+ !bfq_class_idle(bfqq));
-+
-+ bfqq->injected_service = 0;
-+
-+ /* mark bfqq as waiting a request only if a bic still points to it */
-+ if (!bfq_bfqq_busy(bfqq) &&
-+ reason != BFQ_BFQQ_BUDGET_TIMEOUT &&
-+ reason != BFQ_BFQQ_BUDGET_EXHAUSTED) {
-+ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
-+ BUG_ON(bfqq->next_rq);
-+ bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
-+ /*
-+ * Not setting service to 0, because, if the next rq
-+ * arrives in time, the queue will go on receiving
-+ * service with this same budget (as if it never expired)
-+ */
-+ } else {
-+ entity->service = 0;
-+ bfq_log_bfqq(bfqd, bfqq, "resetting service");
-+ }
-+
-+ /*
-+ * Reset the received-service counter for every parent entity.
-+ * Differently from what happens with bfqq->entity.service,
-+ * the resetting of this counter never needs to be postponed
-+ * for parent entities. In fact, in case bfqq may have a
-+ * chance to go on being served using the last, partially
-+ * consumed budget, bfqq->entity.service needs to be kept,
-+ * because if bfqq then actually goes on being served using
-+ * the same budget, the last value of bfqq->entity.service is
-+ * needed to properly decrement bfqq->entity.budget by the
-+ * portion already consumed. In contrast, it is not necessary
-+ * to keep entity->service for parent entities too, because
-+ * the bubble up of the new value of bfqq->entity.budget will
-+ * make sure that the budgets of parent entities are correct,
-+ * even in case bfqq and thus parent entities go on receiving
-+ * service with the same budget.
-+ */
-+ entity = entity->parent;
-+ for_each_entity(entity)
-+ entity->service = 0;
-+}
-+
-+/*
-+ * Budget timeout is not implemented through a dedicated timer, but
-+ * just checked on request arrivals and completions, as well as on
-+ * idle timer expirations.
-+ */
-+static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
-+{
-+ return time_is_before_eq_jiffies(bfqq->budget_timeout);
-+}
-+
-+/*
-+ * If we expire a queue that is actively waiting (i.e., with the
-+ * device idled) for the arrival of a new request, then we may incur
-+ * the timestamp misalignment problem described in the body of the
-+ * function __bfq_activate_entity. Hence we return true only if this
-+ * condition does not hold, or if the queue is slow enough to deserve
-+ * only to be kicked off for preserving a high throughput.
-+ */
-+static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
-+{
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "wait_request %d left %d timeout %d",
-+ bfq_bfqq_wait_request(bfqq),
-+ bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
-+ bfq_bfqq_budget_timeout(bfqq));
-+
-+ return (!bfq_bfqq_wait_request(bfqq) ||
-+ bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
-+ &&
-+ bfq_bfqq_budget_timeout(bfqq);
-+}
-+
-+static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ bool rot_without_queueing =
-+ !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
-+ bfqq_sequential_and_IO_bound,
-+ idling_boosts_thr;
-+
-+ bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
-+ bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
-+ /*
-+ * The next variable takes into account the cases where idling
-+ * boosts the throughput.
-+ *
-+ * The value of the variable is computed considering, first, that
-+ * idling is virtually always beneficial for the throughput if:
-+ * (a) the device is not NCQ-capable and rotational, or
-+ * (b) regardless of the presence of NCQ, the device is rotational and
-+ * the request pattern for bfqq is I/O-bound and sequential, or
-+ * (c) regardless of whether it is rotational, the device is
-+ * not NCQ-capable and the request pattern for bfqq is
-+ * I/O-bound and sequential.
-+ *
-+ * Secondly, and in contrast to the above item (b), idling an
-+ * NCQ-capable flash-based device would not boost the
-+ * throughput even with sequential I/O; rather it would lower
-+ * the throughput in proportion to how fast the device
-+ * is. Accordingly, the next variable is true if any of the
-+ * above conditions (a), (b) or (c) is true, and, in
-+ * particular, happens to be false if bfqd is an NCQ-capable
-+ * flash-based device.
-+ */
-+ idling_boosts_thr = rot_without_queueing ||
-+ ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
-+ bfqq_sequential_and_IO_bound);
-+
-+ bfq_log_bfqq(bfqd, bfqq, "idling_boosts_thr %d", idling_boosts_thr);
-+
-+ /*
-+ * The return value of this function is equal to that of
-+ * idling_boosts_thr, unless a special case holds. In this
-+ * special case, described below, idling may cause problems to
-+ * weight-raised queues.
-+ *
-+ * When the request pool is saturated (e.g., in the presence
-+ * of write hogs), if the processes associated with
-+ * non-weight-raised queues ask for requests at a lower rate,
-+ * then processes associated with weight-raised queues have a
-+ * higher probability to get a request from the pool
-+ * immediately (or at least soon) when they need one. Thus
-+ * they have a higher probability to actually get a fraction
-+ * of the device throughput proportional to their high
-+ * weight. This is especially true with NCQ-capable drives,
-+ * which enqueue several requests in advance, and further
-+ * reorder internally-queued requests.
-+ *
-+ * For this reason, we force to false the return value if
-+ * there are weight-raised busy queues. In this case, and if
-+ * bfqq is not weight-raised, this guarantees that the device
-+ * is not idled for bfqq (if, instead, bfqq is weight-raised,
-+ * then idling will be guaranteed by another variable, see
-+ * below). Combined with the timestamping rules of BFQ (see
-+ * [1] for details), this behavior causes bfqq, and hence any
-+ * sync non-weight-raised queue, to get a lower number of
-+ * requests served, and thus to ask for a lower number of
-+ * requests from the request pool, before the busy
-+ * weight-raised queues get served again. This often mitigates
-+ * starvation problems in the presence of heavy write
-+ * workloads and NCQ, thereby guaranteeing a higher
-+ * application and system responsiveness in these hostile
-+ * scenarios.
-+ */
-+ return idling_boosts_thr &&
-+ bfqd->wr_busy_queues == 0;
-+}
-+
-+/*
-+ * There is a case where idling must be performed not for
-+ * throughput concerns, but to preserve service guarantees.
-+ *
-+ * To introduce this case, we can note that allowing the drive
-+ * to enqueue more than one request at a time, and hence
-+ * delegating de facto final scheduling decisions to the
-+ * drive's internal scheduler, entails loss of control on the
-+ * actual request service order. In particular, the critical
-+ * situation is when requests from different processes happen
-+ * to be present, at the same time, in the internal queue(s)
-+ * of the drive. In such a situation, the drive, by deciding
-+ * the service order of the internally-queued requests, does
-+ * determine also the actual throughput distribution among
-+ * these processes. But the drive typically has no notion or
-+ * concern about per-process throughput distribution, and
-+ * makes its decisions only on a per-request basis. Therefore,
-+ * the service distribution enforced by the drive's internal
-+ * scheduler is likely to coincide with the desired
-+ * device-throughput distribution only in a completely
-+ * symmetric scenario where:
-+ * (i) each of these processes must get the same throughput as
-+ * the others;
-+ * (ii) the I/O of each process has the same properties, in
-+ * terms of locality (sequential or random), direction
-+ * (reads or writes), request sizes, greediness
-+ * (from I/O-bound to sporadic), and so on.
-+ * In fact, in such a scenario, the drive tends to treat
-+ * the requests of each of these processes in about the same
-+ * way as the requests of the others, and thus to provide
-+ * each of these processes with about the same throughput
-+ * (which is exactly the desired throughput distribution). In
-+ * contrast, in any asymmetric scenario, device idling is
-+ * certainly needed to guarantee that bfqq receives its
-+ * assigned fraction of the device throughput (see [1] for
-+ * details).
-+ * The problem is that idling may significantly reduce
-+ * throughput with certain combinations of types of I/O and
-+ * devices. An important example is sync random I/O, on flash
-+ * storage with command queueing. So, unless bfqq falls in the
-+ * above cases where idling also boosts throughput, it would
-+ * be important to check conditions (i) and (ii) accurately,
-+ * so as to avoid idling when not strictly needed for service
-+ * guarantees.
-+ *
-+ * Unfortunately, it is extremely difficult to thoroughly
-+ * check condition (ii). And, in case there are active groups,
-+ * it becomes very difficult to check condition (i) too. In
-+ * fact, if there are active groups, then, for condition (i)
-+ * to become false, it is enough that an active group contains
-+ * more active processes or sub-groups than some other active
-+ * group. More precisely, for condition (i) to hold because of
-+ * such a group, it is not even necessary that the group is
-+ * (still) active: it is sufficient that, even if the group
-+ * has become inactive, some of its descendant processes still
-+ * have some request already dispatched but still waiting for
-+ * completion. In fact, requests have still to be guaranteed
-+ * their share of the throughput even after being
-+ * dispatched. In this respect, it is easy to show that, if a
-+ * group frequently becomes inactive while still having
-+ * in-flight requests, and if, when this happens, the group is
-+ * not considered in the calculation of whether the scenario
-+ * is asymmetric, then the group may fail to be guaranteed its
-+ * fair share of the throughput (basically because idling may
-+ * not be performed for the descendant processes of the group,
-+ * but it had to be). We address this issue with the
-+ * following bi-modal behavior, implemented in the function
-+ * bfq_symmetric_scenario().
-+ *
-+ * If there are groups with requests waiting for completion
-+ * (as commented above, some of these groups may even be
-+ * already inactive), then the scenario is tagged as
-+ * asymmetric, conservatively, without checking any of the
-+ * conditions (i) and (ii). So the device is idled for bfqq.
-+ * This behavior matches also the fact that groups are created
-+ * exactly if controlling I/O is a primary concern (to
-+ * preserve bandwidth and latency guarantees).
-+ *
-+ * On the opposite end, if there are no groups with requests
-+ * waiting for completion, then only condition (i) is actually
-+ * controlled, i.e., provided that condition (i) holds, idling
-+ * is not performed, regardless of whether condition (ii)
-+ * holds. In other words, only if condition (i) does not hold,
-+ * then idling is allowed, and the device tends to be
-+ * prevented from queueing many requests, possibly of several
-+ * processes. Since there are no groups with requests waiting
-+ * for completion, then, to control condition (i) it is enough
-+ * to check just whether all the queues with requests waiting
-+ * for completion also have the same weight.
-+ *
-+ * Not checking condition (ii) evidently exposes bfqq to the
-+ * risk of getting less throughput than its fair share.
-+ * However, for queues with the same weight, a further
-+ * mechanism, preemption, mitigates or even eliminates this
-+ * problem. And it does so without consequences on overall
-+ * throughput. This mechanism and its benefits are explained
-+ * in the next three paragraphs.
-+ *
-+ * Even if a queue, say Q, is expired when it remains idle, Q
-+ * can still preempt the new in-service queue if the next
-+ * request of Q arrives soon (see the comments on
-+ * bfq_bfqq_update_budg_for_activation). If all queues and
-+ * groups have the same weight, this form of preemption,
-+ * combined with the hole-recovery heuristic described in the
-+ * comments on function bfq_bfqq_update_budg_for_activation,
-+ * are enough to preserve a correct bandwidth distribution in
-+ * the mid term, even without idling. In fact, even if not
-+ * idling allows the internal queues of the device to contain
-+ * many requests, and thus to reorder requests, we can rather
-+ * safely assume that the internal scheduler still preserves a
-+ * minimum of mid-term fairness.
-+ *
-+ * More precisely, this preemption-based, idleless approach
-+ * provides fairness in terms of IOPS, and not sectors per
-+ * second. This can be seen with a simple example. Suppose
-+ * that there are two queues with the same weight, but that
-+ * the first queue receives requests of 8 sectors, while the
-+ * second queue receives requests of 1024 sectors. In
-+ * addition, suppose that each of the two queues contains at
-+ * most one request at a time, which implies that each queue
-+ * always remains idle after it is served. Finally, after
-+ * remaining idle, each queue receives very quickly a new
-+ * request. It follows that the two queues are served
-+ * alternatively, preempting each other if needed. This
-+ * implies that, although both queues have the same weight,
-+ * the queue with large requests receives a service that is
-+ * 1024/8 times as high as the service received by the other
-+ * queue.
-+ *
-+ * The motivation for using preemption instead of idling (for
-+ * queues with the same weight) is that, by not idling,
-+ * service guarantees are preserved (completely or at least in
-+ * part) without minimally sacrificing throughput. And, if
-+ * there is no active group, then the primary expectation for
-+ * this device is probably a high throughput.
-+ *
-+ * We are now left only with explaining the additional
-+ * compound condition that is checked below for deciding
-+ * whether the scenario is asymmetric. To explain this
-+ * compound condition, we need to add that the function
-+ * bfq_symmetric_scenario checks the weights of only
-+ * non-weight-raised queues, for efficiency reasons (see
-+ * comments on bfq_weights_tree_add()). Then the fact that
-+ * bfqq is weight-raised is checked explicitly here. More
-+ * precisely, the compound condition below takes into account
-+ * also the fact that, even if bfqq is being weight-raised,
-+ * the scenario is still symmetric if all queues with requests
-+ * waiting for completion happen to be
-+ * weight-raised. Actually, we should be even more precise
-+ * here, and differentiate between interactive weight raising
-+ * and soft real-time weight raising.
-+ *
-+ * As a side note, it is worth considering that the above
-+ * device-idling countermeasures may however fail in the
-+ * following unlucky scenario: if idling is (correctly)
-+ * disabled in a time period during which all symmetry
-+ * sub-conditions hold, and hence the device is allowed to
-+ * enqueue many requests, but at some later point in time some
-+ * sub-condition stops to hold, then it may become impossible
-+ * to let requests be served in the desired order until all
-+ * the requests already queued in the device have been served.
-+ */
-+static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ bool asymmetric_scenario = (bfqq->wr_coeff > 1 &&
-+ bfqd->wr_busy_queues <
-+ bfq_tot_busy_queues(bfqd)) ||
-+ !bfq_symmetric_scenario(bfqd);
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "wr_coeff %d wr_busy %d busy %d asymmetric %d",
-+ bfqq->wr_coeff,
-+ bfqd->wr_busy_queues,
-+ bfq_tot_busy_queues(bfqd),
-+ asymmetric_scenario);
-+
-+ return asymmetric_scenario;
-+}
-+
-+/*
-+ * For a queue that becomes empty, device idling is allowed only if
-+ * this function returns true for that queue. As a consequence, since
-+ * device idling plays a critical role for both throughput boosting
-+ * and service guarantees, the return value of this function plays a
-+ * critical role as well.
-+ *
-+ * In a nutshell, this function returns true only if idling is
-+ * beneficial for throughput or, even if detrimental for throughput,
-+ * idling is however necessary to preserve service guarantees (low
-+ * latency, desired throughput distribution, ...). In particular, on
-+ * NCQ-capable devices, this function tries to return false, so as to
-+ * help keep the drives' internal queues full, whenever this helps the
-+ * device boost the throughput without causing any service-guarantee
-+ * issue.
-+ *
-+ * Most of the issues taken into account to get the return value of
-+ * this function are not trivial. We discuss these issues in the two
-+ * functions providing the main pieces of information needed by this
-+ * function.
-+ */
-+static bool bfq_better_to_idle(struct bfq_queue *bfqq)
-+{
-+ struct bfq_data *bfqd = bfqq->bfqd;
-+ bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
-+
-+ if (unlikely(bfqd->strict_guarantees))
-+ return true;
-+
-+ /*
-+ * Idling is performed only if slice_idle > 0. In addition, we
-+ * do not idle if
-+ * (a) bfqq is async
-+ * (b) bfqq is in the idle io prio class: in this case we do
-+ * not idle because we want to minimize the bandwidth that
-+ * queues in this class can steal to higher-priority queues
-+ */
-+ if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
-+ bfq_class_idle(bfqq))
-+ return false;
-+
-+ idling_boosts_thr_with_no_issue =
-+ idling_boosts_thr_without_issues(bfqd, bfqq);
-+
-+ idling_needed_for_service_guar =
-+ idling_needed_for_service_guarantees(bfqd, bfqq);
-+
-+ /*
-+ * We have now the two components we need to compute the
-+ * return value of the function, which is true only if idling
-+ * either boosts the throughput (without issues), or is
-+ * necessary to preserve service guarantees.
-+ */
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "wr_busy %d boosts %d IO-bound %d guar %d",
-+ bfqd->wr_busy_queues,
-+ idling_boosts_thr_with_no_issue,
-+ bfq_bfqq_IO_bound(bfqq),
-+ idling_needed_for_service_guar);
-+
-+ return idling_boosts_thr_with_no_issue ||
-+ idling_needed_for_service_guar;
-+}
-+
-+/*
-+ * If the in-service queue is empty but the function bfq_better_to_idle
-+ * returns true, then:
-+ * 1) the queue must remain in service and cannot be expired, and
-+ * 2) the device must be idled to wait for the possible arrival of a new
-+ * request for the queue.
-+ * See the comments on the function bfq_better_to_idle for the reasons
-+ * why performing device idling is the best choice to boost the throughput
-+ * and preserve service guarantees when bfq_better_to_idle itself
-+ * returns true.
-+ */
-+static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
-+{
-+ return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
-+}
-+
-+static struct bfq_queue *bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
-+{
-+ struct bfq_queue *bfqq;
-+
-+ /*
-+ * A linear search; but, with a high probability, very few
-+ * steps are needed to find a candidate queue, i.e., a queue
-+ * with enough budget left for its next request. In fact:
-+ * - BFQ dynamically updates the budget of every queue so as
-+ * to accomodate the expected backlog of the queue;
-+ * - if a queue gets all its requests dispatched as injected
-+ * service, then the queue is removed from the active list
-+ * (and re-added only if it gets new requests, but with
-+ * enough budget for its new backlog).
-+ */
-+ list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
-+ if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
-+ bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
-+ bfq_bfqq_budget_left(bfqq)) {
-+ bfq_log_bfqq(bfqd, bfqq, "returned this queue");
-+ return bfqq;
-+ }
-+
-+ bfq_log(bfqd, "no queue found");
-+ return NULL;
-+}
-+
-+/*
-+ * Select a queue for service. If we have a current queue in service,
-+ * check whether to continue servicing it, or retrieve and set a new one.
-+ */
-+static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
-+{
-+ struct bfq_queue *bfqq;
-+ struct request *next_rq;
-+ enum bfqq_expiration reason = BFQ_BFQQ_BUDGET_TIMEOUT;
-+
-+ bfqq = bfqd->in_service_queue;
-+ if (!bfqq)
-+ goto new_queue;
-+
-+ bfq_log_bfqq(bfqd, bfqq, "already in-service queue");
-+
-+ /*
-+ * Do not expire bfqq for budget timeout if bfqq may be about
-+ * to enjoy device idling. The reason why, in this case, we
-+ * prevent bfqq from expiring is the same as in the comments
-+ * on the case where bfq_bfqq_must_idle() returns true, in
-+ * bfq_completed_request().
-+ */
-+ if (bfq_may_expire_for_budg_timeout(bfqq) &&
-+ !bfq_bfqq_must_idle(bfqq))
-+ goto expire;
-+
-+check_queue:
-+ /*
-+ * This loop is rarely executed more than once. Even when it
-+ * happens, it is much more convenient to re-execute this loop
-+ * than to return NULL and trigger a new dispatch to get a
-+ * request served.
-+ */
-+ next_rq = bfqq->next_rq;
-+ /*
-+ * If bfqq has requests queued and it has enough budget left to
-+ * serve them, keep the queue, otherwise expire it.
-+ */
-+ if (next_rq) {
-+ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
-+
-+ if (bfq_serv_to_charge(next_rq, bfqq) >
-+ bfq_bfqq_budget_left(bfqq)) {
-+ /*
-+ * Expire the queue for budget exhaustion,
-+ * which makes sure that the next budget is
-+ * enough to serve the next request, even if
-+ * it comes from the fifo expired path.
-+ */
-+ reason = BFQ_BFQQ_BUDGET_EXHAUSTED;
-+ goto expire;
-+ } else {
-+ /*
-+ * The idle timer may be pending because we may
-+ * not disable disk idling even when a new request
-+ * arrives.
-+ */
-+ if (bfq_bfqq_wait_request(bfqq)) {
-+ /*
-+ * If we get here: 1) at least a new request
-+ * has arrived but we have not disabled the
-+ * timer because the request was too small,
-+ * 2) then the block layer has unplugged
-+ * the device, causing the dispatch to be
-+ * invoked.
-+ *
-+ * Since the device is unplugged, now the
-+ * requests are probably large enough to
-+ * provide a reasonable throughput.
-+ * So we disable idling.
-+ */
-+ bfq_clear_bfqq_wait_request(bfqq);
-+ hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
-+ }
-+ goto keep_queue;
-+ }
-+ }
-+
-+ /*
-+ * No requests pending. However, if the in-service queue is idling
-+ * for a new request, or has requests waiting for a completion and
-+ * may idle after their completion, then keep it anyway.
-+ *
-+ * Yet, to boost throughput, inject service from other queues if
-+ * possible.
-+ */
-+ if (bfq_bfqq_wait_request(bfqq) ||
-+ (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
-+ if (bfq_bfqq_injectable(bfqq) &&
-+ bfqq->injected_service * bfqq->inject_coeff <
-+ bfqq->entity.service * 10) {
-+ bfq_log_bfqq(bfqd, bfqq, "looking for queue for injection");
-+ bfqq = bfq_choose_bfqq_for_injection(bfqd);
-+ } else {
-+ if (BFQQ_SEEKY(bfqq))
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "injection saturated %d * %d >= %d * 10",
-+ bfqq->injected_service, bfqq->inject_coeff,
-+ bfqq->entity.service);
-+ bfqq = NULL;
-+ }
-+ goto keep_queue;
-+ }
-+
-+ reason = BFQ_BFQQ_NO_MORE_REQUESTS;
-+expire:
-+ bfq_bfqq_expire(bfqd, bfqq, false, reason);
-+new_queue:
-+ bfqq = bfq_set_in_service_queue(bfqd);
-+ if (bfqq) {
-+ bfq_log_bfqq(bfqd, bfqq, "checking new queue");
-+ goto check_queue;
-+ }
-+keep_queue:
-+ if (bfqq)
-+ bfq_log_bfqq(bfqd, bfqq, "returned this queue");
-+ else
-+ bfq_log(bfqd, "no queue returned");
-+
-+ return bfqq;
-+}
-+
-+static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
-+{
-+ struct bfq_entity *entity = &bfqq->entity;
-+
-+ if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
-+ BUG_ON(bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
-+ time_is_after_jiffies(bfqq->last_wr_start_finish));
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
-+ jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
-+ jiffies_to_msecs(bfqq->wr_cur_max_time),
-+ bfqq->wr_coeff,
-+ bfqq->entity.weight, bfqq->entity.orig_weight);
-+
-+ BUG_ON(bfqq != bfqd->in_service_queue && entity->weight !=
-+ entity->orig_weight * bfqq->wr_coeff);
-+ if (entity->prio_changed)
-+ bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
-+
-+ /*
-+ * If the queue was activated in a burst, or too much
-+ * time has elapsed from the beginning of this
-+ * weight-raising period, then end weight raising.
-+ */
-+ if (bfq_bfqq_in_large_burst(bfqq))
-+ bfq_bfqq_end_wr(bfqq);
-+ else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
-+ bfqq->wr_cur_max_time)) {
-+ if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
-+ time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
-+ bfq_wr_duration(bfqd)))
-+ bfq_bfqq_end_wr(bfqq);
-+ else {
-+ switch_back_to_interactive_wr(bfqq, bfqd);
-+ BUG_ON(time_is_after_jiffies(
-+ bfqq->last_wr_start_finish));
-+ bfqq->entity.prio_changed = 1;
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "back to interactive wr");
-+ }
-+ }
-+ if (bfqq->wr_coeff > 1 &&
-+ bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
-+ bfqq->service_from_wr > max_service_from_wr) {
-+ /* see comments on max_service_from_wr */
-+ bfq_bfqq_end_wr(bfqq);
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "too much service");
-+ }
-+ }
-+ /*
-+ * To improve latency (for this or other queues), immediately
-+ * update weight both if it must be raised and if it must be
-+ * lowered. Since, entity may be on some active tree here, and
-+ * might have a pending change of its ioprio class, invoke
-+ * next function with the last parameter unset (see the
-+ * comments on the function).
-+ */
-+ if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
-+ __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
-+ entity, false);
-+}
-+
-+/*
-+ * Dispatch next request from bfqq.
-+ */
-+static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ struct request *rq = bfqq->next_rq;
-+ unsigned long service_to_charge;
-+
-+ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
-+ BUG_ON(!rq);
-+ service_to_charge = bfq_serv_to_charge(rq, bfqq);
-+
-+ BUG_ON(service_to_charge > bfq_bfqq_budget_left(bfqq));
-+
-+ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
-+
-+ bfq_bfqq_served(bfqq, service_to_charge);
-+
-+ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
-+
-+ bfq_dispatch_remove(bfqd->queue, rq);
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "dispatched %u sec req (%llu), budg left %d, new disp_nr %d",
-+ blk_rq_sectors(rq),
-+ (unsigned long long) blk_rq_pos(rq),
-+ bfq_bfqq_budget_left(bfqq),
-+ bfqq->dispatched);
-+
-+ if (bfqq != bfqd->in_service_queue) {
-+ if (likely(bfqd->in_service_queue)) {
-+ bfqd->in_service_queue->injected_service +=
-+ bfq_serv_to_charge(rq, bfqq);
-+ bfq_log_bfqq(bfqd, bfqd->in_service_queue,
-+ "injected_service increased to %d",
-+ bfqd->in_service_queue->injected_service);
-+ }
-+ goto return_rq;
-+ }
-+
-+ /*
-+ * If weight raising has to terminate for bfqq, then next
-+ * function causes an immediate update of bfqq's weight,
-+ * without waiting for next activation. As a consequence, on
-+ * expiration, bfqq will be timestamped as if has never been
-+ * weight-raised during this service slot, even if it has
-+ * received part or even most of the service as a
-+ * weight-raised queue. This inflates bfqq's timestamps, which
-+ * is beneficial, as bfqq is then more willing to leave the
-+ * device immediately to possible other weight-raised queues.
-+ */
-+ bfq_update_wr_data(bfqd, bfqq);
-+
-+ /*
-+ * Expire bfqq, pretending that its budget expired, if bfqq
-+ * belongs to CLASS_IDLE and other queues are waiting for
-+ * service.
-+ */
-+ if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
-+ goto return_rq;
-+
-+ bfq_bfqq_expire(bfqd, bfqq, false, BFQ_BFQQ_BUDGET_EXHAUSTED);
-+
-+return_rq:
-+ return rq;
-+}
-+
-+static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
-+{
-+ struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
-+
-+ bfq_log(bfqd, "dispatch_non_empty %d busy_queues %d",
-+ !list_empty_careful(&bfqd->dispatch), bfq_tot_busy_queues(bfqd) > 0);
-+
-+ /*
-+ * Avoiding lock: a race on bfqd->busy_queues should cause at
-+ * most a call to dispatch for nothing
-+ */
-+ return !list_empty_careful(&bfqd->dispatch) ||
-+ bfq_tot_busy_queues(bfqd) > 0;
-+}
-+
-+static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
-+{
-+ struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
-+ struct request *rq = NULL;
-+ struct bfq_queue *bfqq = NULL;
-+
-+ if (!list_empty(&bfqd->dispatch)) {
-+ rq = list_first_entry(&bfqd->dispatch, struct request,
-+ queuelist);
-+ list_del_init(&rq->queuelist);
-+ rq->rq_flags &= ~RQF_DISP_LIST;
-+
-+ bfq_log(bfqd,
-+ "picked %p from dispatch list", rq);
-+ bfqq = RQ_BFQQ(rq);
-+
-+ if (bfqq) {
-+ /*
-+ * Increment counters here, because this
-+ * dispatch does not follow the standard
-+ * dispatch flow (where counters are
-+ * incremented)
-+ */
-+ bfqq->dispatched++;
-+
-+ /*
-+ * TESTING: reset DISP_LIST flag, because: 1)
-+ * this rq this request has passed through
-+ * bfq_prepare_request, 2) then it will have
-+ * bfq_finish_requeue_request invoked on it, and 3) in
-+ * bfq_finish_requeue_request we use this flag to check
-+ * that bfq_finish_requeue_request is not invoked on
-+ * requests for which bfq_prepare_request has
-+ * been invoked.
-+ */
-+ rq->rq_flags &= ~RQF_DISP_LIST;
-+ goto inc_in_driver_start_rq;
-+ }
-+
-+ /*
-+ * We exploit the bfq_finish_requeue_request hook to decrement
-+ * rq_in_driver, but bfq_finish_requeue_request will not be
-+ * invoked on this request. So, to avoid unbalance,
-+ * just start this request, without incrementing
-+ * rq_in_driver. As a negative consequence,
-+ * rq_in_driver is deceptively lower than it should be
-+ * while this request is in service. This may cause
-+ * bfq_schedule_dispatch to be invoked uselessly.
-+ *
-+ * As for implementing an exact solution, the
-+ * bfq_finish_requeue_request hook, if defined, is probably
-+ * invoked also on this request. So, by exploiting
-+ * this hook, we could 1) increment rq_in_driver here,
-+ * and 2) decrement it in bfq_finish_requeue_request. Such a
-+ * solution would let the value of the counter be
-+ * always accurate, but it would entail using an extra
-+ * interface function. This cost seems higher than the
-+ * benefit, being the frequency of non-elevator-private
-+ * requests very low.
-+ */
-+ goto start_rq;
-+ }
-+
-+ bfq_log(bfqd, "%d busy queues", bfq_tot_busy_queues(bfqd));
-+
-+ if (bfq_tot_busy_queues(bfqd) == 0)
-+ goto exit;
-+
-+ /*
-+ * Force device to serve one request at a time if
-+ * strict_guarantees is true. Forcing this service scheme is
-+ * currently the ONLY way to guarantee that the request
-+ * service order enforced by the scheduler is respected by a
-+ * queueing device. Otherwise the device is free even to make
-+ * some unlucky request wait for as long as the device
-+ * wishes.
-+ *
-+ * Of course, serving one request at at time may cause loss of
-+ * throughput.
-+ */
-+ if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
-+ goto exit;
-+
-+ bfqq = bfq_select_queue(bfqd);
-+ if (!bfqq)
-+ goto exit;
-+
-+ BUG_ON(bfqq == bfqd->in_service_queue &&
-+ bfqq->entity.budget < bfqq->entity.service);
-+
-+ BUG_ON(bfqq == bfqd->in_service_queue &&
-+ bfq_bfqq_wait_request(bfqq));
-+
-+ rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
-+
-+ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
-+
-+ if (rq) {
-+ inc_in_driver_start_rq:
-+ bfqd->rq_in_driver++;
-+ start_rq:
-+ rq->rq_flags |= RQF_STARTED;
-+ if (bfqq)
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "%s request %p, rq_in_driver %d",
-+ bfq_bfqq_sync(bfqq) ? "sync" : "async",
-+ rq,
-+ bfqd->rq_in_driver);
-+ else
-+ bfq_log(bfqd,
-+ "request %p from dispatch list, rq_in_driver %d",
-+ rq, bfqd->rq_in_driver);
-+ } else
-+ bfq_log(bfqd,
-+ "returned NULL request, rq_in_driver %d",
-+ bfqd->rq_in_driver);
-+
-+exit:
-+ return rq;
-+}
-+
-+
-+#if defined(BFQ_GROUP_IOSCHED_ENABLED) && defined(CONFIG_DEBUG_BLK_CGROUP)
-+static void bfq_update_dispatch_stats(struct request_queue *q,
-+ struct request *rq,
-+ struct bfq_queue *in_serv_queue,
-+ bool idle_timer_disabled)
-+{
-+ struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
-+
-+ if (!idle_timer_disabled && !bfqq)
-+ return;
-+
-+ /*
-+ * rq and bfqq are guaranteed to exist until this function
-+ * ends, for the following reasons. First, rq can be
-+ * dispatched to the device, and then can be completed and
-+ * freed, only after this function ends. Second, rq cannot be
-+ * merged (and thus freed because of a merge) any longer,
-+ * because it has already started. Thus rq cannot be freed
-+ * before this function ends, and, since rq has a reference to
-+ * bfqq, the same guarantee holds for bfqq too.
-+ *
-+ * In addition, the following queue lock guarantees that
-+ * bfqq_group(bfqq) exists as well.
-+ */
-+ spin_lock_irq(q->queue_lock);
-+ if (idle_timer_disabled)
-+ /*
-+ * Since the idle timer has been disabled,
-+ * in_serv_queue contained some request when
-+ * __bfq_dispatch_request was invoked above, which
-+ * implies that rq was picked exactly from
-+ * in_serv_queue. Thus in_serv_queue == bfqq, and is
-+ * therefore guaranteed to exist because of the above
-+ * arguments.
-+ */
-+ bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
-+ if (bfqq) {
-+ struct bfq_group *bfqg = bfqq_group(bfqq);
-+
-+ bfqg_stats_update_avg_queue_size(bfqg);
-+ bfqg_stats_set_start_empty_time(bfqg);
-+ bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
-+ }
-+ spin_unlock_irq(q->queue_lock);
-+}
-+#else
-+static inline void bfq_update_dispatch_stats(struct request_queue *q,
-+ struct request *rq,
-+ struct bfq_queue *in_serv_queue,
-+ bool idle_timer_disabled) {}
-+#endif
-+static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
-+{
-+ struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
-+ struct request *rq;
-+ struct bfq_queue *in_serv_queue;
-+ bool waiting_rq, idle_timer_disabled;
-+
-+ spin_lock_irq(&bfqd->lock);
-+
-+ in_serv_queue = bfqd->in_service_queue;
-+ waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
-+
-+ rq = __bfq_dispatch_request(hctx);
-+
-+ idle_timer_disabled =
-+ waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
-+
-+ spin_unlock_irq(&bfqd->lock);
-+
-+ bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
-+ idle_timer_disabled);
-+
-+ return rq;
-+}
-+
-+/*
-+ * Task holds one reference to the queue, dropped when task exits. Each rq
-+ * in-flight on this queue also holds a reference, dropped when rq is freed.
-+ *
-+ * Scheduler lock must be held here. Recall not to use bfqq after calling
-+ * this function on it.
-+ */
-+static void bfq_put_queue(struct bfq_queue *bfqq)
-+{
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ struct bfq_group *bfqg = bfqq_group(bfqq);
-+#endif
-+
-+ assert_spin_locked(&bfqq->bfqd->lock);
-+
-+ BUG_ON(bfqq->ref <= 0);
-+
-+ if (bfqq->bfqd)
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "%p %d", bfqq, bfqq->ref);
-+
-+ bfqq->ref--;
-+ if (bfqq->ref)
-+ return;
-+
-+ BUG_ON(rb_first(&bfqq->sort_list));
-+ BUG_ON(bfqq->allocated != 0);
-+ BUG_ON(bfqq->entity.tree);
-+ BUG_ON(bfq_bfqq_busy(bfqq));
-+
-+ if (!hlist_unhashed(&bfqq->burst_list_node)) {
-+ hlist_del_init(&bfqq->burst_list_node);
-+ /*
-+ * Decrement also burst size after the removal, if the
-+ * process associated with bfqq is exiting, and thus
-+ * does not contribute to the burst any longer. This
-+ * decrement helps filter out false positives of large
-+ * bursts, when some short-lived process (often due to
-+ * the execution of commands by some service) happens
-+ * to start and exit while a complex application is
-+ * starting, and thus spawning several processes that
-+ * do I/O (and that *must not* be treated as a large
-+ * burst, see comments on bfq_handle_burst).
-+ *
-+ * In particular, the decrement is performed only if:
-+ * 1) bfqq is not a merged queue, because, if it is,
-+ * then this free of bfqq is not triggered by the exit
-+ * of the process bfqq is associated with, but exactly
-+ * by the fact that bfqq has just been merged.
-+ * 2) burst_size is greater than 0, to handle
-+ * unbalanced decrements. Unbalanced decrements may
-+ * happen in te following case: bfqq is inserted into
-+ * the current burst list--without incrementing
-+ * bust_size--because of a split, but the current
-+ * burst list is not the burst list bfqq belonged to
-+ * (see comments on the case of a split in
-+ * bfq_set_request).
-+ */
-+ if (bfqq->bic && bfqq->bfqd->burst_size > 0)
-+ bfqq->bfqd->burst_size--;
-+ }
-+
-+ if (bfqq->bfqd)
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "%p freed", bfqq);
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "putting blkg and bfqg %p\n", bfqg);
-+ bfqg_and_blkg_put(bfqg);
-+#endif
-+ kmem_cache_free(bfq_pool, bfqq);
-+}
-+
-+static void bfq_put_cooperator(struct bfq_queue *bfqq)
-+{
-+ struct bfq_queue *__bfqq, *next;
-+
-+ /*
-+ * If this queue was scheduled to merge with another queue, be
-+ * sure to drop the reference taken on that queue (and others in
-+ * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
-+ */
-+ __bfqq = bfqq->new_bfqq;
-+ while (__bfqq) {
-+ if (__bfqq == bfqq)
-+ break;
-+ next = __bfqq->new_bfqq;
-+ bfq_put_queue(__bfqq);
-+ __bfqq = next;
-+ }
-+}
-+
-+static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
-+{
-+ if (bfqq == bfqd->in_service_queue) {
-+ __bfq_bfqq_expire(bfqd, bfqq);
-+ bfq_schedule_dispatch(bfqd);
-+ }
-+
-+ bfq_log_bfqq(bfqd, bfqq, "%p, %d", bfqq, bfqq->ref);
-+
-+ bfq_put_cooperator(bfqq);
-+
-+ bfq_put_queue(bfqq); /* release process reference */
-+}
-+
-+static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
-+{
-+ struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
-+ struct bfq_data *bfqd;
-+
-+ if (bfqq)
-+ bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
-+
-+ if (bfqq && bfqd) {
-+ unsigned long flags;
-+
-+ spin_lock_irqsave(&bfqd->lock, flags);
-+ bfq_exit_bfqq(bfqd, bfqq);
-+ bic_set_bfqq(bic, NULL, is_sync);
-+ spin_unlock_irqrestore(&bfqd->lock, flags);
-+ }
-+}
-+
-+static void bfq_exit_icq(struct io_cq *icq)
-+{
-+ struct bfq_io_cq *bic = icq_to_bic(icq);
-+
-+ BUG_ON(!bic);
-+ bfq_exit_icq_bfqq(bic, true);
-+ bfq_exit_icq_bfqq(bic, false);
-+}
-+
-+/*
-+ * Update the entity prio values; note that the new values will not
-+ * be used until the next (re)activation.
-+ */
-+static void bfq_set_next_ioprio_data(struct bfq_queue *bfqq,
-+ struct bfq_io_cq *bic)
-+{
-+ struct task_struct *tsk = current;
-+ int ioprio_class;
-+ struct bfq_data *bfqd = bfqq->bfqd;
-+
-+ WARN_ON(!bfqd);
-+ if (!bfqd)
-+ return;
-+
-+ ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
-+ switch (ioprio_class) {
-+ default:
-+ dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
-+ "bfq: bad prio class %d\n", ioprio_class);
-+ case IOPRIO_CLASS_NONE:
-+ /*
-+ * No prio set, inherit CPU scheduling settings.
-+ */
-+ bfqq->new_ioprio = task_nice_ioprio(tsk);
-+ bfqq->new_ioprio_class = task_nice_ioclass(tsk);
-+ break;
-+ case IOPRIO_CLASS_RT:
-+ bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
-+ bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
-+ break;
-+ case IOPRIO_CLASS_BE:
-+ bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
-+ bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
-+ break;
-+ case IOPRIO_CLASS_IDLE:
-+ bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
-+ bfqq->new_ioprio = 7;
-+ break;
-+ }
-+
-+ if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
-+ pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
-+ bfqq->new_ioprio);
-+ BUG();
-+ }
-+
-+ bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
-+ bfqq->entity.prio_changed = 1;
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "bic_class %d prio %d class %d",
-+ ioprio_class, bfqq->new_ioprio, bfqq->new_ioprio_class);
-+}
-+
-+static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
-+{
-+ struct bfq_data *bfqd = bic_to_bfqd(bic);
-+ struct bfq_queue *bfqq;
-+ unsigned long uninitialized_var(flags);
-+ int ioprio = bic->icq.ioc->ioprio;
-+
-+ /*
-+ * This condition may trigger on a newly created bic, be sure to
-+ * drop the lock before returning.
-+ */
-+ if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
-+ return;
-+
-+ bic->ioprio = ioprio;
-+
-+ bfqq = bic_to_bfqq(bic, false);
-+ if (bfqq) {
-+ /* release process reference on this queue */
-+ bfq_put_queue(bfqq);
-+ bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
-+ bic_set_bfqq(bic, bfqq, false);
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "bfqq %p %d",
-+ bfqq, bfqq->ref);
-+ }
-+
-+ bfqq = bic_to_bfqq(bic, true);
-+ if (bfqq)
-+ bfq_set_next_ioprio_data(bfqq, bic);
-+}
-+
-+static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
-+ struct bfq_io_cq *bic, pid_t pid, int is_sync)
-+{
-+ RB_CLEAR_NODE(&bfqq->entity.rb_node);
-+ INIT_LIST_HEAD(&bfqq->fifo);
-+ INIT_HLIST_NODE(&bfqq->burst_list_node);
-+ BUG_ON(!hlist_unhashed(&bfqq->burst_list_node));
-+
-+ bfqq->ref = 0;
-+ bfqq->bfqd = bfqd;
-+
-+ if (bic)
-+ bfq_set_next_ioprio_data(bfqq, bic);
-+
-+ if (is_sync) {
-+ /*
-+ * No need to mark as has_short_ttime if in
-+ * idle_class, because no device idling is performed
-+ * for queues in idle class
-+ */
-+ if (!bfq_class_idle(bfqq))
-+ /* tentatively mark as has_short_ttime */
-+ bfq_mark_bfqq_has_short_ttime(bfqq);
-+ bfq_mark_bfqq_sync(bfqq);
-+ bfq_mark_bfqq_just_created(bfqq);
-+ /*
-+ * Aggressively inject a lot of service: up to 90%.
-+ * This coefficient remains constant during bfqq life,
-+ * but this behavior might be changed, after enough
-+ * testing and tuning.
-+ */
-+ bfqq->inject_coeff = 1;
-+ } else
-+ bfq_clear_bfqq_sync(bfqq);
-+
-+ bfqq->ttime.last_end_request = ktime_get_ns() - (1ULL<<32);
-+
-+ bfq_mark_bfqq_IO_bound(bfqq);
-+
-+ /* Tentative initial value to trade off between thr and lat */
-+ bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
-+ bfqq->pid = pid;
-+
-+ bfqq->wr_coeff = 1;
-+ bfqq->last_wr_start_finish = jiffies;
-+ bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
-+ bfqq->budget_timeout = bfq_smallest_from_now();
-+ bfqq->split_time = bfq_smallest_from_now();
-+
-+ /*
-+ * To not forget the possibly high bandwidth consumed by a
-+ * process/queue in the recent past,
-+ * bfq_bfqq_softrt_next_start() returns a value at least equal
-+ * to the current value of bfqq->soft_rt_next_start (see
-+ * comments on bfq_bfqq_softrt_next_start). Set
-+ * soft_rt_next_start to now, to mean that bfqq has consumed
-+ * no bandwidth so far.
-+ */
-+ bfqq->soft_rt_next_start = jiffies;
-+
-+ /* first request is almost certainly seeky */
-+ bfqq->seek_history = 1;
-+}
-+
-+static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
-+ struct bfq_group *bfqg,
-+ int ioprio_class, int ioprio)
-+{
-+ switch (ioprio_class) {
-+ case IOPRIO_CLASS_RT:
-+ return &bfqg->async_bfqq[0][ioprio];
-+ case IOPRIO_CLASS_NONE:
-+ ioprio = IOPRIO_NORM;
-+ /* fall through */
-+ case IOPRIO_CLASS_BE:
-+ return &bfqg->async_bfqq[1][ioprio];
-+ case IOPRIO_CLASS_IDLE:
-+ return &bfqg->async_idle_bfqq;
-+ default:
-+ BUG();
-+ }
-+}
-+
-+static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
-+ struct bio *bio, bool is_sync,
-+ struct bfq_io_cq *bic)
-+{
-+ const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
-+ const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
-+ struct bfq_queue **async_bfqq = NULL;
-+ struct bfq_queue *bfqq;
-+ struct bfq_group *bfqg;
-+
-+ rcu_read_lock();
-+
-+ bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
-+ if (!bfqg) {
-+ bfqq = &bfqd->oom_bfqq;
-+ goto out;
-+ }
-+
-+ if (!is_sync) {
-+ async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
-+ ioprio);
-+ bfqq = *async_bfqq;
-+ if (bfqq)
-+ goto out;
-+ }
-+
-+ bfqq = kmem_cache_alloc_node(bfq_pool,
-+ GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
-+ bfqd->queue->node);
-+
-+ if (bfqq) {
-+ bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
-+ is_sync);
-+ bfq_init_entity(&bfqq->entity, bfqg);
-+ bfq_log_bfqq(bfqd, bfqq, "allocated");
-+ } else {
-+ bfqq = &bfqd->oom_bfqq;
-+ bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
-+ goto out;
-+ }
-+
-+ /*
-+ * Pin the queue now that it's allocated, scheduler exit will
-+ * prune it.
-+ */
-+ if (async_bfqq) {
-+ bfqq->ref++; /*
-+ * Extra group reference, w.r.t. sync
-+ * queue. This extra reference is removed
-+ * only if bfqq->bfqg disappears, to
-+ * guarantee that this queue is not freed
-+ * until its group goes away.
-+ */
-+ bfq_log_bfqq(bfqd, bfqq, "bfqq not in async: %p, %d",
-+ bfqq, bfqq->ref);
-+ *async_bfqq = bfqq;
-+ }
-+
-+out:
-+ bfqq->ref++; /* get a process reference to this queue */
-+ bfq_log_bfqq(bfqd, bfqq, "at end: %p, %d", bfqq, bfqq->ref);
-+ rcu_read_unlock();
-+ return bfqq;
-+}
-+
-+static void bfq_update_io_thinktime(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ struct bfq_ttime *ttime = &bfqq->ttime;
-+ u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
-+
-+ elapsed = min_t(u64, elapsed, 2 * bfqd->bfq_slice_idle);
-+
-+ ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
-+ ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
-+ ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
-+ ttime->ttime_samples);
-+}
-+
-+static void
-+bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
-+ struct request *rq)
-+{
-+ bfqq->seek_history <<= 1;
-+ bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
-+}
-+
-+static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ struct bfq_io_cq *bic)
-+{
-+ bool has_short_ttime = true;
-+
-+ /*
-+ * No need to update has_short_ttime if bfqq is async or in
-+ * idle io prio class, or if bfq_slice_idle is zero, because
-+ * no device idling is performed for bfqq in this case.
-+ */
-+ if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
-+ bfqd->bfq_slice_idle == 0)
-+ return;
-+
-+ /* Idle window just restored, statistics are meaningless. */
-+ if (time_is_after_eq_jiffies(bfqq->split_time +
-+ bfqd->bfq_wr_min_idle_time))
-+ return;
-+
-+ /* Think time is infinite if no process is linked to
-+ * bfqq. Otherwise check average think time to
-+ * decide whether to mark as has_short_ttime
-+ */
-+ if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
-+ (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
-+ bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
-+ has_short_ttime = false;
-+
-+ bfq_log_bfqq(bfqd, bfqq, "has_short_ttime %d",
-+ has_short_ttime);
-+
-+ if (has_short_ttime)
-+ bfq_mark_bfqq_has_short_ttime(bfqq);
-+ else
-+ bfq_clear_bfqq_has_short_ttime(bfqq);
-+}
-+
-+/*
-+ * Called when a new fs request (rq) is added to bfqq. Check if there's
-+ * something we should do about it.
-+ */
-+static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
-+ struct request *rq)
-+{
-+ struct bfq_io_cq *bic = RQ_BIC(rq);
-+
-+ if (rq->cmd_flags & REQ_META)
-+ bfqq->meta_pending++;
-+
-+ bfq_update_io_thinktime(bfqd, bfqq);
-+ bfq_update_has_short_ttime(bfqd, bfqq, bic);
-+ bfq_update_io_seektime(bfqd, bfqq, rq);
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "has_short_ttime=%d (seeky %d)",
-+ bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
-+
-+ bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
-+
-+ if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
-+ bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
-+ blk_rq_sectors(rq) < 32;
-+ bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
-+
-+ /*
-+ * There is just this request queued: if
-+ * - the request is small, and
-+ * - we are idling to boost throughput, and
-+ * - the queue is not to be expired,
-+ * then just exit.
-+ *
-+ * In this way, if the device is being idled to wait
-+ * for a new request from the in-service queue, we
-+ * avoid unplugging the device and committing the
-+ * device to serve just a small request. In contrast
-+ * we wait for the block layer to decide when to
-+ * unplug the device: hopefully, new requests will be
-+ * merged to this one quickly, then the device will be
-+ * unplugged and larger requests will be dispatched.
-+ */
-+ if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
-+ !budget_timeout)
-+ return;
-+
-+ /*
-+ * A large enough request arrived, or idling is being
-+ * performed to preserve service guarantees, or
-+ * finally the queue is to be expired: in all these
-+ * cases disk idling is to be stopped, so clear
-+ * wait_request flag and reset timer.
-+ */
-+ bfq_clear_bfqq_wait_request(bfqq);
-+ hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
-+
-+ /*
-+ * The queue is not empty, because a new request just
-+ * arrived. Hence we can safely expire the queue, in
-+ * case of budget timeout, without risking that the
-+ * timestamps of the queue are not updated correctly.
-+ * See [1] for more details.
-+ */
-+ if (budget_timeout)
-+ bfq_bfqq_expire(bfqd, bfqq, false,
-+ BFQ_BFQQ_BUDGET_TIMEOUT);
-+ }
-+}
-+
-+/* returns true if it causes the idle timer to be disabled */
-+static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
-+{
-+ struct bfq_queue *bfqq = RQ_BFQQ(rq), *new_bfqq;
-+ bool waiting, idle_timer_disabled = false;
-+ BUG_ON(!bfqq);
-+
-+ assert_spin_locked(&bfqd->lock);
-+
-+ bfq_log_bfqq(bfqd, bfqq, "rq %p bfqq %p", rq, bfqq);
-+
-+ /*
-+ * An unplug may trigger a requeue of a request from the device
-+ * driver: make sure we are in process context while trying to
-+ * merge two bfq_queues.
-+ */
-+ if (!in_interrupt()) {
-+ new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
-+ if (new_bfqq) {
-+ BUG_ON(bic_to_bfqq(RQ_BIC(rq), 1) != bfqq);
-+ /*
-+ * Release the request's reference to the old bfqq
-+ * and make sure one is taken to the shared queue.
-+ */
-+ new_bfqq->allocated++;
-+ bfqq->allocated--;
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "new allocated %d", bfqq->allocated);
-+ bfq_log_bfqq(bfqd, new_bfqq,
-+ "new_bfqq new allocated %d",
-+ bfqq->allocated);
-+
-+ new_bfqq->ref++;
-+ /*
-+ * If the bic associated with the process
-+ * issuing this request still points to bfqq
-+ * (and thus has not been already redirected
-+ * to new_bfqq or even some other bfq_queue),
-+ * then complete the merge and redirect it to
-+ * new_bfqq.
-+ */
-+ if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
-+ bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
-+ bfqq, new_bfqq);
-+
-+ bfq_clear_bfqq_just_created(bfqq);
-+ /*
-+ * rq is about to be enqueued into new_bfqq,
-+ * release rq reference on bfqq
-+ */
-+ bfq_put_queue(bfqq);
-+ rq->elv.priv[1] = new_bfqq;
-+ bfqq = new_bfqq;
-+ }
-+ }
-+
-+ waiting = bfqq && bfq_bfqq_wait_request(bfqq);
-+ bfq_add_request(rq);
-+ idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
-+
-+ rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
-+ list_add_tail(&rq->queuelist, &bfqq->fifo);
-+
-+ bfq_rq_enqueued(bfqd, bfqq, rq);
-+
-+ return idle_timer_disabled;
-+}
-+
-+#if defined(BFQ_GROUP_IOSCHED_ENABLED) && defined(CONFIG_DEBUG_BLK_CGROUP)
-+static void bfq_update_insert_stats(struct request_queue *q,
-+ struct bfq_queue *bfqq,
-+ bool idle_timer_disabled,
-+ unsigned int cmd_flags)
-+{
-+ if (!bfqq)
-+ return;
-+
-+ /*
-+ * bfqq still exists, because it can disappear only after
-+ * either it is merged with another queue, or the process it
-+ * is associated with exits. But both actions must be taken by
-+ * the same process currently executing this flow of
-+ * instructions.
-+ *
-+ * In addition, the following queue lock guarantees that
-+ * bfqq_group(bfqq) exists as well.
-+ */
-+ spin_lock_irq(q->queue_lock);
-+ bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
-+ if (idle_timer_disabled)
-+ bfqg_stats_update_idle_time(bfqq_group(bfqq));
-+ spin_unlock_irq(q->queue_lock);
-+}
-+#else
-+static inline void bfq_update_insert_stats(struct request_queue *q,
-+ struct bfq_queue *bfqq,
-+ bool idle_timer_disabled,
-+ unsigned int cmd_flags) {}
-+#endif
-+
-+static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
-+ bool at_head)
-+{
-+ struct request_queue *q = hctx->queue;
-+ struct bfq_data *bfqd = q->elevator->elevator_data;
-+ struct bfq_queue *bfqq;
-+ bool idle_timer_disabled = false;
-+ unsigned int cmd_flags;
-+
-+ spin_lock_irq(&bfqd->lock);
-+ if (blk_mq_sched_try_insert_merge(q, rq)) {
-+ spin_unlock_irq(&bfqd->lock);
-+ return;
-+ }
-+
-+ spin_unlock_irq(&bfqd->lock);
-+
-+ blk_mq_sched_request_inserted(rq);
-+
-+ spin_lock_irq(&bfqd->lock);
-+
-+ bfqq = bfq_init_rq(rq);
-+ BUG_ON(!bfqq && !(at_head || blk_rq_is_passthrough(rq)));
-+ BUG_ON(bfqq && bic_to_bfqq(RQ_BIC(rq), rq_is_sync(rq)) != bfqq);
-+
-+ if (at_head || blk_rq_is_passthrough(rq)) {
-+ if (at_head)
-+ list_add(&rq->queuelist, &bfqd->dispatch);
-+ else
-+ list_add_tail(&rq->queuelist, &bfqd->dispatch);
-+
-+ rq->rq_flags |= RQF_DISP_LIST;
-+ if (bfqq)
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "%p in disp: at_head %d",
-+ rq, at_head);
-+ else
-+ bfq_log(bfqd,
-+ "%p in disp: at_head %d",
-+ rq, at_head);
-+ } else { /* bfqq is assumed to be non null here */
-+ BUG_ON(!bfqq);
-+ BUG_ON(!(rq->rq_flags & RQF_GOT));
-+ rq->rq_flags &= ~RQF_GOT;
-+
-+ idle_timer_disabled = __bfq_insert_request(bfqd, rq);
-+ /*
-+ * Update bfqq, because, if a queue merge has occurred
-+ * in __bfq_insert_request, then rq has been
-+ * redirected into a new queue.
-+ */
-+ bfqq = RQ_BFQQ(rq);
-+
-+ if (rq_mergeable(rq)) {
-+ elv_rqhash_add(q, rq);
-+ if (!q->last_merge)
-+ q->last_merge = rq;
-+ }
-+ }
-+
-+ /*
-+ * Cache cmd_flags before releasing scheduler lock, because rq
-+ * may disappear afterwards (for example, because of a request
-+ * merge).
-+ */
-+ cmd_flags = rq->cmd_flags;
-+
-+ spin_unlock_irq(&bfqd->lock);
-+ bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
-+ cmd_flags);
-+}
-+
-+static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
-+ struct list_head *list, bool at_head)
-+{
-+ while (!list_empty(list)) {
-+ struct request *rq;
-+
-+ rq = list_first_entry(list, struct request, queuelist);
-+ list_del_init(&rq->queuelist);
-+ bfq_insert_request(hctx, rq, at_head);
-+ }
-+}
-+
-+static void bfq_update_hw_tag(struct bfq_data *bfqd)
-+{
-+ struct bfq_queue *bfqq = bfqd->in_service_queue;
-+
-+ bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
-+ bfqd->rq_in_driver);
-+
-+ if (bfqd->hw_tag == 1)
-+ return;
-+
-+ /*
-+ * This sample is valid if the number of outstanding requests
-+ * is large enough to allow a queueing behavior. Note that the
-+ * sum is not exact, as it's not taking into account deactivated
-+ * requests.
-+ */
-+ if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
-+ return;
-+
-+ /*
-+ * If active queue hasn't enough requests and can idle, bfq might not
-+ * dispatch sufficient requests to hardware. Don't zero hw_tag in this
-+ * case
-+ */
-+ if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
-+ bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
-+ BFQ_HW_QUEUE_THRESHOLD && bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
-+ return;
-+
-+ if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
-+ return;
-+
-+ bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
-+ bfqd->max_rq_in_driver = 0;
-+ bfqd->hw_tag_samples = 0;
-+}
-+
-+static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
-+{
-+ u64 now_ns;
-+ u32 delta_us;
-+
-+ bfq_update_hw_tag(bfqd);
-+
-+ BUG_ON(!bfqd->rq_in_driver);
-+ BUG_ON(!bfqq->dispatched);
-+ bfqd->rq_in_driver--;
-+ bfqq->dispatched--;
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "new disp %d, new rq_in_driver %d",
-+ bfqq->dispatched, bfqd->rq_in_driver);
-+
-+ if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
-+ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
-+ /*
-+ * Set budget_timeout (which we overload to store the
-+ * time at which the queue remains with no backlog and
-+ * no outstanding request; used by the weight-raising
-+ * mechanism).
-+ */
-+ bfqq->budget_timeout = jiffies;
-+
-+ bfq_weights_tree_remove(bfqd, bfqq);
-+ }
-+
-+ now_ns = ktime_get_ns();
-+
-+ bfqq->ttime.last_end_request = now_ns;
-+
-+ /*
-+ * Using us instead of ns, to get a reasonable precision in
-+ * computing rate in next check.
-+ */
-+ delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "delta %uus/%luus max_size %u rate %llu/%llu",
-+ delta_us, BFQ_MIN_TT/NSEC_PER_USEC, bfqd->last_rq_max_size,
-+ delta_us > 0 ?
-+ (USEC_PER_SEC*
-+ (u64)((bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us))
-+ >>BFQ_RATE_SHIFT :
-+ (USEC_PER_SEC*
-+ (u64)(bfqd->last_rq_max_size<<BFQ_RATE_SHIFT))>>BFQ_RATE_SHIFT,
-+ (USEC_PER_SEC*(u64)(1UL<<(BFQ_RATE_SHIFT-10)))>>BFQ_RATE_SHIFT);
-+
-+ /*
-+ * If the request took rather long to complete, and, according
-+ * to the maximum request size recorded, this completion latency
-+ * implies that the request was certainly served at a very low
-+ * rate (less than 1M sectors/sec), then the whole observation
-+ * interval that lasts up to this time instant cannot be a
-+ * valid time interval for computing a new peak rate. Invoke
-+ * bfq_update_rate_reset to have the following three steps
-+ * taken:
-+ * - close the observation interval at the last (previous)
-+ * request dispatch or completion
-+ * - compute rate, if possible, for that observation interval
-+ * - reset to zero samples, which will trigger a proper
-+ * re-initialization of the observation interval on next
-+ * dispatch
-+ */
-+ if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
-+ (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
-+ 1UL<<(BFQ_RATE_SHIFT - 10))
-+ bfq_update_rate_reset(bfqd, NULL);
-+ bfqd->last_completion = now_ns;
-+
-+ /*
-+ * If we are waiting to discover whether the request pattern
-+ * of the task associated with the queue is actually
-+ * isochronous, and both requisites for this condition to hold
-+ * are now satisfied, then compute soft_rt_next_start (see the
-+ * comments on the function bfq_bfqq_softrt_next_start()). We
-+ * do not compute soft_rt_next_start if bfqq is in interactive
-+ * weight raising (see the comments in bfq_bfqq_expire() for
-+ * an explanation). We schedule this delayed update when bfqq
-+ * expires, if it still has in-flight requests.
-+ */
-+ if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
-+ RB_EMPTY_ROOT(&bfqq->sort_list) &&
-+ bfqq->wr_coeff != bfqd->bfq_wr_coeff)
-+ bfqq->soft_rt_next_start =
-+ bfq_bfqq_softrt_next_start(bfqd, bfqq);
-+
-+ /*
-+ * If this is the in-service queue, check if it needs to be expired,
-+ * or if we want to idle in case it has no pending requests.
-+ */
-+ if (bfqd->in_service_queue == bfqq) {
-+ if (bfq_bfqq_must_idle(bfqq)) {
-+ if (bfqq->dispatched == 0)
-+ bfq_arm_slice_timer(bfqd);
-+ /*
-+ * If we get here, we do not expire bfqq, even
-+ * if bfqq was in budget timeout or had no
-+ * more requests (as controlled in the next
-+ * conditional instructions). The reason for
-+ * not expiring bfqq is as follows.
-+ *
-+ * Here bfqq->dispatched > 0 holds, but
-+ * bfq_bfqq_must_idle() returned true. This
-+ * implies that, even if no request arrives
-+ * for bfqq before bfqq->dispatched reaches 0,
-+ * bfqq will, however, not be expired on the
-+ * completion event that causes bfqq->dispatch
-+ * to reach zero. In contrast, on this event,
-+ * bfqq will start enjoying device idling
-+ * (I/O-dispatch plugging).
-+ *
-+ * But, if we expired bfqq here, bfqq would
-+ * not have the chance to enjoy device idling
-+ * when bfqq->dispatched finally reaches
-+ * zero. This would expose bfqq to violation
-+ * of its reserved service guarantees.
-+ */
-+ return;
-+ } else if (bfq_may_expire_for_budg_timeout(bfqq))
-+ bfq_bfqq_expire(bfqd, bfqq, false,
-+ BFQ_BFQQ_BUDGET_TIMEOUT);
-+ else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
-+ (bfqq->dispatched == 0 ||
-+ !bfq_better_to_idle(bfqq)))
-+ bfq_bfqq_expire(bfqd, bfqq, false,
-+ BFQ_BFQQ_NO_MORE_REQUESTS);
-+ }
-+}
-+
-+static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
-+{
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "allocated %d", bfqq->allocated);
-+ BUG_ON(!bfqq->allocated);
-+ bfqq->allocated--;
-+
-+ bfq_put_queue(bfqq);
-+}
-+
-+/*
-+ * Handle either a requeue or a finish for rq. The things to do are
-+ * the same in both cases: all references to rq are to be dropped. In
-+ * particular, rq is considered completed from the point of view of
-+ * the scheduler.
-+ */
-+static void bfq_finish_requeue_request(struct request *rq)
-+{
-+ struct bfq_queue *bfqq;
-+ struct bfq_data *bfqd;
-+ struct bfq_io_cq *bic;
-+
-+ BUG_ON(!rq);
-+
-+ bfqq = RQ_BFQQ(rq);
-+
-+ /*
-+ * Requeue and finish hooks are invoked in blk-mq without
-+ * checking whether the involved request is actually still
-+ * referenced in the scheduler. To handle this fact, the
-+ * following two checks make this function exit in case of
-+ * spurious invocations, for which there is nothing to do.
-+ *
-+ * First, check whether rq has nothing to do with an elevator.
-+ */
-+ if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
-+ return;
-+
-+ /*
-+ * rq either is not associated with any icq, or is an already
-+ * requeued request that has not (yet) been re-inserted into
-+ * a bfq_queue.
-+ */
-+ if (!rq->elv.icq || !bfqq)
-+ return;
-+
-+ bic = RQ_BIC(rq);
-+ BUG_ON(!bic);
-+
-+ bfqd = bfqq->bfqd;
-+ BUG_ON(!bfqd);
-+
-+ if (rq->rq_flags & RQF_DISP_LIST) {
-+ pr_crit("putting disp rq %p for %d", rq, bfqq->pid);
-+ BUG();
-+ }
-+ BUG_ON(rq->rq_flags & RQF_QUEUED);
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "putting rq %p with %u sects left, STARTED %d",
-+ rq, blk_rq_sectors(rq),
-+ rq->rq_flags & RQF_STARTED);
-+
-+ if (rq->rq_flags & RQF_STARTED)
-+ bfqg_stats_update_completion(bfqq_group(bfqq),
-+ rq->start_time_ns,
-+ rq->io_start_time_ns,
-+ rq->cmd_flags);
-+
-+ WARN_ON(blk_rq_sectors(rq) == 0 && !(rq->rq_flags & RQF_STARTED));
-+
-+ if (likely(rq->rq_flags & RQF_STARTED)) {
-+ unsigned long flags;
-+
-+ spin_lock_irqsave(&bfqd->lock, flags);
-+
-+ bfq_completed_request(bfqq, bfqd);
-+ bfq_finish_requeue_request_body(bfqq);
-+
-+ spin_unlock_irqrestore(&bfqd->lock, flags);
-+ } else {
-+ /*
-+ * Request rq may be still/already in the scheduler,
-+ * in which case we need to remove it (this should
-+ * never happen in case of requeue). And we cannot
-+ * defer such a check and removal, to avoid
-+ * inconsistencies in the time interval from the end
-+ * of this function to the start of the deferred work.
-+ * This situation seems to occur only in process
-+ * context, as a consequence of a merge. In the
-+ * current version of the code, this implies that the
-+ * lock is held.
-+ */
-+ BUG_ON(in_interrupt());
-+
-+ assert_spin_locked(&bfqd->lock);
-+ if (!RB_EMPTY_NODE(&rq->rb_node)) {
-+ bfq_remove_request(rq->q, rq);
-+ bfqg_stats_update_io_remove(bfqq_group(bfqq),
-+ rq->cmd_flags);
-+ }
-+ bfq_finish_requeue_request_body(bfqq);
-+ }
-+
-+ /*
-+ * Reset private fields. In case of a requeue, this allows
-+ * this function to correctly do nothing if it is spuriously
-+ * invoked again on this same request (see the check at the
-+ * beginning of the function). Probably, a better general
-+ * design would be to prevent blk-mq from invoking the requeue
-+ * or finish hooks of an elevator, for a request that is not
-+ * referred by that elevator.
-+ *
-+ * Resetting the following fields would break the
-+ * request-insertion logic if rq is re-inserted into a bfq
-+ * internal queue, without a re-preparation. Here we assume
-+ * that re-insertions of requeued requests, without
-+ * re-preparation, can happen only for pass_through or at_head
-+ * requests (which are not re-inserted into bfq internal
-+ * queues).
-+ */
-+ rq->elv.priv[0] = NULL;
-+ rq->elv.priv[1] = NULL;
-+}
-+
-+/*
-+ * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
-+ * was the last process referring to that bfqq.
-+ */
-+static struct bfq_queue *
-+bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
-+{
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
-+
-+ if (bfqq_process_refs(bfqq) == 1) {
-+ bfqq->pid = current->pid;
-+ bfq_clear_bfqq_coop(bfqq);
-+ bfq_clear_bfqq_split_coop(bfqq);
-+ return bfqq;
-+ }
-+
-+ bic_set_bfqq(bic, NULL, 1);
-+
-+ bfq_put_cooperator(bfqq);
-+
-+ bfq_put_queue(bfqq);
-+ return NULL;
-+}
-+
-+static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
-+ struct bfq_io_cq *bic,
-+ struct bio *bio,
-+ bool split, bool is_sync,
-+ bool *new_queue)
-+{
-+ struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
-+
-+ if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
-+ return bfqq;
-+
-+ if (new_queue)
-+ *new_queue = true;
-+
-+ if (bfqq)
-+ bfq_put_queue(bfqq);
-+ bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
-+ BUG_ON(!hlist_unhashed(&bfqq->burst_list_node));
-+
-+ bic_set_bfqq(bic, bfqq, is_sync);
-+ if (split && is_sync) {
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "get_request: was_in_list %d "
-+ "was_in_large_burst %d "
-+ "large burst in progress %d",
-+ bic->was_in_burst_list,
-+ bic->saved_in_large_burst,
-+ bfqd->large_burst);
-+
-+ if ((bic->was_in_burst_list && bfqd->large_burst) ||
-+ bic->saved_in_large_burst) {
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "get_request: marking in "
-+ "large burst");
-+ bfq_mark_bfqq_in_large_burst(bfqq);
-+ } else {
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "get_request: clearing in "
-+ "large burst");
-+ bfq_clear_bfqq_in_large_burst(bfqq);
-+ if (bic->was_in_burst_list)
-+ /*
-+ * If bfqq was in the current
-+ * burst list before being
-+ * merged, then we have to add
-+ * it back. And we do not need
-+ * to increase burst_size, as
-+ * we did not decrement
-+ * burst_size when we removed
-+ * bfqq from the burst list as
-+ * a consequence of a merge
-+ * (see comments in
-+ * bfq_put_queue). In this
-+ * respect, it would be rather
-+ * costly to know whether the
-+ * current burst list is still
-+ * the same burst list from
-+ * which bfqq was removed on
-+ * the merge. To avoid this
-+ * cost, if bfqq was in a
-+ * burst list, then we add
-+ * bfqq to the current burst
-+ * list without any further
-+ * check. This can cause
-+ * inappropriate insertions,
-+ * but rarely enough to not
-+ * harm the detection of large
-+ * bursts significantly.
-+ */
-+ hlist_add_head(&bfqq->burst_list_node,
-+ &bfqd->burst_list);
-+ }
-+ bfqq->split_time = jiffies;
-+ }
-+
-+ return bfqq;
-+}
-+
-+/*
-+ * Only reset private fields. The actual request preparation will be
-+ * performed by bfq_init_rq, when rq is either inserted or merged. See
-+ * comments on bfq_init_rq for the reason behind this delayed
-+ * preparation.
-+*/
-+static void bfq_prepare_request(struct request *rq, struct bio *bio)
-+{
-+ /*
-+ * Regardless of whether we have an icq attached, we have to
-+ * clear the scheduler pointers, as they might point to
-+ * previously allocated bic/bfqq structs.
-+ */
-+ rq->elv.priv[0] = rq->elv.priv[1] = NULL;
-+}
-+
-+/*
-+ * If needed, init rq, allocate bfq data structures associated with
-+ * rq, and increment reference counters in the destination bfq_queue
-+ * for rq. Return the destination bfq_queue for rq, or NULL is rq is
-+ * not associated with any bfq_queue.
-+ *
-+ * This function is invoked by the functions that perform rq insertion
-+ * or merging. One may have expected the above preparation operations
-+ * to be performed in bfq_prepare_request, and not delayed to when rq
-+ * is inserted or merged. The rationale behind this delayed
-+ * preparation is that, after the prepare_request hook is invoked for
-+ * rq, rq may still be transformed into a request with no icq, i.e., a
-+ * request not associated with any queue. No bfq hook is invoked to
-+ * signal this tranformation. As a consequence, should these
-+ * preparation operations be performed when the prepare_request hook
-+ * is invoked, and should rq be transformed one moment later, bfq
-+ * would end up in an inconsistent state, because it would have
-+ * incremented some queue counters for an rq destined to
-+ * transformation, without any chance to correctly lower these
-+ * counters back. In contrast, no transformation can still happen for
-+ * rq after rq has been inserted or merged. So, it is safe to execute
-+ * these preparation operations when rq is finally inserted or merged.
-+ */
-+static struct bfq_queue *bfq_init_rq(struct request *rq)
-+{
-+ struct request_queue *q = rq->q;
-+ struct bio *bio = rq->bio;
-+ struct bfq_data *bfqd = q->elevator->elevator_data;
-+ struct bfq_io_cq *bic;
-+ const int is_sync = rq_is_sync(rq);
-+ struct bfq_queue *bfqq;
-+ bool bfqq_already_existing = false, split = false;
-+ bool new_queue = false;
-+
-+ if (unlikely(!rq->elv.icq))
-+ return NULL;
-+
-+ /*
-+ * Assuming that elv.priv[1] is set only if everything is set
-+ * for this rq. This holds true, because this function is
-+ * invoked only for insertion or merging, and, after such
-+ * events, a request cannot be manipulated any longer before
-+ * being removed from bfq.
-+ */
-+ if (rq->elv.priv[1]) {
-+ BUG_ON(!(rq->rq_flags & RQF_ELVPRIV));
-+ return rq->elv.priv[1];
-+ }
-+
-+ bic = icq_to_bic(rq->elv.icq);
-+
-+ bfq_check_ioprio_change(bic, bio);
-+
-+ bfq_bic_update_cgroup(bic, bio);
-+
-+ bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
-+ &new_queue);
-+
-+ if (likely(!new_queue)) {
-+ /* If the queue was seeky for too long, break it apart. */
-+ if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
-+ BUG_ON(!is_sync);
-+ bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
-+
-+ /* Update bic before losing reference to bfqq */
-+ if (bfq_bfqq_in_large_burst(bfqq))
-+ bic->saved_in_large_burst = true;
-+
-+ bfqq = bfq_split_bfqq(bic, bfqq);
-+ split = true;
-+
-+ if (!bfqq)
-+ bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
-+ true, is_sync,
-+ NULL);
-+ else
-+ bfqq_already_existing = true;
-+
-+ BUG_ON(!bfqq);
-+ BUG_ON(bfqq == &bfqd->oom_bfqq);
-+ }
-+ }
-+
-+ bfqq->allocated++;
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "new allocated %d", bfqq->allocated);
-+
-+ bfqq->ref++;
-+ bfq_log_bfqq(bfqd, bfqq, "%p: bfqq %p, %d", rq, bfqq, bfqq->ref);
-+
-+ rq->elv.priv[0] = bic;
-+ rq->elv.priv[1] = bfqq;
-+ rq->rq_flags &= ~RQF_DISP_LIST;
-+
-+ /*
-+ * If a bfq_queue has only one process reference, it is owned
-+ * by only this bic: we can then set bfqq->bic = bic. in
-+ * addition, if the queue has also just been split, we have to
-+ * resume its state.
-+ */
-+ if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
-+ bfqq->bic = bic;
-+ if (split) {
-+ /*
-+ * The queue has just been split from a shared
-+ * queue: restore the idle window and the
-+ * possible weight raising period.
-+ */
-+ bfq_bfqq_resume_state(bfqq, bfqd, bic,
-+ bfqq_already_existing);
-+ }
-+ }
-+
-+ if (unlikely(bfq_bfqq_just_created(bfqq)))
-+ bfq_handle_burst(bfqd, bfqq);
-+
-+ rq->rq_flags |= RQF_GOT;
-+
-+ return bfqq;
-+}
-+
-+static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
-+{
-+ struct bfq_data *bfqd = bfqq->bfqd;
-+ enum bfqq_expiration reason;
-+ unsigned long flags;
-+
-+ BUG_ON(!bfqd);
-+ spin_lock_irqsave(&bfqd->lock, flags);
-+
-+ bfq_log_bfqq(bfqd, bfqq, "handling slice_timer expiration");
-+ bfq_clear_bfqq_wait_request(bfqq);
-+
-+ if (bfqq != bfqd->in_service_queue) {
-+ spin_unlock_irqrestore(&bfqd->lock, flags);
-+ return;
-+ }
-+
-+ if (bfq_bfqq_budget_timeout(bfqq))
-+ /*
-+ * Also here the queue can be safely expired
-+ * for budget timeout without wasting
-+ * guarantees
-+ */
-+ reason = BFQ_BFQQ_BUDGET_TIMEOUT;
-+ else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
-+ /*
-+ * The queue may not be empty upon timer expiration,
-+ * because we may not disable the timer when the
-+ * first request of the in-service queue arrives
-+ * during disk idling.
-+ */
-+ reason = BFQ_BFQQ_TOO_IDLE;
-+ else
-+ goto schedule_dispatch;
-+
-+ bfq_bfqq_expire(bfqd, bfqq, true, reason);
-+
-+schedule_dispatch:
-+ spin_unlock_irqrestore(&bfqd->lock, flags);
-+ bfq_schedule_dispatch(bfqd);
-+}
-+
-+/*
-+ * Handler of the expiration of the timer running if the in-service queue
-+ * is idling inside its time slice.
-+ */
-+static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
-+{
-+ struct bfq_data *bfqd = container_of(timer, struct bfq_data,
-+ idle_slice_timer);
-+ struct bfq_queue *bfqq = bfqd->in_service_queue;
-+
-+ bfq_log(bfqd, "expired");
-+
-+ /*
-+ * Theoretical race here: the in-service queue can be NULL or
-+ * different from the queue that was idling if a new request
-+ * arrives for the current queue and there is a full dispatch
-+ * cycle that changes the in-service queue. This can hardly
-+ * happen, but in the worst case we just expire a queue too
-+ * early.
-+ */
-+ if (bfqq)
-+ bfq_idle_slice_timer_body(bfqq);
-+
-+ return HRTIMER_NORESTART;
-+}
-+
-+static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
-+ struct bfq_queue **bfqq_ptr)
-+{
-+ struct bfq_group *root_group = bfqd->root_group;
-+ struct bfq_queue *bfqq = *bfqq_ptr;
-+
-+ bfq_log(bfqd, "%p", bfqq);
-+ if (bfqq) {
-+ bfq_bfqq_move(bfqd, bfqq, root_group);
-+ bfq_log_bfqq(bfqd, bfqq, "putting %p, %d",
-+ bfqq, bfqq->ref);
-+ bfq_put_queue(bfqq);
-+ *bfqq_ptr = NULL;
-+ }
-+}
-+
-+/*
-+ * Release all the bfqg references to its async queues. If we are
-+ * deallocating the group these queues may still contain requests, so
-+ * we reparent them to the root cgroup (i.e., the only one that will
-+ * exist for sure until all the requests on a device are gone).
-+ */
-+static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
-+{
-+ int i, j;
-+
-+ for (i = 0; i < 2; i++)
-+ for (j = 0; j < IOPRIO_BE_NR; j++)
-+ __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
-+
-+ __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
-+}
-+
-+/*
-+ * See the comments on bfq_limit_depth for the purpose of
-+ * the depths set in the function. Return minimum shallow depth we'll use.
-+ */
-+static unsigned int bfq_update_depths(struct bfq_data *bfqd,
-+ struct sbitmap_queue *bt)
-+{
-+ unsigned int i, j, min_shallow = UINT_MAX;
-+
-+ /*
-+ * In-word depths if no bfq_queue is being weight-raised:
-+ * leaving 25% of tags only for sync reads.
-+ *
-+ * In next formulas, right-shift the value
-+ * (1U<<bt->sb.shift), instead of computing directly
-+ * (1U<<(bt->sb.shift - something)), to be robust against
-+ * any possible value of bt->sb.shift, without having to
-+ * limit 'something'.
-+ */
-+ /* no more than 50% of tags for async I/O */
-+ bfqd->word_depths[0][0] = max((1U<<bt->sb.shift)>>1, 1U);
-+ /*
-+ * no more than 75% of tags for sync writes (25% extra tags
-+ * w.r.t. async I/O, to prevent async I/O from starving sync
-+ * writes)
-+ */
-+ bfqd->word_depths[0][1] = max(((1U<<bt->sb.shift) * 3)>>2, 1U);
-+
-+ /*
-+ * In-word depths in case some bfq_queue is being weight-
-+ * raised: leaving ~63% of tags for sync reads. This is the
-+ * highest percentage for which, in our tests, application
-+ * start-up times didn't suffer from any regression due to tag
-+ * shortage.
-+ */
-+ /* no more than ~18% of tags for async I/O */
-+ bfqd->word_depths[1][0] = max(((1U<<bt->sb.shift) * 3)>>4, 1U);
-+ /* no more than ~37% of tags for sync writes (~20% extra tags) */
-+ bfqd->word_depths[1][1] = max(((1U<<bt->sb.shift) * 6)>>4, 1U);
-+
-+ for (i = 0; i < 2; i++)
-+ for (j = 0; j < 2; j++)
-+ min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
-+
-+ return min_shallow;
-+}
-+
-+static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
-+{
-+ struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
-+ struct blk_mq_tags *tags = hctx->sched_tags;
-+ unsigned int min_shallow;
-+
-+ min_shallow = bfq_update_depths(bfqd, &tags->bitmap_tags);
-+ sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, min_shallow);
-+}
-+
-+static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
-+{
-+ bfq_depth_updated(hctx);
-+ return 0;
-+}
-+
-+static void bfq_exit_queue(struct elevator_queue *e)
-+{
-+ struct bfq_data *bfqd = e->elevator_data;
-+ struct bfq_queue *bfqq, *n;
-+
-+ bfq_log(bfqd, "starting ...");
-+
-+ hrtimer_cancel(&bfqd->idle_slice_timer);
-+
-+ BUG_ON(bfqd->in_service_queue);
-+ BUG_ON(!list_empty(&bfqd->active_list));
-+
-+ spin_lock_irq(&bfqd->lock);
-+ list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
-+ bfq_deactivate_bfqq(bfqd, bfqq, false, false);
-+ spin_unlock_irq(&bfqd->lock);
-+
-+ hrtimer_cancel(&bfqd->idle_slice_timer);
-+
-+ BUG_ON(hrtimer_active(&bfqd->idle_slice_timer));
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ /* release oom-queue reference to root group */
-+ bfqg_and_blkg_put(bfqd->root_group);
-+
-+ blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
-+#else
-+ spin_lock_irq(&bfqd->lock);
-+ bfq_put_async_queues(bfqd, bfqd->root_group);
-+ kfree(bfqd->root_group);
-+ spin_unlock_irq(&bfqd->lock);
-+#endif
-+
-+ bfq_log(bfqd, "finished ...");
-+ kfree(bfqd);
-+}
-+
-+static void bfq_init_root_group(struct bfq_group *root_group,
-+ struct bfq_data *bfqd)
-+{
-+ int i;
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ root_group->entity.parent = NULL;
-+ root_group->my_entity = NULL;
-+ root_group->bfqd = bfqd;
-+#endif
-+ root_group->rq_pos_tree = RB_ROOT;
-+ for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
-+ root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
-+ root_group->sched_data.bfq_class_idle_last_service = jiffies;
-+}
-+
-+static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
-+{
-+ struct bfq_data *bfqd;
-+ struct elevator_queue *eq;
-+
-+ eq = elevator_alloc(q, e);
-+ if (!eq)
-+ return -ENOMEM;
-+
-+ bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
-+ if (!bfqd) {
-+ kobject_put(&eq->kobj);
-+ return -ENOMEM;
-+ }
-+ eq->elevator_data = bfqd;
-+
-+ spin_lock_irq(q->queue_lock);
-+ q->elevator = eq;
-+ spin_unlock_irq(q->queue_lock);
-+
-+ /*
-+ * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
-+ * Grab a permanent reference to it, so that the normal code flow
-+ * will not attempt to free it.
-+ */
-+ bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
-+ bfqd->oom_bfqq.ref++;
-+ bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
-+ bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
-+ bfqd->oom_bfqq.entity.new_weight =
-+ bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
-+
-+ /* oom_bfqq does not participate to bursts */
-+ bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
-+ /*
-+ * Trigger weight initialization, according to ioprio, at the
-+ * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
-+ * class won't be changed any more.
-+ */
-+ bfqd->oom_bfqq.entity.prio_changed = 1;
-+
-+ bfqd->queue = q;
-+ INIT_LIST_HEAD(&bfqd->dispatch);
-+
-+ hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
-+ HRTIMER_MODE_REL);
-+ bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
-+
-+ bfqd->queue_weights_tree = RB_ROOT;
-+ bfqd->num_groups_with_pending_reqs = 0;
-+
-+ INIT_LIST_HEAD(&bfqd->active_list);
-+ INIT_LIST_HEAD(&bfqd->idle_list);
-+ INIT_HLIST_HEAD(&bfqd->burst_list);
-+
-+ bfqd->hw_tag = -1;
-+
-+ bfqd->bfq_max_budget = bfq_default_max_budget;
-+
-+ bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
-+ bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
-+ bfqd->bfq_back_max = bfq_back_max;
-+ bfqd->bfq_back_penalty = bfq_back_penalty;
-+ bfqd->bfq_slice_idle = bfq_slice_idle;
-+ bfqd->bfq_timeout = bfq_timeout;
-+
-+ bfqd->bfq_requests_within_timer = 120;
-+
-+ bfqd->bfq_large_burst_thresh = 8;
-+ bfqd->bfq_burst_interval = msecs_to_jiffies(180);
-+
-+ bfqd->low_latency = true;
-+
-+ /*
-+ * Trade-off between responsiveness and fairness.
-+ */
-+ bfqd->bfq_wr_coeff = 30;
-+ bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
-+ bfqd->bfq_wr_max_time = 0;
-+ bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
-+ bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
-+ bfqd->bfq_wr_max_softrt_rate = 7000; /*
-+ * Approximate rate required
-+ * to playback or record a
-+ * high-definition compressed
-+ * video.
-+ */
-+ bfqd->wr_busy_queues = 0;
-+
-+ /*
-+ * Begin by assuming, optimistically, that the device peak
-+ * rate is equal to 2/3 of the highest reference rate.
-+ */
-+ bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
-+ ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
-+ bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
-+
-+ spin_lock_init(&bfqd->lock);
-+
-+ /*
-+ * The invocation of the next bfq_create_group_hierarchy
-+ * function is the head of a chain of function calls
-+ * (bfq_create_group_hierarchy->blkcg_activate_policy->
-+ * blk_mq_freeze_queue) that may lead to the invocation of the
-+ * has_work hook function. For this reason,
-+ * bfq_create_group_hierarchy is invoked only after all
-+ * scheduler data has been initialized, apart from the fields
-+ * that can be initialized only after invoking
-+ * bfq_create_group_hierarchy. This, in particular, enables
-+ * has_work to correctly return false. Of course, to avoid
-+ * other inconsistencies, the blk-mq stack must then refrain
-+ * from invoking further scheduler hooks before this init
-+ * function is finished.
-+ */
-+ bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
-+ if (!bfqd->root_group)
-+ goto out_free;
-+ bfq_init_root_group(bfqd->root_group, bfqd);
-+ bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
-+
-+ wbt_disable_default(q);
-+ return 0;
-+
-+out_free:
-+ kfree(bfqd);
-+ kobject_put(&eq->kobj);
-+ return -ENOMEM;
-+}
-+
-+static void bfq_slab_kill(void)
-+{
-+ kmem_cache_destroy(bfq_pool);
-+}
-+
-+static int __init bfq_slab_setup(void)
-+{
-+ bfq_pool = KMEM_CACHE(bfq_queue, 0);
-+ if (!bfq_pool)
-+ return -ENOMEM;
-+ return 0;
-+}
-+
-+static ssize_t bfq_var_show(unsigned int var, char *page)
-+{
-+ return sprintf(page, "%u\n", var);
-+}
-+
-+static ssize_t bfq_var_store(unsigned long *var, const char *page,
-+ size_t count)
-+{
-+ unsigned long new_val;
-+ int ret = kstrtoul(page, 10, &new_val);
-+
-+ if (ret == 0)
-+ *var = new_val;
-+
-+ return count;
-+}
-+
-+static ssize_t bfq_wr_max_time_show(struct elevator_queue *e, char *page)
-+{
-+ struct bfq_data *bfqd = e->elevator_data;
-+
-+ return sprintf(page, "%d\n", bfqd->bfq_wr_max_time > 0 ?
-+ jiffies_to_msecs(bfqd->bfq_wr_max_time) :
-+ jiffies_to_msecs(bfq_wr_duration(bfqd)));
-+}
-+
-+static ssize_t bfq_weights_show(struct elevator_queue *e, char *page)
-+{
-+ struct bfq_queue *bfqq;
-+ struct bfq_data *bfqd = e->elevator_data;
-+ ssize_t num_char = 0;
-+
-+ num_char += sprintf(page + num_char, "Tot reqs queued %d\n\n",
-+ bfqd->queued);
-+
-+ spin_lock_irq(&bfqd->lock);
-+
-+ num_char += sprintf(page + num_char, "Active:\n");
-+ list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list) {
-+ num_char += sprintf(page + num_char,
-+ "pid%d: weight %hu, nr_queued %d %d, ",
-+ bfqq->pid,
-+ bfqq->entity.weight,
-+ bfqq->queued[0],
-+ bfqq->queued[1]);
-+ num_char += sprintf(page + num_char,
-+ "dur %d/%u\n",
-+ jiffies_to_msecs(
-+ jiffies -
-+ bfqq->last_wr_start_finish),
-+ jiffies_to_msecs(bfqq->wr_cur_max_time));
-+ }
-+
-+ num_char += sprintf(page + num_char, "Idle:\n");
-+ list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list) {
-+ num_char += sprintf(page + num_char,
-+ "pid%d: weight %hu, dur %d/%u\n",
-+ bfqq->pid,
-+ bfqq->entity.weight,
-+ jiffies_to_msecs(jiffies -
-+ bfqq->last_wr_start_finish),
-+ jiffies_to_msecs(bfqq->wr_cur_max_time));
-+ }
-+
-+ spin_unlock_irq(&bfqd->lock);
-+
-+ return num_char;
-+}
-+
-+#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
-+static ssize_t __FUNC(struct elevator_queue *e, char *page) \
-+{ \
-+ struct bfq_data *bfqd = e->elevator_data; \
-+ u64 __data = __VAR; \
-+ if (__CONV == 1) \
-+ __data = jiffies_to_msecs(__data); \
-+ else if (__CONV == 2) \
-+ __data = div_u64(__data, NSEC_PER_MSEC); \
-+ return bfq_var_show(__data, (page)); \
-+}
-+SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
-+SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
-+SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
-+SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
-+SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
-+SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
-+SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
-+SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
-+SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
-+SHOW_FUNCTION(bfq_wr_coeff_show, bfqd->bfq_wr_coeff, 0);
-+SHOW_FUNCTION(bfq_wr_rt_max_time_show, bfqd->bfq_wr_rt_max_time, 1);
-+SHOW_FUNCTION(bfq_wr_min_idle_time_show, bfqd->bfq_wr_min_idle_time, 1);
-+SHOW_FUNCTION(bfq_wr_min_inter_arr_async_show, bfqd->bfq_wr_min_inter_arr_async,
-+ 1);
-+SHOW_FUNCTION(bfq_wr_max_softrt_rate_show, bfqd->bfq_wr_max_softrt_rate, 0);
-+#undef SHOW_FUNCTION
-+
-+#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
-+static ssize_t __FUNC(struct elevator_queue *e, char *page) \
-+{ \
-+ struct bfq_data *bfqd = e->elevator_data; \
-+ u64 __data = __VAR; \
-+ __data = div_u64(__data, NSEC_PER_USEC); \
-+ return bfq_var_show(__data, (page)); \
-+}
-+USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
-+#undef USEC_SHOW_FUNCTION
-+
-+#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
-+static ssize_t \
-+__FUNC(struct elevator_queue *e, const char *page, size_t count) \
-+{ \
-+ struct bfq_data *bfqd = e->elevator_data; \
-+ unsigned long uninitialized_var(__data); \
-+ int ret = bfq_var_store(&__data, (page), count); \
-+ if (__data < (MIN)) \
-+ __data = (MIN); \
-+ else if (__data > (MAX)) \
-+ __data = (MAX); \
-+ if (__CONV == 1) \
-+ *(__PTR) = msecs_to_jiffies(__data); \
-+ else if (__CONV == 2) \
-+ *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
-+ else \
-+ *(__PTR) = __data; \
-+ return ret; \
-+}
-+STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
-+ INT_MAX, 2);
-+STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
-+ INT_MAX, 2);
-+STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
-+STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
-+ INT_MAX, 0);
-+STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
-+STORE_FUNCTION(bfq_wr_coeff_store, &bfqd->bfq_wr_coeff, 1, INT_MAX, 0);
-+STORE_FUNCTION(bfq_wr_max_time_store, &bfqd->bfq_wr_max_time, 0, INT_MAX, 1);
-+STORE_FUNCTION(bfq_wr_rt_max_time_store, &bfqd->bfq_wr_rt_max_time, 0, INT_MAX,
-+ 1);
-+STORE_FUNCTION(bfq_wr_min_idle_time_store, &bfqd->bfq_wr_min_idle_time, 0,
-+ INT_MAX, 1);
-+STORE_FUNCTION(bfq_wr_min_inter_arr_async_store,
-+ &bfqd->bfq_wr_min_inter_arr_async, 0, INT_MAX, 1);
-+STORE_FUNCTION(bfq_wr_max_softrt_rate_store, &bfqd->bfq_wr_max_softrt_rate, 0,
-+ INT_MAX, 0);
-+#undef STORE_FUNCTION
-+
-+#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
-+static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
-+{ \
-+ struct bfq_data *bfqd = e->elevator_data; \
-+ unsigned long uninitialized_var(__data); \
-+ int ret = bfq_var_store(&__data, (page), count); \
-+ if (__data < (MIN)) \
-+ __data = (MIN); \
-+ else if (__data > (MAX)) \
-+ __data = (MAX); \
-+ *(__PTR) = (u64)__data * NSEC_PER_USEC; \
-+ return ret; \
-+}
-+USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
-+ UINT_MAX);
-+#undef USEC_STORE_FUNCTION
-+
-+/* do nothing for the moment */
-+static ssize_t bfq_weights_store(struct elevator_queue *e,
-+ const char *page, size_t count)
-+{
-+ return count;
-+}
-+
-+static ssize_t bfq_max_budget_store(struct elevator_queue *e,
-+ const char *page, size_t count)
-+{
-+ struct bfq_data *bfqd = e->elevator_data;
-+ unsigned long uninitialized_var(__data);
-+ int ret = bfq_var_store(&__data, (page), count);
-+
-+ if (__data == 0)
-+ bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
-+ else {
-+ if (__data > INT_MAX)
-+ __data = INT_MAX;
-+ bfqd->bfq_max_budget = __data;
-+ }
-+
-+ bfqd->bfq_user_max_budget = __data;
-+
-+ return ret;
-+}
-+
-+/*
-+ * Leaving this name to preserve name compatibility with cfq
-+ * parameters, but this timeout is used for both sync and async.
-+ */
-+static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
-+ const char *page, size_t count)
-+{
-+ struct bfq_data *bfqd = e->elevator_data;
-+ unsigned long uninitialized_var(__data);
-+ int ret = bfq_var_store(&__data, (page), count);
-+
-+ if (__data < 1)
-+ __data = 1;
-+ else if (__data > INT_MAX)
-+ __data = INT_MAX;
-+
-+ bfqd->bfq_timeout = msecs_to_jiffies(__data);
-+ if (bfqd->bfq_user_max_budget == 0)
-+ bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
-+
-+ return ret;
-+}
-+
-+static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
-+ const char *page, size_t count)
-+{
-+ struct bfq_data *bfqd = e->elevator_data;
-+ unsigned long uninitialized_var(__data);
-+ int ret = bfq_var_store(&__data, (page), count);
-+
-+ if (__data > 1)
-+ __data = 1;
-+ if (!bfqd->strict_guarantees && __data == 1
-+ && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
-+ bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
-+
-+ bfqd->strict_guarantees = __data;
-+
-+ return ret;
-+}
-+
-+static ssize_t bfq_low_latency_store(struct elevator_queue *e,
-+ const char *page, size_t count)
-+{
-+ struct bfq_data *bfqd = e->elevator_data;
-+ unsigned long uninitialized_var(__data);
-+ int ret = bfq_var_store(&__data, (page), count);
-+
-+ if (__data > 1)
-+ __data = 1;
-+ if (__data == 0 && bfqd->low_latency != 0)
-+ bfq_end_wr(bfqd);
-+ bfqd->low_latency = __data;
-+
-+ return ret;
-+}
-+
-+#define BFQ_ATTR(name) \
-+ __ATTR(name, S_IRUGO|S_IWUSR, bfq_##name##_show, bfq_##name##_store)
-+
-+static struct elv_fs_entry bfq_attrs[] = {
-+ BFQ_ATTR(fifo_expire_sync),
-+ BFQ_ATTR(fifo_expire_async),
-+ BFQ_ATTR(back_seek_max),
-+ BFQ_ATTR(back_seek_penalty),
-+ BFQ_ATTR(slice_idle),
-+ BFQ_ATTR(slice_idle_us),
-+ BFQ_ATTR(max_budget),
-+ BFQ_ATTR(timeout_sync),
-+ BFQ_ATTR(strict_guarantees),
-+ BFQ_ATTR(low_latency),
-+ BFQ_ATTR(wr_coeff),
-+ BFQ_ATTR(wr_max_time),
-+ BFQ_ATTR(wr_rt_max_time),
-+ BFQ_ATTR(wr_min_idle_time),
-+ BFQ_ATTR(wr_min_inter_arr_async),
-+ BFQ_ATTR(wr_max_softrt_rate),
-+ BFQ_ATTR(weights),
-+ __ATTR_NULL
-+};
-+
-+static struct elevator_type iosched_bfq_mq = {
-+ .ops.mq = {
-+ .limit_depth = bfq_limit_depth,
-+ .prepare_request = bfq_prepare_request,
-+ .requeue_request = bfq_finish_requeue_request,
-+ .finish_request = bfq_finish_requeue_request,
-+ .exit_icq = bfq_exit_icq,
-+ .insert_requests = bfq_insert_requests,
-+ .dispatch_request = bfq_dispatch_request,
-+ .next_request = elv_rb_latter_request,
-+ .former_request = elv_rb_former_request,
-+ .allow_merge = bfq_allow_bio_merge,
-+ .bio_merge = bfq_bio_merge,
-+ .request_merge = bfq_request_merge,
-+ .requests_merged = bfq_requests_merged,
-+ .request_merged = bfq_request_merged,
-+ .has_work = bfq_has_work,
-+ .depth_updated = bfq_depth_updated,
-+ .init_hctx = bfq_init_hctx,
-+ .init_sched = bfq_init_queue,
-+ .exit_sched = bfq_exit_queue,
-+ },
-+
-+ .uses_mq = true,
-+ .icq_size = sizeof(struct bfq_io_cq),
-+ .icq_align = __alignof__(struct bfq_io_cq),
-+ .elevator_attrs = bfq_attrs,
-+ .elevator_name = "bfq-mq",
-+ .elevator_owner = THIS_MODULE,
-+};
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+static struct blkcg_policy blkcg_policy_bfq = {
-+ .dfl_cftypes = bfq_blkg_files,
-+ .legacy_cftypes = bfq_blkcg_legacy_files,
-+
-+ .cpd_alloc_fn = bfq_cpd_alloc,
-+ .cpd_init_fn = bfq_cpd_init,
-+ .cpd_bind_fn = bfq_cpd_init,
-+ .cpd_free_fn = bfq_cpd_free,
-+
-+ .pd_alloc_fn = bfq_pd_alloc,
-+ .pd_init_fn = bfq_pd_init,
-+ .pd_offline_fn = bfq_pd_offline,
-+ .pd_free_fn = bfq_pd_free,
-+ .pd_reset_stats_fn = bfq_pd_reset_stats,
-+};
-+#endif
-+
-+static int __init bfq_init(void)
-+{
-+ int ret;
-+ char msg[60] = "BFQ I/O-scheduler: v9";
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ ret = blkcg_policy_register(&blkcg_policy_bfq);
-+ if (ret)
-+ return ret;
-+#endif
-+
-+ ret = -ENOMEM;
-+ if (bfq_slab_setup())
-+ goto err_pol_unreg;
-+
-+ /*
-+ * Times to load large popular applications for the typical
-+ * systems installed on the reference devices (see the
-+ * comments before the definition of the next
-+ * array). Actually, we use slightly lower values, as the
-+ * estimated peak rate tends to be smaller than the actual
-+ * peak rate. The reason for this last fact is that estimates
-+ * are computed over much shorter time intervals than the long
-+ * intervals typically used for benchmarking. Why? First, to
-+ * adapt more quickly to variations. Second, because an I/O
-+ * scheduler cannot rely on a peak-rate-evaluation workload to
-+ * be run for a long time.
-+ */
-+ ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
-+ ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
-+
-+ ret = elv_register(&iosched_bfq_mq);
-+ if (ret)
-+ goto slab_kill;
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ strcat(msg, " (with cgroups support)");
-+#endif
-+ pr_info("%s", msg);
-+
-+ return 0;
-+
-+slab_kill:
-+ bfq_slab_kill();
-+err_pol_unreg:
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ blkcg_policy_unregister(&blkcg_policy_bfq);
-+#endif
-+ return ret;
-+}
-+
-+static void __exit bfq_exit(void)
-+{
-+ elv_unregister(&iosched_bfq_mq);
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ blkcg_policy_unregister(&blkcg_policy_bfq);
-+#endif
-+ bfq_slab_kill();
-+}
-+
-+module_init(bfq_init);
-+module_exit(bfq_exit);
-+
-+MODULE_AUTHOR("Paolo Valente");
-+MODULE_LICENSE("GPL");
-+MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
-diff --git a/block/bfq-mq.h b/block/bfq-mq.h
-new file mode 100644
-index 000000000000..ceb291132a1a
---- /dev/null
-+++ b/block/bfq-mq.h
-@@ -0,0 +1,1077 @@
-+/*
-+ * BFQ v9: data structures and common functions prototypes.
-+ *
-+ * Based on ideas and code from CFQ:
-+ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
-+ *
-+ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
-+ * Paolo Valente <paolo.valente@unimore.it>
-+ *
-+ * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
-+ *
-+ * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
-+ */
-+
-+#ifndef _BFQ_H
-+#define _BFQ_H
-+
-+#include <linux/hrtimer.h>
-+#include <linux/blk-cgroup.h>
-+
-+/* see comments on CONFIG_BFQ_GROUP_IOSCHED in bfq.h */
-+#ifdef CONFIG_MQ_BFQ_GROUP_IOSCHED
-+#define BFQ_GROUP_IOSCHED_ENABLED
-+#endif
-+
-+#define BFQ_IOPRIO_CLASSES 3
-+#define BFQ_CL_IDLE_TIMEOUT (HZ/5)
-+
-+#define BFQ_MIN_WEIGHT 1
-+#define BFQ_MAX_WEIGHT 1000
-+#define BFQ_WEIGHT_CONVERSION_COEFF 10
-+
-+#define BFQ_DEFAULT_QUEUE_IOPRIO 4
-+
-+#define BFQ_WEIGHT_LEGACY_DFL 100
-+#define BFQ_DEFAULT_GRP_IOPRIO 0
-+#define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE
-+
-+/*
-+ * Soft real-time applications are extremely more latency sensitive
-+ * than interactive ones. Over-raise the weight of the former to
-+ * privilege them against the latter.
-+ */
-+#define BFQ_SOFTRT_WEIGHT_FACTOR 100
-+
-+struct bfq_entity;
-+
-+/**
-+ * struct bfq_service_tree - per ioprio_class service tree.
-+ *
-+ * Each service tree represents a B-WF2Q+ scheduler on its own. Each
-+ * ioprio_class has its own independent scheduler, and so its own
-+ * bfq_service_tree. All the fields are protected by the queue lock
-+ * of the containing bfqd.
-+ */
-+struct bfq_service_tree {
-+ /* tree for active entities (i.e., those backlogged) */
-+ struct rb_root active;
-+ /* tree for idle entities (i.e., not backlogged, with V <= F_i)*/
-+ struct rb_root idle;
-+
-+ struct bfq_entity *first_idle; /* idle entity with minimum F_i */
-+ struct bfq_entity *last_idle; /* idle entity with maximum F_i */
-+
-+ u64 vtime; /* scheduler virtual time */
-+ /* scheduler weight sum; active and idle entities contribute to it */
-+ unsigned long wsum;
-+};
-+
-+/**
-+ * struct bfq_sched_data - multi-class scheduler.
-+ *
-+ * bfq_sched_data is the basic scheduler queue. It supports three
-+ * ioprio_classes, and can be used either as a toplevel queue or as an
-+ * intermediate queue in a hierarchical setup.
-+ *
-+ * The supported ioprio_classes are the same as in CFQ, in descending
-+ * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE.
-+ * Requests from higher priority queues are served before all the
-+ * requests from lower priority queues; among requests of the same
-+ * queue requests are served according to B-WF2Q+.
-+ *
-+ * The schedule is implemented by the service trees, plus the field
-+ * @next_in_service, which points to the entity on the active trees
-+ * that will be served next, if 1) no changes in the schedule occurs
-+ * before the current in-service entity is expired, 2) the in-service
-+ * queue becomes idle when it expires, and 3) if the entity pointed by
-+ * in_service_entity is not a queue, then the in-service child entity
-+ * of the entity pointed by in_service_entity becomes idle on
-+ * expiration. This peculiar definition allows for the following
-+ * optimization, not yet exploited: while a given entity is still in
-+ * service, we already know which is the best candidate for next
-+ * service among the other active entitities in the same parent
-+ * entity. We can then quickly compare the timestamps of the
-+ * in-service entity with those of such best candidate.
-+ *
-+ * All the fields are protected by the queue lock of the containing
-+ * bfqd.
-+ */
-+struct bfq_sched_data {
-+ struct bfq_entity *in_service_entity; /* entity in service */
-+ /* head-of-the-line entity in the scheduler (see comments above) */
-+ struct bfq_entity *next_in_service;
-+ /* array of service trees, one per ioprio_class */
-+ struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES];
-+ /* last time CLASS_IDLE was served */
-+ unsigned long bfq_class_idle_last_service;
-+
-+};
-+
-+/**
-+ * struct bfq_weight_counter - counter of the number of all active queues
-+ * with a given weight.
-+ */
-+struct bfq_weight_counter {
-+ unsigned int weight; /* weight of the queues this counter refers to */
-+ unsigned int num_active; /* nr of active queues with this weight */
-+ /*
-+ * Weights tree member (see bfq_data's @queue_weights_tree)
-+ */
-+ struct rb_node weights_node;
-+};
-+
-+/**
-+ * struct bfq_entity - schedulable entity.
-+ *
-+ * A bfq_entity is used to represent either a bfq_queue (leaf node in the
-+ * cgroup hierarchy) or a bfq_group into the upper level scheduler. Each
-+ * entity belongs to the sched_data of the parent group in the cgroup
-+ * hierarchy. Non-leaf entities have also their own sched_data, stored
-+ * in @my_sched_data.
-+ *
-+ * Each entity stores independently its priority values; this would
-+ * allow different weights on different devices, but this
-+ * functionality is not exported to userspace by now. Priorities and
-+ * weights are updated lazily, first storing the new values into the
-+ * new_* fields, then setting the @prio_changed flag. As soon as
-+ * there is a transition in the entity state that allows the priority
-+ * update to take place the effective and the requested priority
-+ * values are synchronized.
-+ *
-+ * Unless cgroups are used, the weight value is calculated from the
-+ * ioprio to export the same interface as CFQ. When dealing with
-+ * ``well-behaved'' queues (i.e., queues that do not spend too much
-+ * time to consume their budget and have true sequential behavior, and
-+ * when there are no external factors breaking anticipation) the
-+ * relative weights at each level of the cgroups hierarchy should be
-+ * guaranteed. All the fields are protected by the queue lock of the
-+ * containing bfqd.
-+ */
-+struct bfq_entity {
-+ struct rb_node rb_node; /* service_tree member */
-+
-+ /*
-+ * Flag, true if the entity is on a tree (either the active or
-+ * the idle one of its service_tree) or is in service.
-+ */
-+ bool on_st;
-+
-+ u64 finish; /* B-WF2Q+ finish timestamp (aka F_i) */
-+ u64 start; /* B-WF2Q+ start timestamp (aka S_i) */
-+
-+ /* tree the entity is enqueued into; %NULL if not on a tree */
-+ struct rb_root *tree;
-+
-+ /*
-+ * minimum start time of the (active) subtree rooted at this
-+ * entity; used for O(log N) lookups into active trees
-+ */
-+ u64 min_start;
-+
-+ /* amount of service received during the last service slot */
-+ int service;
-+
-+ /* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */
-+ int budget;
-+
-+ unsigned int weight; /* weight of the queue */
-+ unsigned int new_weight; /* next weight if a change is in progress */
-+
-+ /* original weight, used to implement weight boosting */
-+ unsigned int orig_weight;
-+
-+ /* parent entity, for hierarchical scheduling */
-+ struct bfq_entity *parent;
-+
-+ /*
-+ * For non-leaf nodes in the hierarchy, the associated
-+ * scheduler queue, %NULL on leaf nodes.
-+ */
-+ struct bfq_sched_data *my_sched_data;
-+ /* the scheduler queue this entity belongs to */
-+ struct bfq_sched_data *sched_data;
-+
-+ /* flag, set to request a weight, ioprio or ioprio_class change */
-+ int prio_changed;
-+
-+ /* flag, set if the entity is counted in groups_with_pending_reqs */
-+ bool in_groups_with_pending_reqs;
-+};
-+
-+struct bfq_group;
-+
-+/**
-+ * struct bfq_ttime - per process thinktime stats.
-+ */
-+struct bfq_ttime {
-+ u64 last_end_request; /* completion time of last request */
-+
-+ u64 ttime_total; /* total process thinktime */
-+ unsigned long ttime_samples; /* number of thinktime samples */
-+ u64 ttime_mean; /* average process thinktime */
-+
-+};
-+
-+/**
-+ * struct bfq_queue - leaf schedulable entity.
-+ *
-+ * A bfq_queue is a leaf request queue; it can be associated with an
-+ * io_context or more, if it is async or shared between cooperating
-+ * processes. @cgroup holds a reference to the cgroup, to be sure that it
-+ * does not disappear while a bfqq still references it (mostly to avoid
-+ * races between request issuing and task migration followed by cgroup
-+ * destruction).
-+ * All the fields are protected by the queue lock of the containing bfqd.
-+ */
-+struct bfq_queue {
-+ /* reference counter */
-+ int ref;
-+ /* parent bfq_data */
-+ struct bfq_data *bfqd;
-+
-+ /* current ioprio and ioprio class */
-+ unsigned short ioprio, ioprio_class;
-+ /* next ioprio and ioprio class if a change is in progress */
-+ unsigned short new_ioprio, new_ioprio_class;
-+
-+ /*
-+ * Shared bfq_queue if queue is cooperating with one or more
-+ * other queues.
-+ */
-+ struct bfq_queue *new_bfqq;
-+ /* request-position tree member (see bfq_group's @rq_pos_tree) */
-+ struct rb_node pos_node;
-+ /* request-position tree root (see bfq_group's @rq_pos_tree) */
-+ struct rb_root *pos_root;
-+
-+ /* sorted list of pending requests */
-+ struct rb_root sort_list;
-+ /* if fifo isn't expired, next request to serve */
-+ struct request *next_rq;
-+ /* number of sync and async requests queued */
-+ int queued[2];
-+ /* number of requests currently allocated */
-+ int allocated;
-+ /* number of pending metadata requests */
-+ int meta_pending;
-+ /* fifo list of requests in sort_list */
-+ struct list_head fifo;
-+
-+ /* entity representing this queue in the scheduler */
-+ struct bfq_entity entity;
-+
-+ /* pointer to the weight counter associated with this queue */
-+ struct bfq_weight_counter *weight_counter;
-+
-+ /* maximum budget allowed from the feedback mechanism */
-+ int max_budget;
-+ /* budget expiration (in jiffies) */
-+ unsigned long budget_timeout;
-+
-+ /* number of requests on the dispatch list or inside driver */
-+ int dispatched;
-+
-+ unsigned int flags; /* status flags.*/
-+
-+ /* node for active/idle bfqq list inside parent bfqd */
-+ struct list_head bfqq_list;
-+
-+ /* associated @bfq_ttime struct */
-+ struct bfq_ttime ttime;
-+
-+ /* bit vector: a 1 for each seeky requests in history */
-+ u32 seek_history;
-+
-+ /* node for the device's burst list */
-+ struct hlist_node burst_list_node;
-+
-+ /* position of the last request enqueued */
-+ sector_t last_request_pos;
-+
-+ /* Number of consecutive pairs of request completion and
-+ * arrival, such that the queue becomes idle after the
-+ * completion, but the next request arrives within an idle
-+ * time slice; used only if the queue's IO_bound flag has been
-+ * cleared.
-+ */
-+ unsigned int requests_within_timer;
-+
-+ /* pid of the process owning the queue, used for logging purposes */
-+ pid_t pid;
-+
-+ /*
-+ * Pointer to the bfq_io_cq owning the bfq_queue, set to %NULL
-+ * if the queue is shared.
-+ */
-+ struct bfq_io_cq *bic;
-+
-+ /* current maximum weight-raising time for this queue */
-+ unsigned long wr_cur_max_time;
-+ /*
-+ * Minimum time instant such that, only if a new request is
-+ * enqueued after this time instant in an idle @bfq_queue with
-+ * no outstanding requests, then the task associated with the
-+ * queue it is deemed as soft real-time (see the comments on
-+ * the function bfq_bfqq_softrt_next_start())
-+ */
-+ unsigned long soft_rt_next_start;
-+ /*
-+ * Start time of the current weight-raising period if
-+ * the @bfq-queue is being weight-raised, otherwise
-+ * finish time of the last weight-raising period.
-+ */
-+ unsigned long last_wr_start_finish;
-+ /* factor by which the weight of this queue is multiplied */
-+ unsigned int wr_coeff;
-+ /*
-+ * Time of the last transition of the @bfq_queue from idle to
-+ * backlogged.
-+ */
-+ unsigned long last_idle_bklogged;
-+ /*
-+ * Cumulative service received from the @bfq_queue since the
-+ * last transition from idle to backlogged.
-+ */
-+ unsigned long service_from_backlogged;
-+ /*
-+ * Cumulative service received from the @bfq_queue since its
-+ * last transition to weight-raised state.
-+ */
-+ unsigned long service_from_wr;
-+ /*
-+ * Value of wr start time when switching to soft rt
-+ */
-+ unsigned long wr_start_at_switch_to_srt;
-+
-+ unsigned long split_time; /* time of last split */
-+ unsigned long first_IO_time; /* time of first I/O for this queue */
-+
-+ /* max service rate measured so far */
-+ u32 max_service_rate;
-+ /*
-+ * Ratio between the service received by bfqq while it is in
-+ * service, and the cumulative service (of requests of other
-+ * queues) that may be injected while bfqq is empty but still
-+ * in service. To increase precision, the coefficient is
-+ * measured in tenths of unit. Here are some example of (1)
-+ * ratios, (2) resulting percentages of service injected
-+ * w.r.t. to the total service dispatched while bfqq is in
-+ * service, and (3) corresponding values of the coefficient:
-+ * 1 (50%) -> 10
-+ * 2 (33%) -> 20
-+ * 10 (9%) -> 100
-+ * 9.9 (9%) -> 99
-+ * 1.5 (40%) -> 15
-+ * 0.5 (66%) -> 5
-+ * 0.1 (90%) -> 1
-+ *
-+ * So, if the coefficient is lower than 10, then
-+ * injected service is more than bfqq service.
-+ */
-+ unsigned int inject_coeff;
-+ /* amount of service injected in current service slot */
-+ unsigned int injected_service;
-+};
-+
-+/**
-+ * struct bfq_io_cq - per (request_queue, io_context) structure.
-+ */
-+struct bfq_io_cq {
-+ /* associated io_cq structure */
-+ struct io_cq icq; /* must be the first member */
-+ /* array of two process queues, the sync and the async */
-+ struct bfq_queue *bfqq[2];
-+ /* per (request_queue, blkcg) ioprio */
-+ int ioprio;
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ uint64_t blkcg_serial_nr; /* the current blkcg serial */
-+#endif
-+
-+ /*
-+ * Snapshot of the has_short_time flag before merging; taken
-+ * to remember its value while the queue is merged, so as to
-+ * be able to restore it in case of split.
-+ */
-+ bool saved_has_short_ttime;
-+ /*
-+ * Same purpose as the previous two fields for the I/O bound
-+ * classification of a queue.
-+ */
-+ bool saved_IO_bound;
-+
-+ /*
-+ * Same purpose as the previous fields for the value of the
-+ * field keeping the queue's belonging to a large burst
-+ */
-+ bool saved_in_large_burst;
-+ /*
-+ * True if the queue belonged to a burst list before its merge
-+ * with another cooperating queue.
-+ */
-+ bool was_in_burst_list;
-+
-+ /*
-+ * Similar to previous fields: save wr information.
-+ */
-+ unsigned long saved_wr_coeff;
-+ unsigned long saved_last_wr_start_finish;
-+ unsigned long saved_wr_start_at_switch_to_srt;
-+ unsigned int saved_wr_cur_max_time;
-+ struct bfq_ttime saved_ttime;
-+};
-+
-+/**
-+ * struct bfq_data - per-device data structure.
-+ *
-+ * All the fields are protected by @lock.
-+ */
-+struct bfq_data {
-+ /* device request queue */
-+ struct request_queue *queue;
-+ /* dispatch queue */
-+ struct list_head dispatch;
-+
-+ /* root bfq_group for the device */
-+ struct bfq_group *root_group;
-+
-+ /*
-+ * rbtree of weight counters of @bfq_queues, sorted by
-+ * weight. Used to keep track of whether all @bfq_queues have
-+ * the same weight. The tree contains one counter for each
-+ * distinct weight associated to some active and not
-+ * weight-raised @bfq_queue (see the comments to the functions
-+ * bfq_weights_tree_[add|remove] for further details).
-+ */
-+ struct rb_root queue_weights_tree;
-+
-+ /*
-+ * Number of groups with at least one descendant process that
-+ * has at least one request waiting for completion. Note that
-+ * this accounts for also requests already dispatched, but not
-+ * yet completed. Therefore this number of groups may differ
-+ * (be larger) than the number of active groups, as a group is
-+ * considered active only if its corresponding entity has
-+ * descendant queues with at least one request queued. This
-+ * number is used to decide whether a scenario is symmetric.
-+ * For a detailed explanation see comments on the computation
-+ * of the variable asymmetric_scenario in the function
-+ * bfq_better_to_idle().
-+ *
-+ * However, it is hard to compute this number exactly, for
-+ * groups with multiple descendant processes. Consider a group
-+ * that is inactive, i.e., that has no descendant process with
-+ * pending I/O inside BFQ queues. Then suppose that
-+ * num_groups_with_pending_reqs is still accounting for this
-+ * group, because the group has descendant processes with some
-+ * I/O request still in flight. num_groups_with_pending_reqs
-+ * should be decremented when the in-flight request of the
-+ * last descendant process is finally completed (assuming that
-+ * nothing else has changed for the group in the meantime, in
-+ * terms of composition of the group and active/inactive state of child
-+ * groups and processes). To accomplish this, an additional
-+ * pending-request counter must be added to entities, and must
-+ * be updated correctly. To avoid this additional field and operations,
-+ * we resort to the following tradeoff between simplicity and
-+ * accuracy: for an inactive group that is still counted in
-+ * num_groups_with_pending_reqs, we decrement
-+ * num_groups_with_pending_reqs when the first descendant
-+ * process of the group remains with no request waiting for
-+ * completion.
-+ *
-+ * Even this simpler decrement strategy requires a little
-+ * carefulness: to avoid multiple decrements, we flag a group,
-+ * more precisely an entity representing a group, as still
-+ * counted in num_groups_with_pending_reqs when it becomes
-+ * inactive. Then, when the first descendant queue of the
-+ * entity remains with no request waiting for completion,
-+ * num_groups_with_pending_reqs is decremented, and this flag
-+ * is reset. After this flag is reset for the entity,
-+ * num_groups_with_pending_reqs won't be decremented any
-+ * longer in case a new descendant queue of the entity remains
-+ * with no request waiting for completion.
-+ */
-+ unsigned int num_groups_with_pending_reqs;
-+
-+ /*
-+ * Per-class (RT, BE, IDLE) number of bfq_queues containing
-+ * requests (including the queue in service, even if it is
-+ * idling).
-+ */
-+ unsigned int busy_queues[3];
-+ /* number of weight-raised busy @bfq_queues */
-+ int wr_busy_queues;
-+ /* number of queued requests */
-+ int queued;
-+ /* number of requests dispatched and waiting for completion */
-+ int rq_in_driver;
-+
-+ /*
-+ * Maximum number of requests in driver in the last
-+ * @hw_tag_samples completed requests.
-+ */
-+ int max_rq_in_driver;
-+ /* number of samples used to calculate hw_tag */
-+ int hw_tag_samples;
-+ /* flag set to one if the driver is showing a queueing behavior */
-+ int hw_tag;
-+
-+ /* number of budgets assigned */
-+ int budgets_assigned;
-+
-+ /*
-+ * Timer set when idling (waiting) for the next request from
-+ * the queue in service.
-+ */
-+ struct hrtimer idle_slice_timer;
-+
-+ /* bfq_queue in service */
-+ struct bfq_queue *in_service_queue;
-+
-+ /* on-disk position of the last served request */
-+ sector_t last_position;
-+
-+ /* position of the last served request for the in-service queue */
-+ sector_t in_serv_last_pos;
-+
-+ /* time of last request completion (ns) */
-+ u64 last_completion;
-+
-+ /* time of first rq dispatch in current observation interval (ns) */
-+ u64 first_dispatch;
-+ /* time of last rq dispatch in current observation interval (ns) */
-+ u64 last_dispatch;
-+
-+ /* beginning of the last budget */
-+ ktime_t last_budget_start;
-+ /* beginning of the last idle slice */
-+ ktime_t last_idling_start;
-+
-+ /* number of samples in current observation interval */
-+ int peak_rate_samples;
-+ /* num of samples of seq dispatches in current observation interval */
-+ u32 sequential_samples;
-+ /* total num of sectors transferred in current observation interval */
-+ u64 tot_sectors_dispatched;
-+ /* max rq size seen during current observation interval (sectors) */
-+ u32 last_rq_max_size;
-+ /* time elapsed from first dispatch in current observ. interval (us) */
-+ u64 delta_from_first;
-+ /*
-+ * Current estimate of the device peak rate, measured in
-+ * [(sectors/usec) / 2^BFQ_RATE_SHIFT]. The left-shift by
-+ * BFQ_RATE_SHIFT is performed to increase precision in
-+ * fixed-point calculations.
-+ */
-+ u32 peak_rate;
-+
-+ /* maximum budget allotted to a bfq_queue before rescheduling */
-+ int bfq_max_budget;
-+
-+ /* list of all the bfq_queues active on the device */
-+ struct list_head active_list;
-+ /* list of all the bfq_queues idle on the device */
-+ struct list_head idle_list;
-+
-+ /*
-+ * Timeout for async/sync requests; when it fires, requests
-+ * are served in fifo order.
-+ */
-+ u64 bfq_fifo_expire[2];
-+ /* weight of backward seeks wrt forward ones */
-+ unsigned int bfq_back_penalty;
-+ /* maximum allowed backward seek */
-+ unsigned int bfq_back_max;
-+ /* maximum idling time */
-+ u32 bfq_slice_idle;
-+
-+ /* user-configured max budget value (0 for auto-tuning) */
-+ int bfq_user_max_budget;
-+ /*
-+ * Timeout for bfq_queues to consume their budget; used to
-+ * prevent seeky queues from imposing long latencies to
-+ * sequential or quasi-sequential ones (this also implies that
-+ * seeky queues cannot receive guarantees in the service
-+ * domain; after a timeout they are charged for the time they
-+ * have been in service, to preserve fairness among them, but
-+ * without service-domain guarantees).
-+ */
-+ unsigned int bfq_timeout;
-+
-+ /*
-+ * Number of consecutive requests that must be issued within
-+ * the idle time slice to set again idling to a queue which
-+ * was marked as non-I/O-bound (see the definition of the
-+ * IO_bound flag for further details).
-+ */
-+ unsigned int bfq_requests_within_timer;
-+
-+ /*
-+ * Force device idling whenever needed to provide accurate
-+ * service guarantees, without caring about throughput
-+ * issues. CAVEAT: this may even increase latencies, in case
-+ * of useless idling for processes that did stop doing I/O.
-+ */
-+ bool strict_guarantees;
-+
-+ /*
-+ * Last time at which a queue entered the current burst of
-+ * queues being activated shortly after each other; for more
-+ * details about this and the following parameters related to
-+ * a burst of activations, see the comments on the function
-+ * bfq_handle_burst.
-+ */
-+ unsigned long last_ins_in_burst;
-+ /*
-+ * Reference time interval used to decide whether a queue has
-+ * been activated shortly after @last_ins_in_burst.
-+ */
-+ unsigned long bfq_burst_interval;
-+ /* number of queues in the current burst of queue activations */
-+ int burst_size;
-+
-+ /* common parent entity for the queues in the burst */
-+ struct bfq_entity *burst_parent_entity;
-+ /* Maximum burst size above which the current queue-activation
-+ * burst is deemed as 'large'.
-+ */
-+ unsigned long bfq_large_burst_thresh;
-+ /* true if a large queue-activation burst is in progress */
-+ bool large_burst;
-+ /*
-+ * Head of the burst list (as for the above fields, more
-+ * details in the comments on the function bfq_handle_burst).
-+ */
-+ struct hlist_head burst_list;
-+
-+ /* if set to true, low-latency heuristics are enabled */
-+ bool low_latency;
-+ /*
-+ * Maximum factor by which the weight of a weight-raised queue
-+ * is multiplied.
-+ */
-+ unsigned int bfq_wr_coeff;
-+ /* maximum duration of a weight-raising period (jiffies) */
-+ unsigned int bfq_wr_max_time;
-+
-+ /* Maximum weight-raising duration for soft real-time processes */
-+ unsigned int bfq_wr_rt_max_time;
-+ /*
-+ * Minimum idle period after which weight-raising may be
-+ * reactivated for a queue (in jiffies).
-+ */
-+ unsigned int bfq_wr_min_idle_time;
-+ /*
-+ * Minimum period between request arrivals after which
-+ * weight-raising may be reactivated for an already busy async
-+ * queue (in jiffies).
-+ */
-+ unsigned long bfq_wr_min_inter_arr_async;
-+
-+ /* Max service-rate for a soft real-time queue, in sectors/sec */
-+ unsigned int bfq_wr_max_softrt_rate;
-+ /*
-+ * Cached value of the product ref_rate*ref_wr_duration, used
-+ * for computing the maximum duration of weight raising
-+ * automatically.
-+ */
-+ u64 rate_dur_prod;
-+
-+ /* fallback dummy bfqq for extreme OOM conditions */
-+ struct bfq_queue oom_bfqq;
-+
-+ spinlock_t lock;
-+
-+ /*
-+ * bic associated with the task issuing current bio for
-+ * merging. This and the next field are used as a support to
-+ * be able to perform the bic lookup, needed by bio-merge
-+ * functions, before the scheduler lock is taken, and thus
-+ * avoid taking the request-queue lock while the scheduler
-+ * lock is being held.
-+ */
-+ struct bfq_io_cq *bio_bic;
-+ /* bfqq associated with the task issuing current bio for merging */
-+ struct bfq_queue *bio_bfqq;
-+ /* Extra flag used only for TESTING */
-+ bool bio_bfqq_set;
-+
-+ /*
-+ * Depth limits used in bfq_limit_depth (see comments on the
-+ * function)
-+ */
-+ unsigned int word_depths[2][2];
-+};
-+
-+enum bfqq_state_flags {
-+ BFQ_BFQQ_FLAG_just_created = 0, /* queue just allocated */
-+ BFQ_BFQQ_FLAG_busy, /* has requests or is in service */
-+ BFQ_BFQQ_FLAG_wait_request, /* waiting for a request */
-+ BFQ_BFQQ_FLAG_non_blocking_wait_rq, /*
-+ * waiting for a request
-+ * without idling the device
-+ */
-+ BFQ_BFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
-+ BFQ_BFQQ_FLAG_has_short_ttime, /* queue has a short think time */
-+ BFQ_BFQQ_FLAG_sync, /* synchronous queue */
-+ BFQ_BFQQ_FLAG_IO_bound, /*
-+ * bfqq has timed-out at least once
-+ * having consumed at most 2/10 of
-+ * its budget
-+ */
-+ BFQ_BFQQ_FLAG_in_large_burst, /*
-+ * bfqq activated in a large burst,
-+ * see comments to bfq_handle_burst.
-+ */
-+ BFQ_BFQQ_FLAG_softrt_update, /*
-+ * may need softrt-next-start
-+ * update
-+ */
-+ BFQ_BFQQ_FLAG_coop, /* bfqq is shared */
-+ BFQ_BFQQ_FLAG_split_coop /* shared bfqq will be split */
-+};
-+
-+#define BFQ_BFQQ_FNS(name) \
-+static void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
-+{ \
-+ (bfqq)->flags |= (1 << BFQ_BFQQ_FLAG_##name); \
-+} \
-+static void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
-+{ \
-+ (bfqq)->flags &= ~(1 << BFQ_BFQQ_FLAG_##name); \
-+} \
-+static int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
-+{ \
-+ return ((bfqq)->flags & (1 << BFQ_BFQQ_FLAG_##name)) != 0; \
-+}
-+
-+BFQ_BFQQ_FNS(just_created);
-+BFQ_BFQQ_FNS(busy);
-+BFQ_BFQQ_FNS(wait_request);
-+BFQ_BFQQ_FNS(non_blocking_wait_rq);
-+BFQ_BFQQ_FNS(fifo_expire);
-+BFQ_BFQQ_FNS(has_short_ttime);
-+BFQ_BFQQ_FNS(sync);
-+BFQ_BFQQ_FNS(IO_bound);
-+BFQ_BFQQ_FNS(in_large_burst);
-+BFQ_BFQQ_FNS(coop);
-+BFQ_BFQQ_FNS(split_coop);
-+BFQ_BFQQ_FNS(softrt_update);
-+#undef BFQ_BFQQ_FNS
-+
-+/* Logging facilities. */
-+#ifdef CONFIG_BFQ_REDIRECT_TO_CONSOLE
-+
-+static const char *checked_dev_name(const struct device *dev)
-+{
-+ static const char nodev[] = "nodev";
-+
-+ if (dev)
-+ return dev_name(dev);
-+
-+ return nodev;
-+}
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
-+static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg);
-+
-+#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \
-+ pr_crit("%s bfq%d%c %s [%s] " fmt "\n", \
-+ checked_dev_name((bfqd)->queue->backing_dev_info->dev), \
-+ (bfqq)->pid, \
-+ bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
-+ bfqq_group(bfqq)->blkg_path, __func__, ##args); \
-+} while (0)
-+
-+#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do { \
-+ pr_crit("%s %s [%s] " fmt "\n", \
-+ checked_dev_name((bfqd)->queue->backing_dev_info->dev), \
-+ bfqg->blkg_path, __func__, ##args); \
-+} while (0)
-+
-+#else /* BFQ_GROUP_IOSCHED_ENABLED */
-+
-+#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \
-+ pr_crit("%s bfq%d%c [%s] " fmt "\n", \
-+ checked_dev_name((bfqd)->queue->backing_dev_info->dev), \
-+ (bfqq)->pid, bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
-+ __func__, ##args)
-+#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do {} while (0)
-+
-+#endif /* BFQ_GROUP_IOSCHED_ENABLED */
-+
-+#define bfq_log(bfqd, fmt, args...) \
-+ pr_crit("%s bfq [%s] " fmt "\n", \
-+ checked_dev_name((bfqd)->queue->backing_dev_info->dev), \
-+ __func__, ##args)
-+
-+#else /* CONFIG_BFQ_REDIRECT_TO_CONSOLE */
-+
-+#if !defined(CONFIG_BLK_DEV_IO_TRACE)
-+
-+/* Avoid possible "unused-variable" warning. See commit message. */
-+
-+#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) ((void) (bfqq))
-+
-+#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) ((void) (bfqg))
-+
-+#define bfq_log(bfqd, fmt, args...) do {} while (0)
-+
-+#else /* CONFIG_BLK_DEV_IO_TRACE */
-+
-+#include <linux/blktrace_api.h>
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
-+static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg);
-+
-+#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \
-+ blk_add_trace_msg((bfqd)->queue, "bfq%d%c %s [%s] " fmt, \
-+ (bfqq)->pid, \
-+ bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
-+ bfqq_group(bfqq)->blkg_path, __func__, ##args); \
-+} while (0)
-+
-+#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do { \
-+ blk_add_trace_msg((bfqd)->queue, "%s [%s] " fmt, bfqg->blkg_path, \
-+ __func__, ##args);\
-+} while (0)
-+
-+#else /* BFQ_GROUP_IOSCHED_ENABLED */
-+
-+#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \
-+ blk_add_trace_msg((bfqd)->queue, "bfq%d%c [%s] " fmt, (bfqq)->pid, \
-+ bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
-+ __func__, ##args)
-+#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do {} while (0)
-+
-+#endif /* BFQ_GROUP_IOSCHED_ENABLED */
-+
-+#define bfq_log(bfqd, fmt, args...) \
-+ blk_add_trace_msg((bfqd)->queue, "bfq [%s] " fmt, __func__, ##args)
-+
-+#endif /* CONFIG_BLK_DEV_IO_TRACE */
-+#endif /* CONFIG_BFQ_REDIRECT_TO_CONSOLE */
-+
-+/* Expiration reasons. */
-+enum bfqq_expiration {
-+ BFQ_BFQQ_TOO_IDLE = 0, /*
-+ * queue has been idling for
-+ * too long
-+ */
-+ BFQ_BFQQ_BUDGET_TIMEOUT, /* budget took too long to be used */
-+ BFQ_BFQQ_BUDGET_EXHAUSTED, /* budget consumed */
-+ BFQ_BFQQ_NO_MORE_REQUESTS, /* the queue has no more requests */
-+ BFQ_BFQQ_PREEMPTED /* preemption in progress */
-+};
-+
-+
-+struct bfqg_stats {
-+#if defined(BFQ_GROUP_IOSCHED_ENABLED) && defined(CONFIG_DEBUG_BLK_CGROUP)
-+ /* number of ios merged */
-+ struct blkg_rwstat merged;
-+ /* total time spent on device in ns, may not be accurate w/ queueing */
-+ struct blkg_rwstat service_time;
-+ /* total time spent waiting in scheduler queue in ns */
-+ struct blkg_rwstat wait_time;
-+ /* number of IOs queued up */
-+ struct blkg_rwstat queued;
-+ /* total disk time and nr sectors dispatched by this group */
-+ struct blkg_stat time;
-+ /* sum of number of ios queued across all samples */
-+ struct blkg_stat avg_queue_size_sum;
-+ /* count of samples taken for average */
-+ struct blkg_stat avg_queue_size_samples;
-+ /* how many times this group has been removed from service tree */
-+ struct blkg_stat dequeue;
-+ /* total time spent waiting for it to be assigned a timeslice. */
-+ struct blkg_stat group_wait_time;
-+ /* time spent idling for this blkcg_gq */
-+ struct blkg_stat idle_time;
-+ /* total time with empty current active q with other requests queued */
-+ struct blkg_stat empty_time;
-+ /* fields after this shouldn't be cleared on stat reset */
-+ u64 start_group_wait_time;
-+ u64 start_idle_time;
-+ u64 start_empty_time;
-+ uint16_t flags;
-+#endif /* BFQ_GROUP_IOSCHED_ENABLED && CONFIG_DEBUG_BLK_CGROUP */
-+};
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+/*
-+ * struct bfq_group_data - per-blkcg storage for the blkio subsystem.
-+ *
-+ * @ps: @blkcg_policy_storage that this structure inherits
-+ * @weight: weight of the bfq_group
-+ */
-+struct bfq_group_data {
-+ /* must be the first member */
-+ struct blkcg_policy_data pd;
-+
-+ unsigned int weight;
-+};
-+
-+/**
-+ * struct bfq_group - per (device, cgroup) data structure.
-+ * @entity: schedulable entity to insert into the parent group sched_data.
-+ * @sched_data: own sched_data, to contain child entities (they may be
-+ * both bfq_queues and bfq_groups).
-+ * @bfqd: the bfq_data for the device this group acts upon.
-+ * @async_bfqq: array of async queues for all the tasks belonging to
-+ * the group, one queue per ioprio value per ioprio_class,
-+ * except for the idle class that has only one queue.
-+ * @async_idle_bfqq: async queue for the idle class (ioprio is ignored).
-+ * @my_entity: pointer to @entity, %NULL for the toplevel group; used
-+ * to avoid too many special cases during group creation/
-+ * migration.
-+ * @active_entities: number of active entities belonging to the group;
-+ * unused for the root group. Used to know whether there
-+ * are groups with more than one active @bfq_entity
-+ * (see the comments to the function
-+ * bfq_bfqq_may_idle()).
-+ * @rq_pos_tree: rbtree sorted by next_request position, used when
-+ * determining if two or more queues have interleaving
-+ * requests (see bfq_find_close_cooperator()).
-+ *
-+ * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup
-+ * there is a set of bfq_groups, each one collecting the lower-level
-+ * entities belonging to the group that are acting on the same device.
-+ *
-+ * Locking works as follows:
-+ * o @bfqd is protected by the queue lock, RCU is used to access it
-+ * from the readers.
-+ * o All the other fields are protected by the @bfqd queue lock.
-+ */
-+struct bfq_group {
-+ /* must be the first member */
-+ struct blkg_policy_data pd;
-+
-+ /* cached path for this blkg (see comments in bfq_bic_update_cgroup) */
-+ char blkg_path[128];
-+
-+ /* reference counter (see comments in bfq_bic_update_cgroup) */
-+ int ref;
-+
-+ struct bfq_entity entity;
-+ struct bfq_sched_data sched_data;
-+
-+ void *bfqd;
-+
-+ struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
-+ struct bfq_queue *async_idle_bfqq;
-+
-+ struct bfq_entity *my_entity;
-+
-+ int active_entities;
-+
-+ struct rb_root rq_pos_tree;
-+
-+ struct bfqg_stats stats;
-+};
-+
-+#else
-+struct bfq_group {
-+ struct bfq_sched_data sched_data;
-+
-+ struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
-+ struct bfq_queue *async_idle_bfqq;
-+
-+ struct rb_root rq_pos_tree;
-+};
-+#endif
-+
-+static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
-+
-+static unsigned int bfq_class_idx(struct bfq_entity *entity)
-+{
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+
-+ return bfqq ? bfqq->ioprio_class - 1 :
-+ BFQ_DEFAULT_GRP_CLASS - 1;
-+}
-+
-+static unsigned int bfq_tot_busy_queues(struct bfq_data *bfqd)
-+{
-+ return bfqd->busy_queues[0] + bfqd->busy_queues[1] +
-+ bfqd->busy_queues[2];
-+}
-+
-+static struct bfq_service_tree *
-+bfq_entity_service_tree(struct bfq_entity *entity)
-+{
-+ struct bfq_sched_data *sched_data = entity->sched_data;
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+ unsigned int idx = bfq_class_idx(entity);
-+
-+ BUG_ON(idx >= BFQ_IOPRIO_CLASSES);
-+ BUG_ON(sched_data == NULL);
-+
-+ if (bfqq)
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "%p %d",
-+ sched_data->service_tree + idx, idx);
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ else {
-+ struct bfq_group *bfqg =
-+ container_of(entity, struct bfq_group, entity);
-+
-+ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
-+ "%p %d",
-+ sched_data->service_tree + idx, idx);
-+ }
-+#endif
-+ return sched_data->service_tree + idx;
-+}
-+
-+static struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
-+{
-+ return bic->bfqq[is_sync];
-+}
-+
-+static void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq,
-+ bool is_sync)
-+{
-+ bic->bfqq[is_sync] = bfqq;
-+}
-+
-+static struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
-+{
-+ return bic->icq.q->elevator->elevator_data;
-+}
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+
-+static struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
-+{
-+ struct bfq_entity *group_entity = bfqq->entity.parent;
-+
-+ if (!group_entity)
-+ group_entity = &bfqq->bfqd->root_group->entity;
-+
-+ return container_of(group_entity, struct bfq_group, entity);
-+}
-+
-+#else
-+
-+static struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
-+{
-+ return bfqq->bfqd->root_group;
-+}
-+
-+#endif
-+
-+static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio);
-+static void bfq_put_queue(struct bfq_queue *bfqq);
-+static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
-+ struct bio *bio, bool is_sync,
-+ struct bfq_io_cq *bic);
-+static void bfq_end_wr_async_queues(struct bfq_data *bfqd,
-+ struct bfq_group *bfqg);
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
-+#endif
-+static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
-+
-+#endif /* _BFQ_H */
-diff --git a/block/bfq-sched.c b/block/bfq-sched.c
-new file mode 100644
-index 000000000000..7a4923231106
---- /dev/null
-+++ b/block/bfq-sched.c
-@@ -0,0 +1,2077 @@
-+/*
-+ * BFQ: Hierarchical B-WF2Q+ scheduler.
-+ *
-+ * Based on ideas and code from CFQ:
-+ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
-+ *
-+ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
-+ * Paolo Valente <paolo.valente@unimore.it>
-+ *
-+ * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
-+ *
-+ * Copyright (C) 2016 Paolo Valente <paolo.valente@linaro.org>
-+ */
-+
-+static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
-+
-+/**
-+ * bfq_gt - compare two timestamps.
-+ * @a: first ts.
-+ * @b: second ts.
-+ *
-+ * Return @a > @b, dealing with wrapping correctly.
-+ */
-+static int bfq_gt(u64 a, u64 b)
-+{
-+ return (s64)(a - b) > 0;
-+}
-+
-+static struct bfq_entity *bfq_root_active_entity(struct rb_root *tree)
-+{
-+ struct rb_node *node = tree->rb_node;
-+
-+ return rb_entry(node, struct bfq_entity, rb_node);
-+}
-+
-+static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
-+ bool expiration);
-+
-+static bool bfq_update_parent_budget(struct bfq_entity *next_in_service);
-+
-+/**
-+ * bfq_update_next_in_service - update sd->next_in_service
-+ * @sd: sched_data for which to perform the update.
-+ * @new_entity: if not NULL, pointer to the entity whose activation,
-+ * requeueing or repositionig triggered the invocation of
-+ * this function.
-+ * @expiration: id true, this function is being invoked after the
-+ * expiration of the in-service entity
-+ *
-+ * This function is called to update sd->next_in_service, which, in
-+ * its turn, may change as a consequence of the insertion or
-+ * extraction of an entity into/from one of the active trees of
-+ * sd. These insertions/extractions occur as a consequence of
-+ * activations/deactivations of entities, with some activations being
-+ * 'true' activations, and other activations being requeueings (i.e.,
-+ * implementing the second, requeueing phase of the mechanism used to
-+ * reposition an entity in its active tree; see comments on
-+ * __bfq_activate_entity and __bfq_requeue_entity for details). In
-+ * both the last two activation sub-cases, new_entity points to the
-+ * just activated or requeued entity.
-+ *
-+ * Returns true if sd->next_in_service changes in such a way that
-+ * entity->parent may become the next_in_service for its parent
-+ * entity.
-+ */
-+static bool bfq_update_next_in_service(struct bfq_sched_data *sd,
-+ struct bfq_entity *new_entity,
-+ bool expiration)
-+{
-+ struct bfq_entity *next_in_service = sd->next_in_service;
-+ struct bfq_queue *bfqq;
-+ bool parent_sched_may_change = false;
-+ bool change_without_lookup = false;
-+
-+ /*
-+ * If this update is triggered by the activation, requeueing
-+ * or repositiong of an entity that does not coincide with
-+ * sd->next_in_service, then a full lookup in the active tree
-+ * can be avoided. In fact, it is enough to check whether the
-+ * just-modified entity has the same priority as
-+ * sd->next_in_service, is eligible and has a lower virtual
-+ * finish time than sd->next_in_service. If this compound
-+ * condition holds, then the new entity becomes the new
-+ * next_in_service. Otherwise no change is needed.
-+ */
-+ if (new_entity && new_entity != sd->next_in_service) {
-+ /*
-+ * Flag used to decide whether to replace
-+ * sd->next_in_service with new_entity. Tentatively
-+ * set to true, and left as true if
-+ * sd->next_in_service is NULL.
-+ */
-+ change_without_lookup = true;
-+
-+ /*
-+ * If there is already a next_in_service candidate
-+ * entity, then compare timestamps to decide whether
-+ * to replace sd->service_tree with new_entity.
-+ */
-+ if (next_in_service) {
-+ unsigned int new_entity_class_idx =
-+ bfq_class_idx(new_entity);
-+ struct bfq_service_tree *st =
-+ sd->service_tree + new_entity_class_idx;
-+
-+ change_without_lookup =
-+ (new_entity_class_idx ==
-+ bfq_class_idx(next_in_service)
-+ &&
-+ !bfq_gt(new_entity->start, st->vtime)
-+ &&
-+ bfq_gt(next_in_service->finish,
-+ new_entity->finish));
-+ }
-+
-+ if (change_without_lookup) {
-+ next_in_service = new_entity;
-+ bfqq = bfq_entity_to_bfqq(next_in_service);
-+
-+ if (bfqq)
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "chose without lookup");
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ else {
-+ struct bfq_group *bfqg =
-+ container_of(next_in_service,
-+ struct bfq_group, entity);
-+
-+ bfq_log_bfqg((struct bfq_data*)bfqg->bfqd, bfqg,
-+ "chose without lookup");
-+ }
-+#endif
-+ }
-+ }
-+
-+ if (!change_without_lookup) /* lookup needed */
-+ next_in_service = bfq_lookup_next_entity(sd, expiration);
-+
-+ if (next_in_service) {
-+ bool new_budget_triggers_change =
-+ bfq_update_parent_budget(next_in_service);
-+
-+ parent_sched_may_change = !sd->next_in_service ||
-+ new_budget_triggers_change;
-+ }
-+
-+ sd->next_in_service = next_in_service;
-+
-+ if (!next_in_service)
-+ return parent_sched_may_change;
-+
-+ bfqq = bfq_entity_to_bfqq(next_in_service);
-+ if (bfqq)
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "chosen this queue");
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ else {
-+ struct bfq_group *bfqg =
-+ container_of(next_in_service,
-+ struct bfq_group, entity);
-+
-+ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
-+ "chosen this entity");
-+ }
-+#endif
-+ return parent_sched_may_change;
-+}
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+/* both next loops stop at one of the child entities of the root group */
-+#define for_each_entity(entity) \
-+ for (; entity ; entity = entity->parent)
-+
-+/*
-+ * For each iteration, compute parent in advance, so as to be safe if
-+ * entity is deallocated during the iteration. Such a deallocation may
-+ * happen as a consequence of a bfq_put_queue that frees the bfq_queue
-+ * containing entity.
-+ */
-+#define for_each_entity_safe(entity, parent) \
-+ for (; entity && ({ parent = entity->parent; 1; }); entity = parent)
-+
-+/*
-+ * Returns true if this budget changes may let next_in_service->parent
-+ * become the next_in_service entity for its parent entity.
-+ */
-+static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
-+{
-+ struct bfq_entity *bfqg_entity;
-+ struct bfq_group *bfqg;
-+ struct bfq_sched_data *group_sd;
-+ bool ret = false;
-+
-+ BUG_ON(!next_in_service);
-+
-+ group_sd = next_in_service->sched_data;
-+
-+ bfqg = container_of(group_sd, struct bfq_group, sched_data);
-+ /*
-+ * bfq_group's my_entity field is not NULL only if the group
-+ * is not the root group. We must not touch the root entity
-+ * as it must never become an in-service entity.
-+ */
-+ bfqg_entity = bfqg->my_entity;
-+ if (bfqg_entity) {
-+ if (bfqg_entity->budget > next_in_service->budget)
-+ ret = true;
-+ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
-+ "old budg: %d, new budg: %d",
-+ bfqg_entity->budget, next_in_service->budget);
-+ bfqg_entity->budget = next_in_service->budget;
-+ }
-+
-+ return ret;
-+}
-+
-+/*
-+ * This function tells whether entity stops being a candidate for next
-+ * service, according to the restrictive definition of the field
-+ * next_in_service. In particular, this function is invoked for an
-+ * entity that is about to be set in service.
-+ *
-+ * If entity is a queue, then the entity is no longer a candidate for
-+ * next service according to the that definition, because entity is
-+ * about to become the in-service queue. This function then returns
-+ * true if entity is a queue.
-+ *
-+ * In contrast, entity could still be a candidate for next service if
-+ * it is not a queue, and has more than one active child. In fact,
-+ * even if one of its children is about to be set in service, other
-+ * active children may still be the next to serve, for the parent
-+ * entity, even according to the above definition. As a consequence, a
-+ * non-queue entity is not a candidate for next-service only if it has
-+ * only one active child. And only if this condition holds, then this
-+ * function returns true for a non-queue entity.
-+ */
-+static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
-+{
-+ struct bfq_group *bfqg;
-+
-+ if (bfq_entity_to_bfqq(entity))
-+ return true;
-+
-+ bfqg = container_of(entity, struct bfq_group, entity);
-+
-+ BUG_ON(bfqg == ((struct bfq_data *)(bfqg->bfqd))->root_group);
-+ BUG_ON(bfqg->active_entities == 0);
-+ /*
-+ * The field active_entities does not always contain the
-+ * actual number of active children entities: it happens to
-+ * not account for the in-service entity in case the latter is
-+ * removed from its active tree (which may get done after
-+ * invoking the function bfq_no_longer_next_in_service in
-+ * bfq_get_next_queue). Fortunately, here, i.e., while
-+ * bfq_no_longer_next_in_service is not yet completed in
-+ * bfq_get_next_queue, bfq_active_extract has not yet been
-+ * invoked, and thus active_entities still coincides with the
-+ * actual number of active entities.
-+ */
-+ if (bfqg->active_entities == 1)
-+ return true;
-+
-+ return false;
-+}
-+
-+#else /* BFQ_GROUP_IOSCHED_ENABLED */
-+#define for_each_entity(entity) \
-+ for (; entity ; entity = NULL)
-+
-+#define for_each_entity_safe(entity, parent) \
-+ for (parent = NULL; entity ; entity = parent)
-+
-+static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
-+{
-+ return false;
-+}
-+
-+static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
-+{
-+ return true;
-+}
-+
-+#endif /* BFQ_GROUP_IOSCHED_ENABLED */
-+
-+/*
-+ * Shift for timestamp calculations. This actually limits the maximum
-+ * service allowed in one timestamp delta (small shift values increase it),
-+ * the maximum total weight that can be used for the queues in the system
-+ * (big shift values increase it), and the period of virtual time
-+ * wraparounds.
-+ */
-+#define WFQ_SERVICE_SHIFT 22
-+
-+static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
-+{
-+ struct bfq_queue *bfqq = NULL;
-+
-+ BUG_ON(!entity);
-+
-+ if (!entity->my_sched_data)
-+ bfqq = container_of(entity, struct bfq_queue, entity);
-+
-+ return bfqq;
-+}
-+
-+
-+/**
-+ * bfq_delta - map service into the virtual time domain.
-+ * @service: amount of service.
-+ * @weight: scale factor (weight of an entity or weight sum).
-+ */
-+static u64 bfq_delta(unsigned long service, unsigned long weight)
-+{
-+ u64 d = (u64)service << WFQ_SERVICE_SHIFT;
-+
-+ do_div(d, weight);
-+ return d;
-+}
-+
-+/**
-+ * bfq_calc_finish - assign the finish time to an entity.
-+ * @entity: the entity to act upon.
-+ * @service: the service to be charged to the entity.
-+ */
-+static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service)
-+{
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+ unsigned long long start, finish, delta;
-+
-+ BUG_ON(entity->weight == 0);
-+
-+ entity->finish = entity->start +
-+ bfq_delta(service, entity->weight);
-+
-+ start = ((entity->start>>10)*1000)>>12;
-+ finish = ((entity->finish>>10)*1000)>>12;
-+ delta = ((bfq_delta(service, entity->weight)>>10)*1000)>>12;
-+
-+ if (bfqq) {
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "serv %lu, w %d",
-+ service, entity->weight);
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "start %llu, finish %llu, delta %llu",
-+ start, finish, delta);
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ } else {
-+ struct bfq_group *bfqg =
-+ container_of(entity, struct bfq_group, entity);
-+
-+ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
-+ "group: serv %lu, w %d",
-+ service, entity->weight);
-+ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
-+ "group: start %llu, finish %llu, delta %llu",
-+ start, finish, delta);
-+#endif
-+ }
-+}
-+
-+/**
-+ * bfq_entity_of - get an entity from a node.
-+ * @node: the node field of the entity.
-+ *
-+ * Convert a node pointer to the relative entity. This is used only
-+ * to simplify the logic of some functions and not as the generic
-+ * conversion mechanism because, e.g., in the tree walking functions,
-+ * the check for a %NULL value would be redundant.
-+ */
-+static struct bfq_entity *bfq_entity_of(struct rb_node *node)
-+{
-+ struct bfq_entity *entity = NULL;
-+
-+ if (node)
-+ entity = rb_entry(node, struct bfq_entity, rb_node);
-+
-+ return entity;
-+}
-+
-+/**
-+ * bfq_extract - remove an entity from a tree.
-+ * @root: the tree root.
-+ * @entity: the entity to remove.
-+ */
-+static void bfq_extract(struct rb_root *root, struct bfq_entity *entity)
-+{
-+ BUG_ON(entity->tree != root);
-+
-+ entity->tree = NULL;
-+ rb_erase(&entity->rb_node, root);
-+}
-+
-+/**
-+ * bfq_idle_extract - extract an entity from the idle tree.
-+ * @st: the service tree of the owning @entity.
-+ * @entity: the entity being removed.
-+ */
-+static void bfq_idle_extract(struct bfq_service_tree *st,
-+ struct bfq_entity *entity)
-+{
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+ struct rb_node *next;
-+
-+ BUG_ON(entity->tree != &st->idle);
-+
-+ if (entity == st->first_idle) {
-+ next = rb_next(&entity->rb_node);
-+ st->first_idle = bfq_entity_of(next);
-+ }
-+
-+ if (entity == st->last_idle) {
-+ next = rb_prev(&entity->rb_node);
-+ st->last_idle = bfq_entity_of(next);
-+ }
-+
-+ bfq_extract(&st->idle, entity);
-+
-+ if (bfqq)
-+ list_del(&bfqq->bfqq_list);
-+}
-+
-+/**
-+ * bfq_insert - generic tree insertion.
-+ * @root: tree root.
-+ * @entity: entity to insert.
-+ *
-+ * This is used for the idle and the active tree, since they are both
-+ * ordered by finish time.
-+ */
-+static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
-+{
-+ struct bfq_entity *entry;
-+ struct rb_node **node = &root->rb_node;
-+ struct rb_node *parent = NULL;
-+
-+ BUG_ON(entity->tree);
-+
-+ while (*node) {
-+ parent = *node;
-+ entry = rb_entry(parent, struct bfq_entity, rb_node);
-+
-+ if (bfq_gt(entry->finish, entity->finish))
-+ node = &parent->rb_left;
-+ else
-+ node = &parent->rb_right;
-+ }
-+
-+ rb_link_node(&entity->rb_node, parent, node);
-+ rb_insert_color(&entity->rb_node, root);
-+
-+ entity->tree = root;
-+}
-+
-+/**
-+ * bfq_update_min - update the min_start field of a entity.
-+ * @entity: the entity to update.
-+ * @node: one of its children.
-+ *
-+ * This function is called when @entity may store an invalid value for
-+ * min_start due to updates to the active tree. The function assumes
-+ * that the subtree rooted at @node (which may be its left or its right
-+ * child) has a valid min_start value.
-+ */
-+static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node)
-+{
-+ struct bfq_entity *child;
-+
-+ if (node) {
-+ child = rb_entry(node, struct bfq_entity, rb_node);
-+ if (bfq_gt(entity->min_start, child->min_start))
-+ entity->min_start = child->min_start;
-+ }
-+}
-+
-+/**
-+ * bfq_update_active_node - recalculate min_start.
-+ * @node: the node to update.
-+ *
-+ * @node may have changed position or one of its children may have moved,
-+ * this function updates its min_start value. The left and right subtrees
-+ * are assumed to hold a correct min_start value.
-+ */
-+static void bfq_update_active_node(struct rb_node *node)
-+{
-+ struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+
-+ entity->min_start = entity->start;
-+ bfq_update_min(entity, node->rb_right);
-+ bfq_update_min(entity, node->rb_left);
-+
-+ if (bfqq) {
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "new min_start %llu",
-+ ((entity->min_start>>10)*1000)>>12);
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ } else {
-+ struct bfq_group *bfqg =
-+ container_of(entity, struct bfq_group, entity);
-+
-+ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
-+ "new min_start %llu",
-+ ((entity->min_start>>10)*1000)>>12);
-+#endif
-+ }
-+}
-+
-+/**
-+ * bfq_update_active_tree - update min_start for the whole active tree.
-+ * @node: the starting node.
-+ *
-+ * @node must be the deepest modified node after an update. This function
-+ * updates its min_start using the values held by its children, assuming
-+ * that they did not change, and then updates all the nodes that may have
-+ * changed in the path to the root. The only nodes that may have changed
-+ * are the ones in the path or their siblings.
-+ */
-+static void bfq_update_active_tree(struct rb_node *node)
-+{
-+ struct rb_node *parent;
-+
-+up:
-+ bfq_update_active_node(node);
-+
-+ parent = rb_parent(node);
-+ if (!parent)
-+ return;
-+
-+ if (node == parent->rb_left && parent->rb_right)
-+ bfq_update_active_node(parent->rb_right);
-+ else if (parent->rb_left)
-+ bfq_update_active_node(parent->rb_left);
-+
-+ node = parent;
-+ goto up;
-+}
-+
-+static void bfq_weights_tree_add(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ struct rb_root *root);
-+
-+static void __bfq_weights_tree_remove(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ struct rb_root *root);
-+
-+static void bfq_weights_tree_remove(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq);
-+
-+
-+/**
-+ * bfq_active_insert - insert an entity in the active tree of its
-+ * group/device.
-+ * @st: the service tree of the entity.
-+ * @entity: the entity being inserted.
-+ *
-+ * The active tree is ordered by finish time, but an extra key is kept
-+ * per each node, containing the minimum value for the start times of
-+ * its children (and the node itself), so it's possible to search for
-+ * the eligible node with the lowest finish time in logarithmic time.
-+ */
-+static void bfq_active_insert(struct bfq_service_tree *st,
-+ struct bfq_entity *entity)
-+{
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+ struct rb_node *node = &entity->rb_node;
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ struct bfq_sched_data *sd = NULL;
-+ struct bfq_group *bfqg = NULL;
-+ struct bfq_data *bfqd = NULL;
-+#endif
-+
-+ bfq_insert(&st->active, entity);
-+
-+ if (node->rb_left)
-+ node = node->rb_left;
-+ else if (node->rb_right)
-+ node = node->rb_right;
-+
-+ bfq_update_active_tree(node);
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ sd = entity->sched_data;
-+ bfqg = container_of(sd, struct bfq_group, sched_data);
-+ BUG_ON(!bfqg);
-+ bfqd = (struct bfq_data *)bfqg->bfqd;
-+#endif
-+ if (bfqq)
-+ list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ if (bfqg != bfqd->root_group) {
-+ BUG_ON(!bfqg);
-+ BUG_ON(!bfqd);
-+ bfqg->active_entities++;
-+ }
-+#endif
-+}
-+
-+/**
-+ * bfq_ioprio_to_weight - calc a weight from an ioprio.
-+ * @ioprio: the ioprio value to convert.
-+ */
-+static unsigned short bfq_ioprio_to_weight(int ioprio)
-+{
-+ BUG_ON(ioprio < 0 || ioprio >= IOPRIO_BE_NR);
-+ return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF;
-+}
-+
-+/**
-+ * bfq_weight_to_ioprio - calc an ioprio from a weight.
-+ * @weight: the weight value to convert.
-+ *
-+ * To preserve as much as possible the old only-ioprio user interface,
-+ * 0 is used as an escape ioprio value for weights (numerically) equal or
-+ * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF.
-+ */
-+static unsigned short bfq_weight_to_ioprio(int weight)
-+{
-+ BUG_ON(weight < BFQ_MIN_WEIGHT || weight > BFQ_MAX_WEIGHT);
-+ return IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight < 0 ?
-+ 0 : IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight;
-+}
-+
-+static void bfq_get_entity(struct bfq_entity *entity)
-+{
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+
-+ if (bfqq) {
-+ bfqq->ref++;
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "%p %d",
-+ bfqq, bfqq->ref);
-+ }
-+}
-+
-+/**
-+ * bfq_find_deepest - find the deepest node that an extraction can modify.
-+ * @node: the node being removed.
-+ *
-+ * Do the first step of an extraction in an rb tree, looking for the
-+ * node that will replace @node, and returning the deepest node that
-+ * the following modifications to the tree can touch. If @node is the
-+ * last node in the tree return %NULL.
-+ */
-+static struct rb_node *bfq_find_deepest(struct rb_node *node)
-+{
-+ struct rb_node *deepest;
-+
-+ if (!node->rb_right && !node->rb_left)
-+ deepest = rb_parent(node);
-+ else if (!node->rb_right)
-+ deepest = node->rb_left;
-+ else if (!node->rb_left)
-+ deepest = node->rb_right;
-+ else {
-+ deepest = rb_next(node);
-+ if (deepest->rb_right)
-+ deepest = deepest->rb_right;
-+ else if (rb_parent(deepest) != node)
-+ deepest = rb_parent(deepest);
-+ }
-+
-+ return deepest;
-+}
-+
-+/**
-+ * bfq_active_extract - remove an entity from the active tree.
-+ * @st: the service_tree containing the tree.
-+ * @entity: the entity being removed.
-+ */
-+static void bfq_active_extract(struct bfq_service_tree *st,
-+ struct bfq_entity *entity)
-+{
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+ struct rb_node *node;
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ struct bfq_sched_data *sd = NULL;
-+ struct bfq_group *bfqg = NULL;
-+ struct bfq_data *bfqd = NULL;
-+#endif
-+
-+ node = bfq_find_deepest(&entity->rb_node);
-+ bfq_extract(&st->active, entity);
-+
-+ if (node)
-+ bfq_update_active_tree(node);
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ sd = entity->sched_data;
-+ bfqg = container_of(sd, struct bfq_group, sched_data);
-+ BUG_ON(!bfqg);
-+ bfqd = (struct bfq_data *)bfqg->bfqd;
-+#endif
-+ if (bfqq)
-+ list_del(&bfqq->bfqq_list);
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ if (bfqg != bfqd->root_group) {
-+ BUG_ON(!bfqg);
-+ BUG_ON(!bfqd);
-+ BUG_ON(!bfqg->active_entities);
-+ bfqg->active_entities--;
-+ }
-+#endif
-+}
-+
-+/**
-+ * bfq_idle_insert - insert an entity into the idle tree.
-+ * @st: the service tree containing the tree.
-+ * @entity: the entity to insert.
-+ */
-+static void bfq_idle_insert(struct bfq_service_tree *st,
-+ struct bfq_entity *entity)
-+{
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+ struct bfq_entity *first_idle = st->first_idle;
-+ struct bfq_entity *last_idle = st->last_idle;
-+
-+ if (!first_idle || bfq_gt(first_idle->finish, entity->finish))
-+ st->first_idle = entity;
-+ if (!last_idle || bfq_gt(entity->finish, last_idle->finish))
-+ st->last_idle = entity;
-+
-+ bfq_insert(&st->idle, entity);
-+
-+ if (bfqq)
-+ list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
-+}
-+
-+/**
-+ * bfq_forget_entity - do not consider entity any longer for scheduling
-+ * @st: the service tree.
-+ * @entity: the entity being removed.
-+ * @is_in_service: true if entity is currently the in-service entity.
-+ *
-+ * Forget everything about @entity. In addition, if entity represents
-+ * a queue, and the latter is not in service, then release the service
-+ * reference to the queue (the one taken through bfq_get_entity). In
-+ * fact, in this case, there is really no more service reference to
-+ * the queue, as the latter is also outside any service tree. If,
-+ * instead, the queue is in service, then __bfq_bfqd_reset_in_service
-+ * will take care of putting the reference when the queue finally
-+ * stops being served.
-+ */
-+static void bfq_forget_entity(struct bfq_service_tree *st,
-+ struct bfq_entity *entity,
-+ bool is_in_service)
-+{
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+ BUG_ON(!entity->on_st);
-+
-+ entity->on_st = false;
-+ st->wsum -= entity->weight;
-+ if (bfqq && !is_in_service) {
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "(before): %p %d",
-+ bfqq, bfqq->ref);
-+ bfq_put_queue(bfqq);
-+ }
-+}
-+
-+/**
-+ * bfq_put_idle_entity - release the idle tree ref of an entity.
-+ * @st: service tree for the entity.
-+ * @entity: the entity being released.
-+ */
-+static void bfq_put_idle_entity(struct bfq_service_tree *st,
-+ struct bfq_entity *entity)
-+{
-+ bfq_idle_extract(st, entity);
-+ bfq_forget_entity(st, entity,
-+ entity == entity->sched_data->in_service_entity);
-+}
-+
-+/**
-+ * bfq_forget_idle - update the idle tree if necessary.
-+ * @st: the service tree to act upon.
-+ *
-+ * To preserve the global O(log N) complexity we only remove one entry here;
-+ * as the idle tree will not grow indefinitely this can be done safely.
-+ */
-+static void bfq_forget_idle(struct bfq_service_tree *st)
-+{
-+ struct bfq_entity *first_idle = st->first_idle;
-+ struct bfq_entity *last_idle = st->last_idle;
-+
-+ if (RB_EMPTY_ROOT(&st->active) && last_idle &&
-+ !bfq_gt(last_idle->finish, st->vtime)) {
-+ /*
-+ * Forget the whole idle tree, increasing the vtime past
-+ * the last finish time of idle entities.
-+ */
-+ st->vtime = last_idle->finish;
-+ }
-+
-+ if (first_idle && !bfq_gt(first_idle->finish, st->vtime))
-+ bfq_put_idle_entity(st, first_idle);
-+}
-+
-+/*
-+ * Update weight and priority of entity. If update_class_too is true,
-+ * then update the ioprio_class of entity too.
-+ *
-+ * The reason why the update of ioprio_class is controlled through the
-+ * last parameter is as follows. Changing the ioprio class of an
-+ * entity implies changing the destination service trees for that
-+ * entity. If such a change occurred when the entity is already on one
-+ * of the service trees for its previous class, then the state of the
-+ * entity would become more complex: none of the new possible service
-+ * trees for the entity, according to bfq_entity_service_tree(), would
-+ * match any of the possible service trees on which the entity
-+ * is. Complex operations involving these trees, such as entity
-+ * activations and deactivations, should take into account this
-+ * additional complexity. To avoid this issue, this function is
-+ * invoked with update_class_too unset in the points in the code where
-+ * entity may happen to be on some tree.
-+ */
-+static struct bfq_service_tree *
-+__bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
-+ struct bfq_entity *entity,
-+ bool update_class_too)
-+{
-+ struct bfq_service_tree *new_st = old_st;
-+
-+ if (entity->prio_changed) {
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+ unsigned int prev_weight, new_weight;
-+ struct bfq_data *bfqd = NULL;
-+ struct rb_root *root;
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ struct bfq_sched_data *sd;
-+ struct bfq_group *bfqg;
-+#endif
-+
-+ if (bfqq)
-+ bfqd = bfqq->bfqd;
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ else {
-+ sd = entity->my_sched_data;
-+ bfqg = container_of(sd, struct bfq_group, sched_data);
-+ BUG_ON(!bfqg);
-+ bfqd = (struct bfq_data *)bfqg->bfqd;
-+ BUG_ON(!bfqd);
-+ }
-+#endif
-+
-+ BUG_ON(entity->tree && update_class_too);
-+ BUG_ON(old_st->wsum < entity->weight);
-+ old_st->wsum -= entity->weight;
-+
-+ if (entity->new_weight != entity->orig_weight) {
-+ if (entity->new_weight < BFQ_MIN_WEIGHT ||
-+ entity->new_weight > BFQ_MAX_WEIGHT) {
-+ pr_crit("update_weight_prio: new_weight %d\n",
-+ entity->new_weight);
-+ if (entity->new_weight < BFQ_MIN_WEIGHT)
-+ entity->new_weight = BFQ_MIN_WEIGHT;
-+ else
-+ entity->new_weight = BFQ_MAX_WEIGHT;
-+ }
-+ entity->orig_weight = entity->new_weight;
-+ if (bfqq)
-+ bfqq->ioprio =
-+ bfq_weight_to_ioprio(entity->orig_weight);
-+ }
-+
-+ if (bfqq && update_class_too)
-+ bfqq->ioprio_class = bfqq->new_ioprio_class;
-+
-+ /*
-+ * Reset prio_changed only if the ioprio_class change
-+ * is not pending any longer.
-+ */
-+ if (!bfqq || bfqq->ioprio_class == bfqq->new_ioprio_class)
-+ entity->prio_changed = 0;
-+
-+ /*
-+ * NOTE: here we may be changing the weight too early,
-+ * this will cause unfairness. The correct approach
-+ * would have required additional complexity to defer
-+ * weight changes to the proper time instants (i.e.,
-+ * when entity->finish <= old_st->vtime).
-+ */
-+ new_st = bfq_entity_service_tree(entity);
-+
-+ prev_weight = entity->weight;
-+ new_weight = entity->orig_weight *
-+ (bfqq ? bfqq->wr_coeff : 1);
-+ /*
-+ * If the weight of the entity changes and the entity is a
-+ * queue, remove the entity from its old weight counter (if
-+ * there is a counter associated with the entity).
-+ */
-+ if (prev_weight != new_weight && bfqq) {
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "weight changed %d %d(%d %d)",
-+ prev_weight, new_weight,
-+ entity->orig_weight,
-+ bfqq->wr_coeff);
-+
-+ root = &bfqd->queue_weights_tree;
-+ __bfq_weights_tree_remove(bfqd, bfqq, root);
-+ }
-+ entity->weight = new_weight;
-+ /*
-+ * Add the entity, if it is not a weight-raised queue, to the
-+ * counter associated with its new weight.
-+ */
-+ if (prev_weight != new_weight && bfqq && bfqq->wr_coeff == 1) {
-+ /* If we get here, root has been initialized. */
-+ bfq_weights_tree_add(bfqd, bfqq, root);
-+ }
-+
-+ new_st->wsum += entity->weight;
-+
-+ if (new_st != old_st) {
-+ BUG_ON(!update_class_too);
-+ entity->start = new_st->vtime;
-+ }
-+ }
-+
-+ return new_st;
-+}
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+static void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg);
-+#endif
-+
-+/**
-+ * bfq_bfqq_served - update the scheduler status after selection for
-+ * service.
-+ * @bfqq: the queue being served.
-+ * @served: bytes to transfer.
-+ *
-+ * NOTE: this can be optimized, as the timestamps of upper level entities
-+ * are synchronized every time a new bfqq is selected for service. By now,
-+ * we keep it to better check consistency.
-+ */
-+static void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
-+{
-+ struct bfq_entity *entity = &bfqq->entity;
-+ struct bfq_service_tree *st;
-+
-+ if (!bfqq->service_from_backlogged)
-+ bfqq->first_IO_time = jiffies;
-+
-+ if (bfqq->wr_coeff > 1)
-+ bfqq->service_from_wr += served;
-+
-+ bfqq->service_from_backlogged += served;
-+ for_each_entity(entity) {
-+ st = bfq_entity_service_tree(entity);
-+
-+ entity->service += served;
-+
-+ BUG_ON(st->wsum == 0);
-+
-+ st->vtime += bfq_delta(served, st->wsum);
-+ bfq_forget_idle(st);
-+ }
-+#ifndef BFQ_MQ
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ bfqg_stats_set_start_empty_time(bfqq_group(bfqq));
-+#endif
-+#endif
-+ st = bfq_entity_service_tree(&bfqq->entity);
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs, vtime %llu on %p",
-+ served, ((st->vtime>>10)*1000)>>12, st);
-+}
-+
-+/**
-+ * bfq_bfqq_charge_time - charge an amount of service equivalent to the length
-+ * of the time interval during which bfqq has been in
-+ * service.
-+ * @bfqd: the device
-+ * @bfqq: the queue that needs a service update.
-+ * @time_ms: the amount of time during which the queue has received service
-+ *
-+ * If a queue does not consume its budget fast enough, then providing
-+ * the queue with service fairness may impair throughput, more or less
-+ * severely. For this reason, queues that consume their budget slowly
-+ * are provided with time fairness instead of service fairness. This
-+ * goal is achieved through the BFQ scheduling engine, even if such an
-+ * engine works in the service, and not in the time domain. The trick
-+ * is charging these queues with an inflated amount of service, equal
-+ * to the amount of service that they would have received during their
-+ * service slot if they had been fast, i.e., if their requests had
-+ * been dispatched at a rate equal to the estimated peak rate.
-+ *
-+ * It is worth noting that time fairness can cause important
-+ * distortions in terms of bandwidth distribution, on devices with
-+ * internal queueing. The reason is that I/O requests dispatched
-+ * during the service slot of a queue may be served after that service
-+ * slot is finished, and may have a total processing time loosely
-+ * correlated with the duration of the service slot. This is
-+ * especially true for short service slots.
-+ */
-+static void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
-+ unsigned long time_ms)
-+{
-+ struct bfq_entity *entity = &bfqq->entity;
-+ unsigned long timeout_ms = jiffies_to_msecs(bfq_timeout);
-+ unsigned long bounded_time_ms = min(time_ms, timeout_ms);
-+ int serv_to_charge_for_time =
-+ (bfqd->bfq_max_budget * bounded_time_ms) / timeout_ms;
-+ int tot_serv_to_charge = max(serv_to_charge_for_time, entity->service);
-+
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "%lu/%lu ms, %d/%d/%d/%d sectors",
-+ time_ms, timeout_ms,
-+ entity->service,
-+ tot_serv_to_charge,
-+ bfqd->bfq_max_budget,
-+ entity->budget);
-+
-+ /* Increase budget to avoid inconsistencies */
-+ if (tot_serv_to_charge > entity->budget)
-+ entity->budget = tot_serv_to_charge;
-+
-+ bfq_bfqq_served(bfqq,
-+ max_t(int, 0, tot_serv_to_charge - entity->service));
-+}
-+
-+static void bfq_update_fin_time_enqueue(struct bfq_entity *entity,
-+ struct bfq_service_tree *st,
-+ bool backshifted)
-+{
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+ struct bfq_sched_data *sd = entity->sched_data;
-+
-+ /*
-+ * When this function is invoked, entity is not in any service
-+ * tree, then it is safe to invoke next function with the last
-+ * parameter set (see the comments on the function).
-+ */
-+ BUG_ON(entity->tree);
-+ st = __bfq_entity_update_weight_prio(st, entity, true);
-+ bfq_calc_finish(entity, entity->budget);
-+
-+ /*
-+ * If some queues enjoy backshifting for a while, then their
-+ * (virtual) finish timestamps may happen to become lower and
-+ * lower than the system virtual time. In particular, if
-+ * these queues often happen to be idle for short time
-+ * periods, and during such time periods other queues with
-+ * higher timestamps happen to be busy, then the backshifted
-+ * timestamps of the former queues can become much lower than
-+ * the system virtual time. In fact, to serve the queues with
-+ * higher timestamps while the ones with lower timestamps are
-+ * idle, the system virtual time may be pushed-up to much
-+ * higher values than the finish timestamps of the idle
-+ * queues. As a consequence, the finish timestamps of all new
-+ * or newly activated queues may end up being much larger than
-+ * those of lucky queues with backshifted timestamps. The
-+ * latter queues may then monopolize the device for a lot of
-+ * time. This would simply break service guarantees.
-+ *
-+ * To reduce this problem, push up a little bit the
-+ * backshifted timestamps of the queue associated with this
-+ * entity (only a queue can happen to have the backshifted
-+ * flag set): just enough to let the finish timestamp of the
-+ * queue be equal to the current value of the system virtual
-+ * time. This may introduce a little unfairness among queues
-+ * with backshifted timestamps, but it does not break
-+ * worst-case fairness guarantees.
-+ *
-+ * As a special case, if bfqq is weight-raised, push up
-+ * timestamps much less, to keep very low the probability that
-+ * this push up causes the backshifted finish timestamps of
-+ * weight-raised queues to become higher than the backshifted
-+ * finish timestamps of non weight-raised queues.
-+ */
-+ if (backshifted && bfq_gt(st->vtime, entity->finish)) {
-+ unsigned long delta = st->vtime - entity->finish;
-+
-+ if (bfqq)
-+ delta /= bfqq->wr_coeff;
-+
-+ entity->start += delta;
-+ entity->finish += delta;
-+
-+ if (bfqq) {
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "new queue finish %llu",
-+ ((entity->finish>>10)*1000)>>12);
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ } else {
-+ struct bfq_group *bfqg =
-+ container_of(entity, struct bfq_group, entity);
-+
-+ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
-+ "new group finish %llu",
-+ ((entity->finish>>10)*1000)>>12);
-+#endif
-+ }
-+ }
-+
-+ bfq_active_insert(st, entity);
-+
-+ if (bfqq) {
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "queue %seligible in st %p",
-+ entity->start <= st->vtime ? "" : "non ", st);
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ } else {
-+ struct bfq_group *bfqg =
-+ container_of(entity, struct bfq_group, entity);
-+
-+ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
-+ "group %seligible in st %p",
-+ entity->start <= st->vtime ? "" : "non ", st);
-+#endif
-+ }
-+ BUG_ON(RB_EMPTY_ROOT(&st->active));
-+ BUG_ON(&st->active != &sd->service_tree->active &&
-+ &st->active != &(sd->service_tree+1)->active &&
-+ &st->active != &(sd->service_tree+2)->active);
-+}
-+
-+/**
-+ * __bfq_activate_entity - handle activation of entity.
-+ * @entity: the entity being activated.
-+ * @non_blocking_wait_rq: true if entity was waiting for a request
-+ *
-+ * Called for a 'true' activation, i.e., if entity is not active and
-+ * one of its children receives a new request.
-+ *
-+ * Basically, this function updates the timestamps of entity and
-+ * inserts entity into its active tree, after possibly extracting it
-+ * from its idle tree.
-+ */
-+static void __bfq_activate_entity(struct bfq_entity *entity,
-+ bool non_blocking_wait_rq)
-+{
-+ struct bfq_sched_data *sd = entity->sched_data;
-+ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+ bool backshifted = false;
-+ unsigned long long min_vstart;
-+
-+ BUG_ON(!sd);
-+ BUG_ON(!st);
-+
-+ /* See comments on bfq_fqq_update_budg_for_activation */
-+ if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) {
-+ backshifted = true;
-+ min_vstart = entity->finish;
-+ } else
-+ min_vstart = st->vtime;
-+
-+ if (entity->tree == &st->idle) {
-+ /*
-+ * Must be on the idle tree, bfq_idle_extract() will
-+ * check for that.
-+ */
-+ bfq_idle_extract(st, entity);
-+ BUG_ON(entity->tree);
-+ entity->start = bfq_gt(min_vstart, entity->finish) ?
-+ min_vstart : entity->finish;
-+ } else {
-+ BUG_ON(entity->tree);
-+ /*
-+ * The finish time of the entity may be invalid, and
-+ * it is in the past for sure, otherwise the queue
-+ * would have been on the idle tree.
-+ */
-+ entity->start = min_vstart;
-+ st->wsum += entity->weight;
-+ /*
-+ * entity is about to be inserted into a service tree,
-+ * and then set in service: get a reference to make
-+ * sure entity does not disappear until it is no
-+ * longer in service or scheduled for service.
-+ */
-+ bfq_get_entity(entity);
-+
-+ BUG_ON(entity->on_st && bfqq);
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ if (entity->on_st && !bfqq) {
-+ struct bfq_group *bfqg =
-+ container_of(entity, struct bfq_group,
-+ entity);
-+
-+ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd,
-+ bfqg,
-+ "activate bug, class %d in_service %p",
-+ bfq_class_idx(entity), sd->in_service_entity);
-+ }
-+#endif
-+ BUG_ON(entity->on_st && !bfqq);
-+ entity->on_st = true;
-+ }
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ if (!bfq_entity_to_bfqq(entity)) { /* bfq_group */
-+ struct bfq_group *bfqg =
-+ container_of(entity, struct bfq_group, entity);
-+ struct bfq_data *bfqd = bfqg->bfqd;
-+
-+ BUG_ON(!bfqd);
-+ if (!entity->in_groups_with_pending_reqs) {
-+ entity->in_groups_with_pending_reqs = true;
-+ bfqd->num_groups_with_pending_reqs++;
-+ }
-+ bfq_log_bfqg(bfqd, bfqg, "num_groups_with_pending_reqs %u",
-+ bfqd->num_groups_with_pending_reqs);
-+ }
-+#endif
-+
-+ bfq_update_fin_time_enqueue(entity, st, backshifted);
-+}
-+
-+/**
-+ * __bfq_requeue_entity - handle requeueing or repositioning of an entity.
-+ * @entity: the entity being requeued or repositioned.
-+ *
-+ * Requeueing is needed if this entity stops being served, which
-+ * happens if a leaf descendant entity has expired. On the other hand,
-+ * repositioning is needed if the next_inservice_entity for the child
-+ * entity has changed. See the comments inside the function for
-+ * details.
-+ *
-+ * Basically, this function: 1) removes entity from its active tree if
-+ * present there, 2) updates the timestamps of entity and 3) inserts
-+ * entity back into its active tree (in the new, right position for
-+ * the new values of the timestamps).
-+ */
-+static void __bfq_requeue_entity(struct bfq_entity *entity)
-+{
-+ struct bfq_sched_data *sd = entity->sched_data;
-+ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
-+
-+ BUG_ON(!sd);
-+ BUG_ON(!st);
-+
-+ BUG_ON(entity != sd->in_service_entity &&
-+ entity->tree != &st->active);
-+
-+ if (entity == sd->in_service_entity) {
-+ /*
-+ * We are requeueing the current in-service entity,
-+ * which may have to be done for one of the following
-+ * reasons:
-+ * - entity represents the in-service queue, and the
-+ * in-service queue is being requeued after an
-+ * expiration;
-+ * - entity represents a group, and its budget has
-+ * changed because one of its child entities has
-+ * just been either activated or requeued for some
-+ * reason; the timestamps of the entity need then to
-+ * be updated, and the entity needs to be enqueued
-+ * or repositioned accordingly.
-+ *
-+ * In particular, before requeueing, the start time of
-+ * the entity must be moved forward to account for the
-+ * service that the entity has received while in
-+ * service. This is done by the next instructions. The
-+ * finish time will then be updated according to this
-+ * new value of the start time, and to the budget of
-+ * the entity.
-+ */
-+ bfq_calc_finish(entity, entity->service);
-+ entity->start = entity->finish;
-+ BUG_ON(entity->tree && entity->tree == &st->idle);
-+ BUG_ON(entity->tree && entity->tree != &st->active);
-+ /*
-+ * In addition, if the entity had more than one child
-+ * when set in service, then it was not extracted from
-+ * the active tree. This implies that the position of
-+ * the entity in the active tree may need to be
-+ * changed now, because we have just updated the start
-+ * time of the entity, and we will update its finish
-+ * time in a moment (the requeueing is then, more
-+ * precisely, a repositioning in this case). To
-+ * implement this repositioning, we: 1) dequeue the
-+ * entity here, 2) update the finish time and requeue
-+ * the entity according to the new timestamps below.
-+ */
-+ if (entity->tree)
-+ bfq_active_extract(st, entity);
-+ } else { /* The entity is already active, and not in service */
-+ /*
-+ * In this case, this function gets called only if the
-+ * next_in_service entity below this entity has
-+ * changed, and this change has caused the budget of
-+ * this entity to change, which, finally implies that
-+ * the finish time of this entity must be
-+ * updated. Such an update may cause the scheduling,
-+ * i.e., the position in the active tree, of this
-+ * entity to change. We handle this change by: 1)
-+ * dequeueing the entity here, 2) updating the finish
-+ * time and requeueing the entity according to the new
-+ * timestamps below. This is the same approach as the
-+ * non-extracted-entity sub-case above.
-+ */
-+ bfq_active_extract(st, entity);
-+ }
-+
-+ bfq_update_fin_time_enqueue(entity, st, false);
-+}
-+
-+static void __bfq_activate_requeue_entity(struct bfq_entity *entity,
-+ struct bfq_sched_data *sd,
-+ bool non_blocking_wait_rq)
-+{
-+ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
-+
-+ if (sd->in_service_entity == entity || entity->tree == &st->active)
-+ /*
-+ * in service or already queued on the active tree,
-+ * requeue or reposition
-+ */
-+ __bfq_requeue_entity(entity);
-+ else
-+ /*
-+ * Not in service and not queued on its active tree:
-+ * the activity is idle and this is a true activation.
-+ */
-+ __bfq_activate_entity(entity, non_blocking_wait_rq);
-+}
-+
-+
-+/**
-+ * bfq_activate_requeue_entity - activate or requeue an entity representing a bfq_queue,
-+ * and activate, requeue or reposition all ancestors
-+ * for which such an update becomes necessary.
-+ * @entity: the entity to activate.
-+ * @non_blocking_wait_rq: true if this entity was waiting for a request
-+ * @requeue: true if this is a requeue, which implies that bfqq is
-+ * being expired; thus ALL its ancestors stop being served and must
-+ * therefore be requeued
-+ * @expiration: true if this function is being invoked in the expiration path
-+ * of the in-service queue
-+ */
-+static void bfq_activate_requeue_entity(struct bfq_entity *entity,
-+ bool non_blocking_wait_rq,
-+ bool requeue, bool expiration)
-+{
-+ struct bfq_sched_data *sd;
-+
-+ for_each_entity(entity) {
-+ BUG_ON(!entity);
-+ sd = entity->sched_data;
-+ __bfq_activate_requeue_entity(entity, sd, non_blocking_wait_rq);
-+
-+ BUG_ON(RB_EMPTY_ROOT(&sd->service_tree->active) &&
-+ RB_EMPTY_ROOT(&(sd->service_tree+1)->active) &&
-+ RB_EMPTY_ROOT(&(sd->service_tree+2)->active));
-+
-+ if (!bfq_update_next_in_service(sd, entity, expiration) &&
-+ !requeue) {
-+ BUG_ON(!sd->next_in_service);
-+ break;
-+ }
-+ BUG_ON(!sd->next_in_service);
-+ }
-+}
-+
-+/**
-+ * __bfq_deactivate_entity - update sched_data and service trees for
-+ * entity, so as to represent entity as inactive
-+ * @entity: the entity being deactivated.
-+ * @ins_into_idle_tree: if false, the entity will not be put into the
-+ * idle tree.
-+ *
-+ * If necessary and allowed, puts entity into the idle tree. NOTE:
-+ * entity may be on no tree if in service.
-+ */
-+static bool __bfq_deactivate_entity(struct bfq_entity *entity,
-+ bool ins_into_idle_tree)
-+{
-+ struct bfq_sched_data *sd = entity->sched_data;
-+ struct bfq_service_tree *st;
-+ bool is_in_service;
-+
-+ if (!entity->on_st) { /* entity never activated, or already inactive */
-+ BUG_ON(sd && entity == sd->in_service_entity);
-+ return false;
-+ }
-+
-+ /*
-+ * If we get here, then entity is active, which implies that
-+ * bfq_group_set_parent has already been invoked for the group
-+ * represented by entity. Therefore, the field
-+ * entity->sched_data has been set, and we can safely use it.
-+ */
-+ st = bfq_entity_service_tree(entity);
-+ is_in_service = entity == sd->in_service_entity;
-+
-+ BUG_ON(is_in_service && entity->tree && entity->tree != &st->active);
-+
-+ bfq_calc_finish(entity, entity->service);
-+
-+ if (is_in_service) {
-+ sd->in_service_entity = NULL;
-+ } else
-+ /*
-+ * Non in-service entity: nobody will take care of
-+ * resetting its service counter on expiration. Do it
-+ * now.
-+ */
-+ entity->service = 0;
-+
-+ if (entity->tree == &st->active)
-+ bfq_active_extract(st, entity);
-+ else if (!is_in_service && entity->tree == &st->idle)
-+ bfq_idle_extract(st, entity);
-+ else if (entity->tree)
-+ BUG();
-+
-+ if (!ins_into_idle_tree || !bfq_gt(entity->finish, st->vtime))
-+ bfq_forget_entity(st, entity, is_in_service);
-+ else
-+ bfq_idle_insert(st, entity);
-+
-+ return true;
-+}
-+
-+/**
-+ * bfq_deactivate_entity - deactivate an entity representing a bfq_queue.
-+ * @entity: the entity to deactivate.
-+ * @ins_into_idle_tree: true if the entity can be put into the idle tree
-+ * @expiration: true if this function is being invoked in the expiration path
-+ * of the in-service queue
-+ */
-+static void bfq_deactivate_entity(struct bfq_entity *entity,
-+ bool ins_into_idle_tree,
-+ bool expiration)
-+{
-+ struct bfq_sched_data *sd;
-+ struct bfq_entity *parent = NULL;
-+
-+ for_each_entity_safe(entity, parent) {
-+ sd = entity->sched_data;
-+
-+ BUG_ON(sd == NULL); /*
-+ * It would mean that this is the
-+ * root group.
-+ */
-+
-+ BUG_ON(expiration && entity != sd->in_service_entity);
-+
-+ BUG_ON(entity != sd->in_service_entity &&
-+ entity->tree ==
-+ &bfq_entity_service_tree(entity)->active &&
-+ !sd->next_in_service);
-+
-+ if (!__bfq_deactivate_entity(entity, ins_into_idle_tree)) {
-+ /*
-+ * entity is not in any tree any more, so
-+ * this deactivation is a no-op, and there is
-+ * nothing to change for upper-level entities
-+ * (in case of expiration, this can never
-+ * happen).
-+ */
-+ BUG_ON(expiration); /*
-+ * entity cannot be already out of
-+ * any tree
-+ */
-+ return;
-+ }
-+
-+ if (sd->next_in_service == entity)
-+ /*
-+ * entity was the next_in_service entity,
-+ * then, since entity has just been
-+ * deactivated, a new one must be found.
-+ */
-+ bfq_update_next_in_service(sd, NULL, expiration);
-+
-+ if (sd->next_in_service || sd->in_service_entity) {
-+ /*
-+ * The parent entity is still active, because
-+ * either next_in_service or in_service_entity
-+ * is not NULL. So, no further upwards
-+ * deactivation must be performed. Yet,
-+ * next_in_service has changed. Then the
-+ * schedule does need to be updated upwards.
-+ *
-+ * NOTE If in_service_entity is not NULL, then
-+ * next_in_service may happen to be NULL,
-+ * although the parent entity is evidently
-+ * active. This happens if 1) the entity
-+ * pointed by in_service_entity is the only
-+ * active entity in the parent entity, and 2)
-+ * according to the definition of
-+ * next_in_service, the in_service_entity
-+ * cannot be considered as
-+ * next_in_service. See the comments on the
-+ * definition of next_in_service for details.
-+ */
-+ BUG_ON(sd->next_in_service == entity);
-+ BUG_ON(sd->in_service_entity == entity);
-+ break;
-+ }
-+
-+ /*
-+ * If we get here, then the parent is no more
-+ * backlogged and we need to propagate the
-+ * deactivation upwards. Thus let the loop go on.
-+ */
-+
-+ /*
-+ * Also let parent be queued into the idle tree on
-+ * deactivation, to preserve service guarantees, and
-+ * assuming that who invoked this function does not
-+ * need parent entities too to be removed completely.
-+ */
-+ ins_into_idle_tree = true;
-+ }
-+
-+ /*
-+ * If the deactivation loop is fully executed, then there are
-+ * no more entities to touch and next loop is not executed at
-+ * all. Otherwise, requeue remaining entities if they are
-+ * about to stop receiving service, or reposition them if this
-+ * is not the case.
-+ */
-+ entity = parent;
-+ for_each_entity(entity) {
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+
-+ /*
-+ * Invoke __bfq_requeue_entity on entity, even if
-+ * already active, to requeue/reposition it in the
-+ * active tree (because sd->next_in_service has
-+ * changed)
-+ */
-+ __bfq_requeue_entity(entity);
-+
-+ sd = entity->sched_data;
-+ BUG_ON(expiration && sd->in_service_entity != entity);
-+
-+ if (bfqq)
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "invoking udpdate_next for this queue");
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ else {
-+ struct bfq_group *bfqg =
-+ container_of(entity,
-+ struct bfq_group, entity);
-+
-+ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
-+ "invoking udpdate_next for this entity");
-+ }
-+#endif
-+ if (!bfq_update_next_in_service(sd, entity, expiration) &&
-+ !expiration)
-+ /*
-+ * next_in_service unchanged or not causing
-+ * any change in entity->parent->sd, and no
-+ * requeueing needed for expiration: stop
-+ * here.
-+ */
-+ break;
-+ }
-+}
-+
-+/**
-+ * bfq_calc_vtime_jump - compute the value to which the vtime should jump,
-+ * if needed, to have at least one entity eligible.
-+ * @st: the service tree to act upon.
-+ *
-+ * Assumes that st is not empty.
-+ */
-+static u64 bfq_calc_vtime_jump(struct bfq_service_tree *st)
-+{
-+ struct bfq_entity *root_entity = bfq_root_active_entity(&st->active);
-+
-+ if (bfq_gt(root_entity->min_start, st->vtime)) {
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(root_entity);
-+
-+ if (bfqq)
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "new value %llu",
-+ ((root_entity->min_start>>10)*1000)>>12);
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ else {
-+ struct bfq_group *bfqg =
-+ container_of(root_entity, struct bfq_group,
-+ entity);
-+
-+ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
-+ "new value %llu",
-+ ((root_entity->min_start>>10)*1000)>>12);
-+ }
-+#endif
-+ return root_entity->min_start;
-+ }
-+ return st->vtime;
-+}
-+
-+static void bfq_update_vtime(struct bfq_service_tree *st, u64 new_value)
-+{
-+ if (new_value > st->vtime) {
-+ st->vtime = new_value;
-+ bfq_forget_idle(st);
-+ }
-+}
-+
-+/**
-+ * bfq_first_active_entity - find the eligible entity with
-+ * the smallest finish time
-+ * @st: the service tree to select from.
-+ * @vtime: the system virtual to use as a reference for eligibility
-+ *
-+ * This function searches the first schedulable entity, starting from the
-+ * root of the tree and going on the left every time on this side there is
-+ * a subtree with at least one eligible (start >= vtime) entity. The path on
-+ * the right is followed only if a) the left subtree contains no eligible
-+ * entities and b) no eligible entity has been found yet.
-+ */
-+static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st,
-+ u64 vtime)
-+{
-+ struct bfq_entity *entry, *first = NULL;
-+ struct rb_node *node = st->active.rb_node;
-+
-+ while (node) {
-+ entry = rb_entry(node, struct bfq_entity, rb_node);
-+left:
-+ if (!bfq_gt(entry->start, vtime))
-+ first = entry;
-+
-+ BUG_ON(bfq_gt(entry->min_start, vtime));
-+
-+ if (node->rb_left) {
-+ entry = rb_entry(node->rb_left,
-+ struct bfq_entity, rb_node);
-+ if (!bfq_gt(entry->min_start, vtime)) {
-+ node = node->rb_left;
-+ goto left;
-+ }
-+ }
-+ if (first)
-+ break;
-+ node = node->rb_right;
-+ }
-+
-+ BUG_ON(!first && !RB_EMPTY_ROOT(&st->active));
-+ return first;
-+}
-+
-+/**
-+ * __bfq_lookup_next_entity - return the first eligible entity in @st.
-+ * @st: the service tree.
-+ *
-+ * If there is no in-service entity for the sched_data st belongs to,
-+ * then return the entity that will be set in service if:
-+ * 1) the parent entity this st belongs to is set in service;
-+ * 2) no entity belonging to such parent entity undergoes a state change
-+ * that would influence the timestamps of the entity (e.g., becomes idle,
-+ * becomes backlogged, changes its budget, ...).
-+ *
-+ * In this first case, update the virtual time in @st too (see the
-+ * comments on this update inside the function).
-+ *
-+ * In constrast, if there is an in-service entity, then return the
-+ * entity that would be set in service if not only the above
-+ * conditions, but also the next one held true: the currently
-+ * in-service entity, on expiration,
-+ * 1) gets a finish time equal to the current one, or
-+ * 2) is not eligible any more, or
-+ * 3) is idle.
-+ */
-+static struct bfq_entity *
-+__bfq_lookup_next_entity(struct bfq_service_tree *st, bool in_service)
-+{
-+ struct bfq_entity *entity;
-+ u64 new_vtime;
-+ struct bfq_queue *bfqq;
-+
-+ if (RB_EMPTY_ROOT(&st->active))
-+ return NULL;
-+
-+ /*
-+ * Get the value of the system virtual time for which at
-+ * least one entity is eligible.
-+ */
-+ new_vtime = bfq_calc_vtime_jump(st);
-+
-+ /*
-+ * If there is no in-service entity for the sched_data this
-+ * active tree belongs to, then push the system virtual time
-+ * up to the value that guarantees that at least one entity is
-+ * eligible. If, instead, there is an in-service entity, then
-+ * do not make any such update, because there is already an
-+ * eligible entity, namely the in-service one (even if the
-+ * entity is not on st, because it was extracted when set in
-+ * service).
-+ */
-+ if (!in_service)
-+ bfq_update_vtime(st, new_vtime);
-+
-+ entity = bfq_first_active_entity(st, new_vtime);
-+ BUG_ON(bfq_gt(entity->start, new_vtime));
-+
-+ /* Log some information */
-+ bfqq = bfq_entity_to_bfqq(entity);
-+ if (bfqq)
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "start %llu vtime %llu st %p",
-+ ((entity->start>>10)*1000)>>12,
-+ ((new_vtime>>10)*1000)>>12, st);
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ else {
-+ struct bfq_group *bfqg =
-+ container_of(entity, struct bfq_group, entity);
-+
-+ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
-+ "start %llu vtime %llu (%llu) st %p",
-+ ((entity->start>>10)*1000)>>12,
-+ ((st->vtime>>10)*1000)>>12,
-+ ((new_vtime>>10)*1000)>>12, st);
-+ }
-+#endif
-+
-+ BUG_ON(!entity);
-+
-+ return entity;
-+}
-+
-+/**
-+ * bfq_lookup_next_entity - return the first eligible entity in @sd.
-+ * @sd: the sched_data.
-+ * @expiration: true if we are on the expiration path of the in-service queue
-+ *
-+ * This function is invoked when there has been a change in the trees
-+ * for sd, and we need to know what is the new next entity to serve
-+ * after this change.
-+ */
-+static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
-+ bool expiration)
-+{
-+ struct bfq_service_tree *st = sd->service_tree;
-+ struct bfq_service_tree *idle_class_st = st + (BFQ_IOPRIO_CLASSES - 1);
-+ struct bfq_entity *entity = NULL;
-+ struct bfq_queue *bfqq;
-+ int class_idx = 0;
-+
-+ BUG_ON(!sd);
-+ BUG_ON(!st);
-+ /*
-+ * Choose from idle class, if needed to guarantee a minimum
-+ * bandwidth to this class (and if there is some active entity
-+ * in idle class). This should also mitigate
-+ * priority-inversion problems in case a low priority task is
-+ * holding file system resources.
-+ */
-+ if (time_is_before_jiffies(sd->bfq_class_idle_last_service +
-+ BFQ_CL_IDLE_TIMEOUT)) {
-+ if (!RB_EMPTY_ROOT(&idle_class_st->active))
-+ class_idx = BFQ_IOPRIO_CLASSES - 1;
-+ /* About to be served if backlogged, or not yet backlogged */
-+ sd->bfq_class_idle_last_service = jiffies;
-+ }
-+
-+ /*
-+ * Find the next entity to serve for the highest-priority
-+ * class, unless the idle class needs to be served.
-+ */
-+ for (; class_idx < BFQ_IOPRIO_CLASSES; class_idx++) {
-+ /*
-+ * If expiration is true, then bfq_lookup_next_entity
-+ * is being invoked as a part of the expiration path
-+ * of the in-service queue. In this case, even if
-+ * sd->in_service_entity is not NULL,
-+ * sd->in_service_entiy at this point is actually not
-+ * in service any more, and, if needed, has already
-+ * been properly queued or requeued into the right
-+ * tree. The reason why sd->in_service_entity is still
-+ * not NULL here, even if expiration is true, is that
-+ * sd->in_service_entiy is reset as a last step in the
-+ * expiration path. So, if expiration is true, tell
-+ * __bfq_lookup_next_entity that there is no
-+ * sd->in_service_entity.
-+ */
-+ entity = __bfq_lookup_next_entity(st + class_idx,
-+ sd->in_service_entity &&
-+ !expiration);
-+
-+ if (entity)
-+ break;
-+ }
-+
-+ BUG_ON(!entity &&
-+ (!RB_EMPTY_ROOT(&st->active) || !RB_EMPTY_ROOT(&(st+1)->active) ||
-+ !RB_EMPTY_ROOT(&(st+2)->active)));
-+
-+ if (!entity)
-+ return NULL;
-+
-+ /* Log some information */
-+ bfqq = bfq_entity_to_bfqq(entity);
-+ if (bfqq)
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "chosen from st %p %d",
-+ st + class_idx, class_idx);
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ else {
-+ struct bfq_group *bfqg =
-+ container_of(entity, struct bfq_group, entity);
-+
-+ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
-+ "chosen from st %p %d",
-+ st + class_idx, class_idx);
-+ }
-+#endif
-+
-+ return entity;
-+}
-+
-+static bool next_queue_may_preempt(struct bfq_data *bfqd)
-+{
-+ struct bfq_sched_data *sd = &bfqd->root_group->sched_data;
-+
-+ return sd->next_in_service != sd->in_service_entity;
-+}
-+
-+/*
-+ * Get next queue for service.
-+ */
-+static struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
-+{
-+ struct bfq_entity *entity = NULL;
-+ struct bfq_sched_data *sd;
-+ struct bfq_queue *bfqq;
-+
-+ BUG_ON(bfqd->in_service_queue);
-+
-+ if (bfq_tot_busy_queues(bfqd) == 0)
-+ return NULL;
-+
-+ /*
-+ * Traverse the path from the root to the leaf entity to
-+ * serve. Set in service all the entities visited along the
-+ * way.
-+ */
-+ sd = &bfqd->root_group->sched_data;
-+ for (; sd ; sd = entity->my_sched_data) {
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ if (entity) {
-+ struct bfq_group *bfqg =
-+ container_of(entity, struct bfq_group, entity);
-+
-+ bfq_log_bfqg(bfqd, bfqg,
-+ "lookup in this group");
-+ if (!sd->next_in_service)
-+ pr_crit("lookup in this group");
-+ } else {
-+ bfq_log_bfqg(bfqd, bfqd->root_group,
-+ "lookup in root group");
-+ if (!sd->next_in_service)
-+ pr_crit("lookup in root group");
-+ }
-+#endif
-+
-+ BUG_ON(!sd->next_in_service);
-+
-+ /*
-+ * WARNING. We are about to set the in-service entity
-+ * to sd->next_in_service, i.e., to the (cached) value
-+ * returned by bfq_lookup_next_entity(sd) the last
-+ * time it was invoked, i.e., the last time when the
-+ * service order in sd changed as a consequence of the
-+ * activation or deactivation of an entity. In this
-+ * respect, if we execute bfq_lookup_next_entity(sd)
-+ * in this very moment, it may, although with low
-+ * probability, yield a different entity than that
-+ * pointed to by sd->next_in_service. This rare event
-+ * happens in case there was no CLASS_IDLE entity to
-+ * serve for sd when bfq_lookup_next_entity(sd) was
-+ * invoked for the last time, while there is now one
-+ * such entity.
-+ *
-+ * If the above event happens, then the scheduling of
-+ * such entity in CLASS_IDLE is postponed until the
-+ * service of the sd->next_in_service entity
-+ * finishes. In fact, when the latter is expired,
-+ * bfq_lookup_next_entity(sd) gets called again,
-+ * exactly to update sd->next_in_service.
-+ */
-+
-+ /* Make next_in_service entity become in_service_entity */
-+ entity = sd->next_in_service;
-+ sd->in_service_entity = entity;
-+
-+ /*
-+ * If entity is no longer a candidate for next
-+ * service, then it must be extracted from its active
-+ * tree, so as to make sure that it won't be
-+ * considered when computing next_in_service. See the
-+ * comments on the function
-+ * bfq_no_longer_next_in_service() for details.
-+ */
-+ if (bfq_no_longer_next_in_service(entity))
-+ bfq_active_extract(bfq_entity_service_tree(entity),
-+ entity);
-+
-+ /*
-+ * Even if entity is not to be extracted according to
-+ * the above check, a descendant entity may get
-+ * extracted in one of the next iterations of this
-+ * loop. Such an event could cause a change in
-+ * next_in_service for the level of the descendant
-+ * entity, and thus possibly back to this level.
-+ *
-+ * However, we cannot perform the resulting needed
-+ * update of next_in_service for this level before the
-+ * end of the whole loop, because, to know which is
-+ * the correct next-to-serve candidate entity for each
-+ * level, we need first to find the leaf entity to set
-+ * in service. In fact, only after we know which is
-+ * the next-to-serve leaf entity, we can discover
-+ * whether the parent entity of the leaf entity
-+ * becomes the next-to-serve, and so on.
-+ */
-+
-+ /* Log some information */
-+ bfqq = bfq_entity_to_bfqq(entity);
-+ if (bfqq)
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "this queue, finish %llu",
-+ (((entity->finish>>10)*1000)>>10)>>2);
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ else {
-+ struct bfq_group *bfqg =
-+ container_of(entity, struct bfq_group, entity);
-+
-+ bfq_log_bfqg(bfqd, bfqg,
-+ "this entity, finish %llu",
-+ (((entity->finish>>10)*1000)>>10)>>2);
-+ }
-+#endif
-+
-+ }
-+
-+ BUG_ON(!entity);
-+ bfqq = bfq_entity_to_bfqq(entity);
-+ BUG_ON(!bfqq);
-+
-+ /*
-+ * We can finally update all next-to-serve entities along the
-+ * path from the leaf entity just set in service to the root.
-+ */
-+ for_each_entity(entity) {
-+ struct bfq_sched_data *sd = entity->sched_data;
-+
-+ if (!bfq_update_next_in_service(sd, NULL, false))
-+ break;
-+ }
-+
-+ return bfqq;
-+}
-+
-+static void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
-+{
-+ struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue;
-+ struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity;
-+ struct bfq_entity *entity = in_serv_entity;
-+
-+#ifndef BFQ_MQ
-+ if (bfqd->in_service_bic) {
-+ put_io_context(bfqd->in_service_bic->icq.ioc);
-+ bfqd->in_service_bic = NULL;
-+ }
-+#endif
-+
-+ bfq_clear_bfqq_wait_request(in_serv_bfqq);
-+ hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
-+ bfqd->in_service_queue = NULL;
-+
-+ /*
-+ * When this function is called, all in-service entities have
-+ * been properly deactivated or requeued, so we can safely
-+ * execute the final step: reset in_service_entity along the
-+ * path from entity to the root.
-+ */
-+ for_each_entity(entity)
-+ entity->sched_data->in_service_entity = NULL;
-+
-+ /*
-+ * in_serv_entity is no longer in service, so, if it is in no
-+ * service tree either, then release the service reference to
-+ * the queue it represents (taken with bfq_get_entity).
-+ */
-+ if (!in_serv_entity->on_st)
-+ bfq_put_queue(in_serv_bfqq);
-+}
-+
-+static void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
-+ bool ins_into_idle_tree, bool expiration)
-+{
-+ struct bfq_entity *entity = &bfqq->entity;
-+
-+ bfq_deactivate_entity(entity, ins_into_idle_tree, expiration);
-+}
-+
-+static void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
-+{
-+ struct bfq_entity *entity = &bfqq->entity;
-+ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
-+
-+ BUG_ON(bfqq == bfqd->in_service_queue);
-+ BUG_ON(entity->tree != &st->active && entity->tree != &st->idle &&
-+ entity->on_st);
-+
-+ bfq_activate_requeue_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq),
-+ false, false);
-+ bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
-+}
-+
-+static void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
-+ bool expiration)
-+{
-+ struct bfq_entity *entity = &bfqq->entity;
-+
-+ bfq_activate_requeue_entity(entity, false,
-+ bfqq == bfqd->in_service_queue, expiration);
-+}
-+
-+static void bfqg_stats_update_dequeue(struct bfq_group *bfqg);
-+
-+/*
-+ * Called when the bfqq no longer has requests pending, remove it from
-+ * the service tree. As a special case, it can be invoked during an
-+ * expiration.
-+ */
-+static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
-+ bool expiration)
-+{
-+ BUG_ON(!bfq_bfqq_busy(bfqq));
-+ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
-+
-+ bfq_log_bfqq(bfqd, bfqq, "del from busy");
-+
-+ bfq_clear_bfqq_busy(bfqq);
-+
-+ BUG_ON(bfq_tot_busy_queues(bfqd) == 0);
-+ bfqd->busy_queues[bfqq->ioprio_class - 1]--;
-+
-+ if (bfqq->wr_coeff > 1) {
-+ bfqd->wr_busy_queues--;
-+ BUG_ON(bfqd->wr_busy_queues < 0);
-+ }
-+
-+ bfqg_stats_update_dequeue(bfqq_group(bfqq));
-+
-+ BUG_ON(bfqq->entity.budget < 0);
-+
-+ bfq_deactivate_bfqq(bfqd, bfqq, true, expiration);
-+ if (!bfqq->dispatched)
-+ bfq_weights_tree_remove(bfqd, bfqq);
-+}
-+
-+/*
-+ * Called when an inactive queue receives a new request.
-+ */
-+static void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
-+{
-+ BUG_ON(bfq_bfqq_busy(bfqq));
-+ BUG_ON(bfqq == bfqd->in_service_queue);
-+
-+ bfq_log_bfqq(bfqd, bfqq, "add to busy");
-+
-+ bfq_activate_bfqq(bfqd, bfqq);
-+
-+ bfq_mark_bfqq_busy(bfqq);
-+ bfqd->busy_queues[bfqq->ioprio_class - 1]++;
-+
-+ if (!bfqq->dispatched)
-+ if (bfqq->wr_coeff == 1)
-+ bfq_weights_tree_add(bfqd, bfqq,
-+ &bfqd->queue_weights_tree);
-+
-+ if (bfqq->wr_coeff > 1) {
-+ bfqd->wr_busy_queues++;
-+ BUG_ON(bfqd->wr_busy_queues > bfq_tot_busy_queues(bfqd));
-+ }
-+
-+}
-diff --git a/block/bfq-sq-iosched.c b/block/bfq-sq-iosched.c
-new file mode 100644
-index 000000000000..6da94eef0cf1
---- /dev/null
-+++ b/block/bfq-sq-iosched.c
-@@ -0,0 +1,5957 @@
-+/*
-+ * Budget Fair Queueing (BFQ) I/O scheduler.
-+ *
-+ * Based on ideas and code from CFQ:
-+ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
-+ *
-+ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
-+ * Paolo Valente <paolo.valente@unimore.it>
-+ *
-+ * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
-+ *
-+ * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
-+ *
-+ * Licensed under the GPL-2 as detailed in the accompanying COPYING.BFQ
-+ * file.
-+ *
-+ * BFQ is a proportional-share I/O scheduler, with some extra
-+ * low-latency capabilities. BFQ also supports full hierarchical
-+ * scheduling through cgroups. Next paragraphs provide an introduction
-+ * on BFQ inner workings. Details on BFQ benefits and usage can be
-+ * found in Documentation/block/bfq-iosched.txt.
-+ *
-+ * BFQ is a proportional-share storage-I/O scheduling algorithm based
-+ * on the slice-by-slice service scheme of CFQ. But BFQ assigns
-+ * budgets, measured in number of sectors, to processes instead of
-+ * time slices. The device is not granted to the in-service process
-+ * for a given time slice, but until it has exhausted its assigned
-+ * budget. This change from the time to the service domain enables BFQ
-+ * to distribute the device throughput among processes as desired,
-+ * without any distortion due to throughput fluctuations, or to device
-+ * internal queueing. BFQ uses an ad hoc internal scheduler, called
-+ * B-WF2Q+, to schedule processes according to their budgets. More
-+ * precisely, BFQ schedules queues associated with processes. Thanks to
-+ * the accurate policy of B-WF2Q+, BFQ can afford to assign high
-+ * budgets to I/O-bound processes issuing sequential requests (to
-+ * boost the throughput), and yet guarantee a low latency to
-+ * interactive and soft real-time applications.
-+ *
-+ * In particular, BFQ schedules I/O so as to achieve the latter goal--
-+ * low latency for interactive and soft real-time applications--if the
-+ * low_latency parameter is set (default configuration). To this
-+ * purpose, BFQ constantly tries to detect whether the I/O requests in
-+ * a bfq_queue come from an interactive or a soft real-time
-+ * application. For brevity, in these cases, the queue is said to be
-+ * interactive or soft real-time. In both cases, BFQ privileges the
-+ * service of the queue, over that of non-interactive and
-+ * non-soft-real-time queues. This privileging is performed, mainly,
-+ * by raising the weight of the queue. So, for brevity, we call just
-+ * weight-raising periods the time periods during which a queue is
-+ * privileged, because deemed interactive or soft real-time.
-+ *
-+ * The detection of soft real-time queues/applications is described in
-+ * detail in the comments on the function
-+ * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
-+ * interactive queue works as follows: a queue is deemed interactive
-+ * if it is constantly non empty only for a limited time interval,
-+ * after which it does become empty. The queue may be deemed
-+ * interactive again (for a limited time), if it restarts being
-+ * constantly non empty, provided that this happens only after the
-+ * queue has remained empty for a given minimum idle time.
-+ *
-+ * By default, BFQ computes automatically the above maximum time
-+ * interval, i.e., the time interval after which a constantly
-+ * non-empty queue stops being deemed interactive. Since a queue is
-+ * weight-raised while it is deemed interactive, this maximum time
-+ * interval happens to coincide with the (maximum) duration of the
-+ * weight-raising for interactive queues.
-+ *
-+ * NOTE: if the main or only goal, with a given device, is to achieve
-+ * the maximum-possible throughput at all times, then do switch off
-+ * all low-latency heuristics for that device, by setting low_latency
-+ * to 0.
-+ *
-+ * BFQ is described in [1], where also a reference to the initial,
-+ * more theoretical paper on BFQ can be found. The interested reader
-+ * can find in the latter paper full details on the main algorithm, as
-+ * well as formulas of the guarantees and formal proofs of all the
-+ * properties. With respect to the version of BFQ presented in these
-+ * papers, this implementation adds a few more heuristics, such as the
-+ * one that guarantees a low latency to soft real-time applications,
-+ * and a hierarchical extension based on H-WF2Q+.
-+ *
-+ * B-WF2Q+ is based on WF2Q+, that is described in [2], together with
-+ * H-WF2Q+, while the augmented tree used to implement B-WF2Q+ with O(log N)
-+ * complexity derives from the one introduced with EEVDF in [3].
-+ *
-+ * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
-+ * Scheduler", Proceedings of the First Workshop on Mobile System
-+ * Technologies (MST-2015), May 2015.
-+ * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
-+ *
-+ * http://algogroup.unimo.it/people/paolo/disk_sched/bf1-v1-suite-results.pdf
-+ *
-+ * [2] Jon C.R. Bennett and H. Zhang, ``Hierarchical Packet Fair Queueing
-+ * Algorithms,'' IEEE/ACM Transactions on Networking, 5(5):675-689,
-+ * Oct 1997.
-+ *
-+ * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
-+ *
-+ * [3] I. Stoica and H. Abdel-Wahab, ``Earliest Eligible Virtual Deadline
-+ * First: A Flexible and Accurate Mechanism for Proportional Share
-+ * Resource Allocation,'' technical report.
-+ *
-+ * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
-+ */
-+#include <linux/module.h>
-+#include <linux/slab.h>
-+#include <linux/blkdev.h>
-+#include <linux/cgroup.h>
-+#include <linux/elevator.h>
-+#include <linux/jiffies.h>
-+#include <linux/rbtree.h>
-+#include <linux/ioprio.h>
-+#include "blk.h"
-+#include "bfq.h"
-+#include "blk-wbt.h"
-+
-+/* Expiration time of sync (0) and async (1) requests, in ns. */
-+static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
-+
-+/* Maximum backwards seek, in KiB. */
-+static const int bfq_back_max = (16 * 1024);
-+
-+/* Penalty of a backwards seek, in number of sectors. */
-+static const int bfq_back_penalty = 2;
-+
-+/* Idling period duration, in ns. */
-+static u32 bfq_slice_idle = (NSEC_PER_SEC / 125);
-+
-+/* Minimum number of assigned budgets for which stats are safe to compute. */
-+static const int bfq_stats_min_budgets = 194;
-+
-+/* Default maximum budget values, in sectors and number of requests. */
-+static const int bfq_default_max_budget = (16 * 1024);
-+
-+/*
-+ * When a sync request is dispatched, the queue that contains that
-+ * request, and all the ancestor entities of that queue, are charged
-+ * with the number of sectors of the request. In constrast, if the
-+ * request is async, then the queue and its ancestor entities are
-+ * charged with the number of sectors of the request, multiplied by
-+ * the factor below. This throttles the bandwidth for async I/O,
-+ * w.r.t. to sync I/O, and it is done to counter the tendency of async
-+ * writes to steal I/O throughput to reads.
-+ *
-+ * The current value of this parameter is the result of a tuning with
-+ * several hardware and software configurations. We tried to find the
-+ * lowest value for which writes do not cause noticeable problems to
-+ * reads. In fact, the lower this parameter, the stabler I/O control,
-+ * in the following respect. The lower this parameter is, the less
-+ * the bandwidth enjoyed by a group decreases
-+ * - when the group does writes, w.r.t. to when it does reads;
-+ * - when other groups do reads, w.r.t. to when they do writes.
-+ */
-+static const int bfq_async_charge_factor = 3;
-+
-+/* Default timeout values, in jiffies, approximating CFQ defaults. */
-+static const int bfq_timeout = (HZ / 8);
-+
-+/*
-+ * Time limit for merging (see comments in bfq_setup_cooperator). Set
-+ * to the slowest value that, in our tests, proved to be effective in
-+ * removing false positives, while not causing true positives to miss
-+ * queue merging.
-+ *
-+ * As can be deduced from the low time limit below, queue merging, if
-+ * successful, happens at the very beggining of the I/O of the involved
-+ * cooperating processes, as a consequence of the arrival of the very
-+ * first requests from each cooperator. After that, there is very
-+ * little chance to find cooperators.
-+ */
-+static const unsigned long bfq_merge_time_limit = HZ/10;
-+
-+#define MAX_LENGTH_REASON_NAME 25
-+
-+static const char reason_name[][MAX_LENGTH_REASON_NAME] = {"TOO_IDLE",
-+"BUDGET_TIMEOUT", "BUDGET_EXHAUSTED", "NO_MORE_REQUESTS",
-+"PREEMPTED"};
-+
-+static struct kmem_cache *bfq_pool;
-+
-+/* Below this threshold (in ns), we consider thinktime immediate. */
-+#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
-+
-+/* hw_tag detection: parallel requests threshold and min samples needed. */
-+#define BFQ_HW_QUEUE_THRESHOLD 3
-+#define BFQ_HW_QUEUE_SAMPLES 32
-+
-+#define BFQQ_SEEK_THR (sector_t)(8 * 100)
-+#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
-+#define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
-+ (get_sdist(last_pos, rq) > \
-+ BFQQ_SEEK_THR && \
-+ (!blk_queue_nonrot(bfqd->queue) || \
-+ blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
-+#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
-+#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 19)
-+
-+/* Min number of samples required to perform peak-rate update */
-+#define BFQ_RATE_MIN_SAMPLES 32
-+/* Min observation time interval required to perform a peak-rate update (ns) */
-+#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
-+/* Target observation time interval for a peak-rate update (ns) */
-+#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
-+
-+/*
-+ * Shift used for peak-rate fixed precision calculations.
-+ * With
-+ * - the current shift: 16 positions
-+ * - the current type used to store rate: u32
-+ * - the current unit of measure for rate: [sectors/usec], or, more precisely,
-+ * [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
-+ * the range of rates that can be stored is
-+ * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
-+ * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
-+ * [15, 65G] sectors/sec
-+ * Which, assuming a sector size of 512B, corresponds to a range of
-+ * [7.5K, 33T] B/sec
-+ */
-+#define BFQ_RATE_SHIFT 16
-+
-+/*
-+ * When configured for computing the duration of the weight-raising
-+ * for interactive queues automatically (see the comments at the
-+ * beginning of this file), BFQ does it using the following formula:
-+ * duration = (ref_rate / r) * ref_wr_duration,
-+ * where r is the peak rate of the device, and ref_rate and
-+ * ref_wr_duration are two reference parameters. In particular,
-+ * ref_rate is the peak rate of the reference storage device (see
-+ * below), and ref_wr_duration is about the maximum time needed, with
-+ * BFQ and while reading two files in parallel, to load typical large
-+ * applications on the reference device (see the comments on
-+ * max_service_from_wr below, for more details on how ref_wr_duration
-+ * is obtained). In practice, the slower/faster the device at hand
-+ * is, the more/less it takes to load applications with respect to the
-+ * reference device. Accordingly, the longer/shorter BFQ grants
-+ * weight raising to interactive applications.
-+ *
-+ * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
-+ * depending on whether the device is rotational or non-rotational.
-+ *
-+ * In the following definitions, ref_rate[0] and ref_wr_duration[0]
-+ * are the reference values for a rotational device, whereas
-+ * ref_rate[1] and ref_wr_duration[1] are the reference values for a
-+ * non-rotational device. The reference rates are not the actual peak
-+ * rates of the devices used as a reference, but slightly lower
-+ * values. The reason for using slightly lower values is that the
-+ * peak-rate estimator tends to yield slightly lower values than the
-+ * actual peak rate (it can yield the actual peak rate only if there
-+ * is only one process doing I/O, and the process does sequential
-+ * I/O).
-+ *
-+ * The reference peak rates are measured in sectors/usec, left-shifted
-+ * by BFQ_RATE_SHIFT.
-+ */
-+static int ref_rate[2] = {14000, 33000};
-+/*
-+ * To improve readability, a conversion function is used to initialize
-+ * the following array, which entails that the array can be
-+ * initialized only in a function.
-+ */
-+static int ref_wr_duration[2];
-+
-+/*
-+ * BFQ uses the above-detailed, time-based weight-raising mechanism to
-+ * privilege interactive tasks. This mechanism is vulnerable to the
-+ * following false positives: I/O-bound applications that will go on
-+ * doing I/O for much longer than the duration of weight
-+ * raising. These applications have basically no benefit from being
-+ * weight-raised at the beginning of their I/O. On the opposite end,
-+ * while being weight-raised, these applications
-+ * a) unjustly steal throughput to applications that may actually need
-+ * low latency;
-+ * b) make BFQ uselessly perform device idling; device idling results
-+ * in loss of device throughput with most flash-based storage, and may
-+ * increase latencies when used purposelessly.
-+ *
-+ * BFQ tries to reduce these problems, by adopting the following
-+ * countermeasure. To introduce this countermeasure, we need first to
-+ * finish explaining how the duration of weight-raising for
-+ * interactive tasks is computed.
-+ *
-+ * For a bfq_queue deemed as interactive, the duration of weight
-+ * raising is dynamically adjusted, as a function of the estimated
-+ * peak rate of the device, so as to be equal to the time needed to
-+ * execute the 'largest' interactive task we benchmarked so far. By
-+ * largest task, we mean the task for which each involved process has
-+ * to do more I/O than for any of the other tasks we benchmarked. This
-+ * reference interactive task is the start-up of LibreOffice Writer,
-+ * and in this task each process/bfq_queue needs to have at most ~110K
-+ * sectors transfered.
-+ *
-+ * This last piece of information enables BFQ to reduce the actual
-+ * duration of weight-raising for at least one class of I/O-bound
-+ * applications: those doing sequential or quasi-sequential I/O. An
-+ * example is file copy. In fact, once started, the main I/O-bound
-+ * processes of these applications usually consume the above 110K
-+ * sectors in much less time than the processes of an application that
-+ * is starting, because these I/O-bound processes will greedily devote
-+ * almost all their CPU cycles only to their target,
-+ * throughput-friendly I/O operations. This is even more true if BFQ
-+ * happens to be underestimating the device peak rate, and thus
-+ * overestimating the duration of weight raising. But, according to
-+ * our measurements, once transferred 110K sectors, these processes
-+ * have no right to be weight-raised any longer.
-+ *
-+ * Basing on the last consideration, BFQ ends weight-raising for a
-+ * bfq_queue if the latter happens to have received an amount of
-+ * service at least equal to the following constant. The constant is
-+ * set to slightly more than 110K, to have a minimum safety margin.
-+ *
-+ * This early ending of weight-raising reduces the amount of time
-+ * during which interactive false positives cause the two problems
-+ * described at the beginning of these comments.
-+ */
-+static const unsigned long max_service_from_wr = 120000;
-+
-+#define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \
-+ { RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 })
-+
-+#define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
-+#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
-+
-+static void bfq_schedule_dispatch(struct bfq_data *bfqd);
-+
-+#include "bfq-ioc.c"
-+#include "bfq-sched.c"
-+#include "bfq-cgroup-included.c"
-+
-+#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
-+#define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
-+
-+#define bfq_sample_valid(samples) ((samples) > 80)
-+
-+/*
-+ * Scheduler run of queue, if there are requests pending and no one in the
-+ * driver that will restart queueing.
-+ */
-+static void bfq_schedule_dispatch(struct bfq_data *bfqd)
-+{
-+ if (bfqd->queued != 0) {
-+ bfq_log(bfqd, "");
-+ kblockd_schedule_work(&bfqd->unplug_work);
-+ }
-+}
-+
-+/*
-+ * Lifted from AS - choose which of rq1 and rq2 that is best served now.
-+ * We choose the request that is closesr to the head right now. Distance
-+ * behind the head is penalized and only allowed to a certain extent.
-+ */
-+static struct request *bfq_choose_req(struct bfq_data *bfqd,
-+ struct request *rq1,
-+ struct request *rq2,
-+ sector_t last)
-+{
-+ sector_t s1, s2, d1 = 0, d2 = 0;
-+ unsigned long back_max;
-+#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
-+#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
-+ unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
-+
-+ if (!rq1 || rq1 == rq2)
-+ return rq2;
-+ if (!rq2)
-+ return rq1;
-+
-+ if (rq_is_sync(rq1) && !rq_is_sync(rq2))
-+ return rq1;
-+ else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
-+ return rq2;
-+ if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
-+ return rq1;
-+ else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
-+ return rq2;
-+
-+ s1 = blk_rq_pos(rq1);
-+ s2 = blk_rq_pos(rq2);
-+
-+ /*
-+ * By definition, 1KiB is 2 sectors.
-+ */
-+ back_max = bfqd->bfq_back_max * 2;
-+
-+ /*
-+ * Strict one way elevator _except_ in the case where we allow
-+ * short backward seeks which are biased as twice the cost of a
-+ * similar forward seek.
-+ */
-+ if (s1 >= last)
-+ d1 = s1 - last;
-+ else if (s1 + back_max >= last)
-+ d1 = (last - s1) * bfqd->bfq_back_penalty;
-+ else
-+ wrap |= BFQ_RQ1_WRAP;
-+
-+ if (s2 >= last)
-+ d2 = s2 - last;
-+ else if (s2 + back_max >= last)
-+ d2 = (last - s2) * bfqd->bfq_back_penalty;
-+ else
-+ wrap |= BFQ_RQ2_WRAP;
-+
-+ /* Found required data */
-+
-+ /*
-+ * By doing switch() on the bit mask "wrap" we avoid having to
-+ * check two variables for all permutations: --> faster!
-+ */
-+ switch (wrap) {
-+ case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
-+ if (d1 < d2)
-+ return rq1;
-+ else if (d2 < d1)
-+ return rq2;
-+
-+ if (s1 >= s2)
-+ return rq1;
-+ else
-+ return rq2;
-+
-+ case BFQ_RQ2_WRAP:
-+ return rq1;
-+ case BFQ_RQ1_WRAP:
-+ return rq2;
-+ case (BFQ_RQ1_WRAP|BFQ_RQ2_WRAP): /* both rqs wrapped */
-+ default:
-+ /*
-+ * Since both rqs are wrapped,
-+ * start with the one that's further behind head
-+ * (--> only *one* back seek required),
-+ * since back seek takes more time than forward.
-+ */
-+ if (s1 <= s2)
-+ return rq1;
-+ else
-+ return rq2;
-+ }
-+}
-+
-+static struct bfq_queue *
-+bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
-+ sector_t sector, struct rb_node **ret_parent,
-+ struct rb_node ***rb_link)
-+{
-+ struct rb_node **p, *parent;
-+ struct bfq_queue *bfqq = NULL;
-+
-+ parent = NULL;
-+ p = &root->rb_node;
-+ while (*p) {
-+ struct rb_node **n;
-+
-+ parent = *p;
-+ bfqq = rb_entry(parent, struct bfq_queue, pos_node);
-+
-+ /*
-+ * Sort strictly based on sector. Smallest to the left,
-+ * largest to the right.
-+ */
-+ if (sector > blk_rq_pos(bfqq->next_rq))
-+ n = &(*p)->rb_right;
-+ else if (sector < blk_rq_pos(bfqq->next_rq))
-+ n = &(*p)->rb_left;
-+ else
-+ break;
-+ p = n;
-+ bfqq = NULL;
-+ }
-+
-+ *ret_parent = parent;
-+ if (rb_link)
-+ *rb_link = p;
-+
-+ bfq_log(bfqd, "%llu: returning %d",
-+ (unsigned long long) sector,
-+ bfqq ? bfqq->pid : 0);
-+
-+ return bfqq;
-+}
-+
-+static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
-+{
-+ return bfqq->service_from_backlogged > 0 &&
-+ time_is_before_jiffies(bfqq->first_IO_time +
-+ bfq_merge_time_limit);
-+}
-+
-+static void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
-+{
-+ struct rb_node **p, *parent;
-+ struct bfq_queue *__bfqq;
-+
-+ if (bfqq->pos_root) {
-+ rb_erase(&bfqq->pos_node, bfqq->pos_root);
-+ bfqq->pos_root = NULL;
-+ }
-+
-+ /*
-+ * bfqq cannot be merged any longer (see comments in
-+ * bfq_setup_cooperator): no point in adding bfqq into the
-+ * position tree.
-+ */
-+ if (bfq_too_late_for_merging(bfqq))
-+ return;
-+
-+ if (bfq_class_idle(bfqq))
-+ return;
-+ if (!bfqq->next_rq)
-+ return;
-+
-+ bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
-+ __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
-+ blk_rq_pos(bfqq->next_rq), &parent, &p);
-+ if (!__bfqq) {
-+ rb_link_node(&bfqq->pos_node, parent, p);
-+ rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
-+ } else
-+ bfqq->pos_root = NULL;
-+}
-+
-+/*
-+ * The following function returns true if every queue must receive the
-+ * same share of the throughput (this condition is used when deciding
-+ * whether idling may be disabled, see the comments in the function
-+ * bfq_better_to_idle()).
-+ *
-+ * Such a scenario occurs when:
-+ * 1) all active queues have the same weight,
-+ * 2) all active queues belong to the same I/O-priority class,
-+ * 3) all active groups at the same level in the groups tree have the same
-+ * weight,
-+ * 4) all active groups at the same level in the groups tree have the same
-+ * number of children.
-+ *
-+ * Unfortunately, keeping the necessary state for evaluating exactly
-+ * the last two symmetry sub-conditions above would be quite complex
-+ * and time consuming. Therefore this function evaluates, instead,
-+ * only the following stronger three sub-conditions, for which it is
-+ * much easier to maintain the needed state:
-+ * 1) all active queues have the same weight,
-+ * 2) all active queues belong to the same I/O-priority class,
-+ * 3) there are no active groups.
-+ * In particular, the last condition is always true if hierarchical
-+ * support or the cgroups interface are not enabled, thus no state
-+ * needs to be maintained in this case.
-+ */
-+static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
-+{
-+ /*
-+ * For queue weights to differ, queue_weights_tree must contain
-+ * at least two nodes.
-+ */
-+ bool varied_queue_weights = !RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
-+ (bfqd->queue_weights_tree.rb_node->rb_left ||
-+ bfqd->queue_weights_tree.rb_node->rb_right);
-+
-+ bool multiple_classes_busy =
-+ (bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
-+ (bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
-+ (bfqd->busy_queues[1] && bfqd->busy_queues[2]);
-+
-+ bfq_log(bfqd, "varied_queue_weights %d mul_classes %d",
-+ varied_queue_weights, multiple_classes_busy);
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ bfq_log(bfqd, "num_groups_with_pending_reqs %u",
-+ bfqd->num_groups_with_pending_reqs);
-+#endif
-+
-+ return !(varied_queue_weights || multiple_classes_busy
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ || bfqd->num_groups_with_pending_reqs > 0
-+#endif
-+ );
-+}
-+
-+/*
-+ * If the weight-counter tree passed as input contains no counter for
-+ * the weight of the input queue, then add that counter; otherwise just
-+ * increment the existing counter.
-+ *
-+ * Note that weight-counter trees contain few nodes in mostly symmetric
-+ * scenarios. For example, if all queues have the same weight, then the
-+ * weight-counter tree for the queues may contain at most one node.
-+ * This holds even if low_latency is on, because weight-raised queues
-+ * are not inserted in the tree.
-+ * In most scenarios, the rate at which nodes are created/destroyed
-+ * should be low too.
-+ */
-+static void bfq_weights_tree_add(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ struct rb_root *root)
-+{
-+ struct bfq_entity *entity = &bfqq->entity;
-+ struct rb_node **new = &(root->rb_node), *parent = NULL;
-+
-+ /*
-+ * Do not insert if the queue is already associated with a
-+ * counter, which happens if:
-+ * 1) a request arrival has caused the queue to become both
-+ * non-weight-raised, and hence change its weight, and
-+ * backlogged; in this respect, each of the two events
-+ * causes an invocation of this function,
-+ * 2) this is the invocation of this function caused by the
-+ * second event. This second invocation is actually useless,
-+ * and we handle this fact by exiting immediately. More
-+ * efficient or clearer solutions might possibly be adopted.
-+ */
-+ if (bfqq->weight_counter)
-+ return;
-+
-+ while (*new) {
-+ struct bfq_weight_counter *__counter = container_of(*new,
-+ struct bfq_weight_counter,
-+ weights_node);
-+ parent = *new;
-+
-+ if (entity->weight == __counter->weight) {
-+ bfqq->weight_counter = __counter;
-+ goto inc_counter;
-+ }
-+ if (entity->weight < __counter->weight)
-+ new = &((*new)->rb_left);
-+ else
-+ new = &((*new)->rb_right);
-+ }
-+
-+ bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
-+ GFP_ATOMIC);
-+
-+ /*
-+ * In the unlucky event of an allocation failure, we just
-+ * exit. This will cause the weight of queue to not be
-+ * considered in bfq_symmetric_scenario, which, in its turn,
-+ * causes the scenario to be deemed wrongly symmetric in case
-+ * bfqq's weight would have been the only weight making the
-+ * scenario asymmetric. On the bright side, no unbalance will
-+ * however occur when bfqq becomes inactive again (the
-+ * invocation of this function is triggered by an activation
-+ * of queue). In fact, bfq_weights_tree_remove does nothing
-+ * if !bfqq->weight_counter.
-+ */
-+ if (unlikely(!bfqq->weight_counter))
-+ return;
-+
-+ bfqq->weight_counter->weight = entity->weight;
-+ rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
-+ rb_insert_color(&bfqq->weight_counter->weights_node, root);
-+
-+inc_counter:
-+ bfqq->weight_counter->num_active++;
-+ bfqq->ref++;
-+
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "refs %d weight %d symmetric %d",
-+ bfqq->ref,
-+ entity->weight,
-+ bfq_symmetric_scenario(bfqd));
-+}
-+
-+/*
-+ * Decrement the weight counter associated with the queue, and, if the
-+ * counter reaches 0, remove the counter from the tree.
-+ * See the comments to the function bfq_weights_tree_add() for considerations
-+ * about overhead.
-+ */
-+static void __bfq_weights_tree_remove(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ struct rb_root *root)
-+{
-+ struct bfq_entity *entity = &bfqq->entity;
-+
-+ if (!bfqq->weight_counter)
-+ return;
-+
-+ BUG_ON(RB_EMPTY_ROOT(root));
-+ BUG_ON(bfqq->weight_counter->weight != entity->weight);
-+
-+ BUG_ON(!bfqq->weight_counter->num_active);
-+ bfqq->weight_counter->num_active--;
-+
-+ if (bfqq->weight_counter->num_active > 0)
-+ goto reset_entity_pointer;
-+
-+ rb_erase(&bfqq->weight_counter->weights_node, root);
-+ kfree(bfqq->weight_counter);
-+
-+reset_entity_pointer:
-+ bfqq->weight_counter = NULL;
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "refs %d weight %d symmetric %d",
-+ bfqq->ref,
-+ entity->weight,
-+ bfq_symmetric_scenario(bfqd));
-+ bfq_put_queue(bfqq);
-+}
-+
-+/*
-+ * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
-+ * of active groups for each queue's inactive parent entity.
-+ */
-+static void bfq_weights_tree_remove(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ struct bfq_entity *entity = bfqq->entity.parent;
-+
-+ for_each_entity(entity) {
-+ struct bfq_sched_data *sd = entity->my_sched_data;
-+
-+ BUG_ON(entity->sched_data == NULL); /*
-+ * It would mean
-+ * that this is
-+ * the root group.
-+ */
-+
-+ if (sd->next_in_service || sd->in_service_entity) {
-+ BUG_ON(!entity->in_groups_with_pending_reqs);
-+ /*
-+ * entity is still active, because either
-+ * next_in_service or in_service_entity is not
-+ * NULL (see the comments on the definition of
-+ * next_in_service for details on why
-+ * in_service_entity must be checked too).
-+ *
-+ * As a consequence, its parent entities are
-+ * active as well, and thus this loop must
-+ * stop here.
-+ */
-+ break;
-+ }
-+
-+ BUG_ON(!bfqd->num_groups_with_pending_reqs &&
-+ entity->in_groups_with_pending_reqs);
-+ /*
-+ * The decrement of num_groups_with_pending_reqs is
-+ * not performed immediately upon the deactivation of
-+ * entity, but it is delayed to when it also happens
-+ * that the first leaf descendant bfqq of entity gets
-+ * all its pending requests completed. The following
-+ * instructions perform this delayed decrement, if
-+ * needed. See the comments on
-+ * num_groups_with_pending_reqs for details.
-+ */
-+ if (entity->in_groups_with_pending_reqs) {
-+ entity->in_groups_with_pending_reqs = false;
-+ bfqd->num_groups_with_pending_reqs--;
-+ }
-+ bfq_log_bfqq(bfqd, bfqq, "num_groups_with_pending_reqs %u",
-+ bfqd->num_groups_with_pending_reqs);
-+ }
-+
-+ /*
-+ * Next function is invoked last, because it causes bfqq to be
-+ * freed if the following holds: bfqq is not in service and
-+ * has no dispatched request. DO NOT use bfqq after the next
-+ * function invocation.
-+ */
-+ __bfq_weights_tree_remove(bfqd, bfqq,
-+ &bfqd->queue_weights_tree);
-+}
-+
-+/*
-+ * Return expired entry, or NULL to just start from scratch in rbtree.
-+ */
-+static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
-+ struct request *last)
-+{
-+ struct request *rq;
-+
-+ if (bfq_bfqq_fifo_expire(bfqq))
-+ return NULL;
-+
-+ bfq_mark_bfqq_fifo_expire(bfqq);
-+
-+ rq = rq_entry_fifo(bfqq->fifo.next);
-+
-+ if (rq == last || ktime_get_ns() < rq->fifo_time)
-+ return NULL;
-+
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "returned %p", rq);
-+ BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
-+ return rq;
-+}
-+
-+static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ struct request *last)
-+{
-+ struct rb_node *rbnext = rb_next(&last->rb_node);
-+ struct rb_node *rbprev = rb_prev(&last->rb_node);
-+ struct request *next, *prev = NULL;
-+
-+ BUG_ON(list_empty(&bfqq->fifo));
-+
-+ /* Follow expired path, else get first next available. */
-+ next = bfq_check_fifo(bfqq, last);
-+ if (next) {
-+ BUG_ON(next == last);
-+ return next;
-+ }
-+
-+ BUG_ON(RB_EMPTY_NODE(&last->rb_node));
-+
-+ if (rbprev)
-+ prev = rb_entry_rq(rbprev);
-+
-+ if (rbnext)
-+ next = rb_entry_rq(rbnext);
-+ else {
-+ rbnext = rb_first(&bfqq->sort_list);
-+ if (rbnext && rbnext != &last->rb_node)
-+ next = rb_entry_rq(rbnext);
-+ }
-+
-+ return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
-+}
-+
-+/* see the definition of bfq_async_charge_factor for details */
-+static unsigned long bfq_serv_to_charge(struct request *rq,
-+ struct bfq_queue *bfqq)
-+{
-+ if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
-+ !bfq_symmetric_scenario(bfqq->bfqd))
-+ return blk_rq_sectors(rq);
-+
-+ return blk_rq_sectors(rq) * bfq_async_charge_factor;
-+}
-+
-+/**
-+ * bfq_updated_next_req - update the queue after a new next_rq selection.
-+ * @bfqd: the device data the queue belongs to.
-+ * @bfqq: the queue to update.
-+ *
-+ * If the first request of a queue changes we make sure that the queue
-+ * has enough budget to serve at least its first request (if the
-+ * request has grown). We do this because if the queue has not enough
-+ * budget for its first request, it has to go through two dispatch
-+ * rounds to actually get it dispatched.
-+ */
-+static void bfq_updated_next_req(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ struct bfq_entity *entity = &bfqq->entity;
-+ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
-+ struct request *next_rq = bfqq->next_rq;
-+ unsigned long new_budget;
-+
-+ if (!next_rq)
-+ return;
-+
-+ if (bfqq == bfqd->in_service_queue)
-+ /*
-+ * In order not to break guarantees, budgets cannot be
-+ * changed after an entity has been selected.
-+ */
-+ return;
-+
-+ BUG_ON(entity->tree != &st->active);
-+ BUG_ON(entity == entity->sched_data->in_service_entity);
-+
-+ new_budget = max_t(unsigned long,
-+ max_t(unsigned long, bfqq->max_budget,
-+ bfq_serv_to_charge(next_rq, bfqq)),
-+ entity->service);
-+ if (entity->budget != new_budget) {
-+ entity->budget = new_budget;
-+ bfq_log_bfqq(bfqd, bfqq, "new budget %lu",
-+ new_budget);
-+ bfq_requeue_bfqq(bfqd, bfqq, false);
-+ }
-+}
-+
-+static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
-+{
-+ u64 dur;
-+
-+ if (bfqd->bfq_wr_max_time > 0)
-+ return bfqd->bfq_wr_max_time;
-+
-+ dur = bfqd->rate_dur_prod;
-+ do_div(dur, bfqd->peak_rate);
-+
-+ /*
-+ * Limit duration between 3 and 25 seconds. The upper limit
-+ * has been conservatively set after the following worst case:
-+ * on a QEMU/KVM virtual machine
-+ * - running in a slow PC
-+ * - with a virtual disk stacked on a slow low-end 5400rpm HDD
-+ * - serving a heavy I/O workload, such as the sequential reading
-+ * of several files
-+ * mplayer took 23 seconds to start, if constantly weight-raised.
-+ *
-+ * As for higher values than that accomodating the above bad
-+ * scenario, tests show that higher values would often yield
-+ * the opposite of the desired result, i.e., would worsen
-+ * responsiveness by allowing non-interactive applications to
-+ * preserve weight raising for too long.
-+ *
-+ * On the other end, lower values than 3 seconds make it
-+ * difficult for most interactive tasks to complete their jobs
-+ * before weight-raising finishes.
-+ */
-+ return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
-+}
-+
-+/* switch back from soft real-time to interactive weight raising */
-+static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
-+ struct bfq_data *bfqd)
-+{
-+ bfqq->wr_coeff = bfqd->bfq_wr_coeff;
-+ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
-+ bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
-+}
-+
-+static void
-+bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
-+ struct bfq_io_cq *bic, bool bfq_already_existing)
-+{
-+ unsigned int old_wr_coeff;
-+ bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
-+
-+ if (bic->saved_has_short_ttime)
-+ bfq_mark_bfqq_has_short_ttime(bfqq);
-+ else
-+ bfq_clear_bfqq_has_short_ttime(bfqq);
-+
-+ if (bic->saved_IO_bound)
-+ bfq_mark_bfqq_IO_bound(bfqq);
-+ else
-+ bfq_clear_bfqq_IO_bound(bfqq);
-+
-+ if (unlikely(busy))
-+ old_wr_coeff = bfqq->wr_coeff;
-+
-+ bfqq->wr_coeff = bic->saved_wr_coeff;
-+ bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
-+ BUG_ON(time_is_after_jiffies(bfqq->wr_start_at_switch_to_srt));
-+ bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
-+ bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
-+ BUG_ON(time_is_after_jiffies(bfqq->last_wr_start_finish));
-+
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "bic %p wr_coeff %d start_finish %lu max_time %lu",
-+ bic, bfqq->wr_coeff, bfqq->last_wr_start_finish,
-+ bfqq->wr_cur_max_time);
-+
-+ if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
-+ time_is_before_jiffies(bfqq->last_wr_start_finish +
-+ bfqq->wr_cur_max_time))) {
-+ if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
-+ !bfq_bfqq_in_large_burst(bfqq) &&
-+ time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
-+ bfq_wr_duration(bfqd))) {
-+ switch_back_to_interactive_wr(bfqq, bfqd);
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "switching back to interactive");
-+ } else {
-+ bfqq->wr_coeff = 1;
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "switching off wr (%lu + %lu < %lu)",
-+ bfqq->last_wr_start_finish, bfqq->wr_cur_max_time,
-+ jiffies);
-+ }
-+ }
-+
-+ /* make sure weight will be updated, however we got here */
-+ bfqq->entity.prio_changed = 1;
-+
-+ if (likely(!busy))
-+ return;
-+
-+ if (old_wr_coeff == 1 && bfqq->wr_coeff > 1) {
-+ bfqd->wr_busy_queues++;
-+ BUG_ON(bfqd->wr_busy_queues > bfq_tot_busy_queues(bfqd));
-+ } else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1) {
-+ bfqd->wr_busy_queues--;
-+ BUG_ON(bfqd->wr_busy_queues < 0);
-+ }
-+}
-+
-+static int bfqq_process_refs(struct bfq_queue *bfqq)
-+{
-+ int process_refs, io_refs;
-+
-+ lockdep_assert_held(bfqq->bfqd->queue->queue_lock);
-+
-+ io_refs = bfqq->allocated[READ] + bfqq->allocated[WRITE];
-+ process_refs = bfqq->ref - io_refs - bfqq->entity.on_st -
-+ (bfqq->weight_counter != NULL);
-+ BUG_ON(process_refs < 0);
-+ return process_refs;
-+}
-+
-+/* Empty burst list and add just bfqq (see comments to bfq_handle_burst) */
-+static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
-+{
-+ struct bfq_queue *item;
-+ struct hlist_node *n;
-+
-+ hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
-+ hlist_del_init(&item->burst_list_node);
-+ hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
-+ bfqd->burst_size = 1;
-+ bfqd->burst_parent_entity = bfqq->entity.parent;
-+}
-+
-+/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
-+static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
-+{
-+ /* Increment burst size to take into account also bfqq */
-+ bfqd->burst_size++;
-+
-+ bfq_log_bfqq(bfqd, bfqq, "%d", bfqd->burst_size);
-+
-+ BUG_ON(bfqd->burst_size > bfqd->bfq_large_burst_thresh);
-+
-+ if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
-+ struct bfq_queue *pos, *bfqq_item;
-+ struct hlist_node *n;
-+
-+ /*
-+ * Enough queues have been activated shortly after each
-+ * other to consider this burst as large.
-+ */
-+ bfqd->large_burst = true;
-+ bfq_log_bfqq(bfqd, bfqq, "large burst started");
-+
-+ /*
-+ * We can now mark all queues in the burst list as
-+ * belonging to a large burst.
-+ */
-+ hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
-+ burst_list_node) {
-+ bfq_mark_bfqq_in_large_burst(bfqq_item);
-+ bfq_log_bfqq(bfqd, bfqq_item, "marked in large burst");
-+ }
-+ bfq_mark_bfqq_in_large_burst(bfqq);
-+ bfq_log_bfqq(bfqd, bfqq, "marked in large burst");
-+
-+ /*
-+ * From now on, and until the current burst finishes, any
-+ * new queue being activated shortly after the last queue
-+ * was inserted in the burst can be immediately marked as
-+ * belonging to a large burst. So the burst list is not
-+ * needed any more. Remove it.
-+ */
-+ hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
-+ burst_list_node)
-+ hlist_del_init(&pos->burst_list_node);
-+ } else /*
-+ * Burst not yet large: add bfqq to the burst list. Do
-+ * not increment the ref counter for bfqq, because bfqq
-+ * is removed from the burst list before freeing bfqq
-+ * in put_queue.
-+ */
-+ hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
-+}
-+
-+/*
-+ * If many queues belonging to the same group happen to be created
-+ * shortly after each other, then the processes associated with these
-+ * queues have typically a common goal. In particular, bursts of queue
-+ * creations are usually caused by services or applications that spawn
-+ * many parallel threads/processes. Examples are systemd during boot,
-+ * or git grep. To help these processes get their job done as soon as
-+ * possible, it is usually better to not grant either weight-raising
-+ * or device idling to their queues.
-+ *
-+ * In this comment we describe, firstly, the reasons why this fact
-+ * holds, and, secondly, the next function, which implements the main
-+ * steps needed to properly mark these queues so that they can then be
-+ * treated in a different way.
-+ *
-+ * The above services or applications benefit mostly from a high
-+ * throughput: the quicker the requests of the activated queues are
-+ * cumulatively served, the sooner the target job of these queues gets
-+ * completed. As a consequence, weight-raising any of these queues,
-+ * which also implies idling the device for it, is almost always
-+ * counterproductive. In most cases it just lowers throughput.
-+ *
-+ * On the other hand, a burst of queue creations may be caused also by
-+ * the start of an application that does not consist of a lot of
-+ * parallel I/O-bound threads. In fact, with a complex application,
-+ * several short processes may need to be executed to start-up the
-+ * application. In this respect, to start an application as quickly as
-+ * possible, the best thing to do is in any case to privilege the I/O
-+ * related to the application with respect to all other
-+ * I/O. Therefore, the best strategy to start as quickly as possible
-+ * an application that causes a burst of queue creations is to
-+ * weight-raise all the queues created during the burst. This is the
-+ * exact opposite of the best strategy for the other type of bursts.
-+ *
-+ * In the end, to take the best action for each of the two cases, the
-+ * two types of bursts need to be distinguished. Fortunately, this
-+ * seems relatively easy, by looking at the sizes of the bursts. In
-+ * particular, we found a threshold such that only bursts with a
-+ * larger size than that threshold are apparently caused by
-+ * services or commands such as systemd or git grep. For brevity,
-+ * hereafter we call just 'large' these bursts. BFQ *does not*
-+ * weight-raise queues whose creation occurs in a large burst. In
-+ * addition, for each of these queues BFQ performs or does not perform
-+ * idling depending on which choice boosts the throughput more. The
-+ * exact choice depends on the device and request pattern at
-+ * hand.
-+ *
-+ * Unfortunately, false positives may occur while an interactive task
-+ * is starting (e.g., an application is being started). The
-+ * consequence is that the queues associated with the task do not
-+ * enjoy weight raising as expected. Fortunately these false positives
-+ * are very rare. They typically occur if some service happens to
-+ * start doing I/O exactly when the interactive task starts.
-+ *
-+ * Turning back to the next function, it implements all the steps
-+ * needed to detect the occurrence of a large burst and to properly
-+ * mark all the queues belonging to it (so that they can then be
-+ * treated in a different way). This goal is achieved by maintaining a
-+ * "burst list" that holds, temporarily, the queues that belong to the
-+ * burst in progress. The list is then used to mark these queues as
-+ * belonging to a large burst if the burst does become large. The main
-+ * steps are the following.
-+ *
-+ * . when the very first queue is created, the queue is inserted into the
-+ * list (as it could be the first queue in a possible burst)
-+ *
-+ * . if the current burst has not yet become large, and a queue Q that does
-+ * not yet belong to the burst is activated shortly after the last time
-+ * at which a new queue entered the burst list, then the function appends
-+ * Q to the burst list
-+ *
-+ * . if, as a consequence of the previous step, the burst size reaches
-+ * the large-burst threshold, then
-+ *
-+ * . all the queues in the burst list are marked as belonging to a
-+ * large burst
-+ *
-+ * . the burst list is deleted; in fact, the burst list already served
-+ * its purpose (keeping temporarily track of the queues in a burst,
-+ * so as to be able to mark them as belonging to a large burst in the
-+ * previous sub-step), and now is not needed any more
-+ *
-+ * . the device enters a large-burst mode
-+ *
-+ * . if a queue Q that does not belong to the burst is created while
-+ * the device is in large-burst mode and shortly after the last time
-+ * at which a queue either entered the burst list or was marked as
-+ * belonging to the current large burst, then Q is immediately marked
-+ * as belonging to a large burst.
-+ *
-+ * . if a queue Q that does not belong to the burst is created a while
-+ * later, i.e., not shortly after, than the last time at which a queue
-+ * either entered the burst list or was marked as belonging to the
-+ * current large burst, then the current burst is deemed as finished and:
-+ *
-+ * . the large-burst mode is reset if set
-+ *
-+ * . the burst list is emptied
-+ *
-+ * . Q is inserted in the burst list, as Q may be the first queue
-+ * in a possible new burst (then the burst list contains just Q
-+ * after this step).
-+ */
-+static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
-+{
-+ /*
-+ * If bfqq is already in the burst list or is part of a large
-+ * burst, or finally has just been split, then there is
-+ * nothing else to do.
-+ */
-+ if (!hlist_unhashed(&bfqq->burst_list_node) ||
-+ bfq_bfqq_in_large_burst(bfqq) ||
-+ time_is_after_eq_jiffies(bfqq->split_time +
-+ msecs_to_jiffies(10)))
-+ return;
-+
-+ /*
-+ * If bfqq's creation happens late enough, or bfqq belongs to
-+ * a different group than the burst group, then the current
-+ * burst is finished, and related data structures must be
-+ * reset.
-+ *
-+ * In this respect, consider the special case where bfqq is
-+ * the very first queue created after BFQ is selected for this
-+ * device. In this case, last_ins_in_burst and
-+ * burst_parent_entity are not yet significant when we get
-+ * here. But it is easy to verify that, whether or not the
-+ * following condition is true, bfqq will end up being
-+ * inserted into the burst list. In particular the list will
-+ * happen to contain only bfqq. And this is exactly what has
-+ * to happen, as bfqq may be the first queue of the first
-+ * burst.
-+ */
-+ if (time_is_before_jiffies(bfqd->last_ins_in_burst +
-+ bfqd->bfq_burst_interval) ||
-+ bfqq->entity.parent != bfqd->burst_parent_entity) {
-+ bfqd->large_burst = false;
-+ bfq_reset_burst_list(bfqd, bfqq);
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "late activation or different group");
-+ goto end;
-+ }
-+
-+ /*
-+ * If we get here, then bfqq is being activated shortly after the
-+ * last queue. So, if the current burst is also large, we can mark
-+ * bfqq as belonging to this large burst immediately.
-+ */
-+ if (bfqd->large_burst) {
-+ bfq_log_bfqq(bfqd, bfqq, "marked in burst");
-+ bfq_mark_bfqq_in_large_burst(bfqq);
-+ goto end;
-+ }
-+
-+ /*
-+ * If we get here, then a large-burst state has not yet been
-+ * reached, but bfqq is being activated shortly after the last
-+ * queue. Then we add bfqq to the burst.
-+ */
-+ bfq_add_to_burst(bfqd, bfqq);
-+end:
-+ /*
-+ * At this point, bfqq either has been added to the current
-+ * burst or has caused the current burst to terminate and a
-+ * possible new burst to start. In particular, in the second
-+ * case, bfqq has become the first queue in the possible new
-+ * burst. In both cases last_ins_in_burst needs to be moved
-+ * forward.
-+ */
-+ bfqd->last_ins_in_burst = jiffies;
-+
-+}
-+
-+static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
-+{
-+ struct bfq_entity *entity = &bfqq->entity;
-+
-+ if (entity->budget < entity->service) {
-+ pr_crit("budget %d service %d\n",
-+ entity->budget, entity->service);
-+ BUG();
-+ }
-+ return entity->budget - entity->service;
-+}
-+
-+/*
-+ * If enough samples have been computed, return the current max budget
-+ * stored in bfqd, which is dynamically updated according to the
-+ * estimated disk peak rate; otherwise return the default max budget
-+ */
-+static int bfq_max_budget(struct bfq_data *bfqd)
-+{
-+ if (bfqd->budgets_assigned < bfq_stats_min_budgets)
-+ return bfq_default_max_budget;
-+ else
-+ return bfqd->bfq_max_budget;
-+}
-+
-+/*
-+ * Return min budget, which is a fraction of the current or default
-+ * max budget (trying with 1/32)
-+ */
-+static int bfq_min_budget(struct bfq_data *bfqd)
-+{
-+ if (bfqd->budgets_assigned < bfq_stats_min_budgets)
-+ return bfq_default_max_budget / 32;
-+ else
-+ return bfqd->bfq_max_budget / 32;
-+}
-+
-+static void bfq_bfqq_expire(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ bool compensate,
-+ enum bfqq_expiration reason);
-+
-+/*
-+ * The next function, invoked after the input queue bfqq switches from
-+ * idle to busy, updates the budget of bfqq. The function also tells
-+ * whether the in-service queue should be expired, by returning
-+ * true. The purpose of expiring the in-service queue is to give bfqq
-+ * the chance to possibly preempt the in-service queue, and the reason
-+ * for preempting the in-service queue is to achieve one of the two
-+ * goals below.
-+ *
-+ * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
-+ * expired because it has remained idle. In particular, bfqq may have
-+ * expired for one of the following two reasons:
-+ *
-+ * - BFQ_BFQQ_NO_MORE_REQUEST bfqq did not enjoy any device idling and
-+ * did not make it to issue a new request before its last request
-+ * was served;
-+ *
-+ * - BFQ_BFQQ_TOO_IDLE bfqq did enjoy device idling, but did not issue
-+ * a new request before the expiration of the idling-time.
-+ *
-+ * Even if bfqq has expired for one of the above reasons, the process
-+ * associated with the queue may be however issuing requests greedily,
-+ * and thus be sensitive to the bandwidth it receives (bfqq may have
-+ * remained idle for other reasons: CPU high load, bfqq not enjoying
-+ * idling, I/O throttling somewhere in the path from the process to
-+ * the I/O scheduler, ...). But if, after every expiration for one of
-+ * the above two reasons, bfqq has to wait for the service of at least
-+ * one full budget of another queue before being served again, then
-+ * bfqq is likely to get a much lower bandwidth or resource time than
-+ * its reserved ones. To address this issue, two countermeasures need
-+ * to be taken.
-+ *
-+ * First, the budget and the timestamps of bfqq need to be updated in
-+ * a special way on bfqq reactivation: they need to be updated as if
-+ * bfqq did not remain idle and did not expire. In fact, if they are
-+ * computed as if bfqq expired and remained idle until reactivation,
-+ * then the process associated with bfqq is treated as if, instead of
-+ * being greedy, it stopped issuing requests when bfqq remained idle,
-+ * and restarts issuing requests only on this reactivation. In other
-+ * words, the scheduler does not help the process recover the "service
-+ * hole" between bfqq expiration and reactivation. As a consequence,
-+ * the process receives a lower bandwidth than its reserved one. In
-+ * contrast, to recover this hole, the budget must be updated as if
-+ * bfqq was not expired at all before this reactivation, i.e., it must
-+ * be set to the value of the remaining budget when bfqq was
-+ * expired. Along the same line, timestamps need to be assigned the
-+ * value they had the last time bfqq was selected for service, i.e.,
-+ * before last expiration. Thus timestamps need to be back-shifted
-+ * with respect to their normal computation (see [1] for more details
-+ * on this tricky aspect).
-+ *
-+ * Secondly, to allow the process to recover the hole, the in-service
-+ * queue must be expired too, to give bfqq the chance to preempt it
-+ * immediately. In fact, if bfqq has to wait for a full budget of the
-+ * in-service queue to be completed, then it may become impossible to
-+ * let the process recover the hole, even if the back-shifted
-+ * timestamps of bfqq are lower than those of the in-service queue. If
-+ * this happens for most or all of the holes, then the process may not
-+ * receive its reserved bandwidth. In this respect, it is worth noting
-+ * that, being the service of outstanding requests unpreemptible, a
-+ * little fraction of the holes may however be unrecoverable, thereby
-+ * causing a little loss of bandwidth.
-+ *
-+ * The last important point is detecting whether bfqq does need this
-+ * bandwidth recovery. In this respect, the next function deems the
-+ * process associated with bfqq greedy, and thus allows it to recover
-+ * the hole, if: 1) the process is waiting for the arrival of a new
-+ * request (which implies that bfqq expired for one of the above two
-+ * reasons), and 2) such a request has arrived soon. The first
-+ * condition is controlled through the flag non_blocking_wait_rq,
-+ * while the second through the flag arrived_in_time. If both
-+ * conditions hold, then the function computes the budget in the
-+ * above-described special way, and signals that the in-service queue
-+ * should be expired. Timestamp back-shifting is done later in
-+ * __bfq_activate_entity.
-+ *
-+ * 2. Reduce latency. Even if timestamps are not backshifted to let
-+ * the process associated with bfqq recover a service hole, bfqq may
-+ * however happen to have, after being (re)activated, a lower finish
-+ * timestamp than the in-service queue. That is, the next budget of
-+ * bfqq may have to be completed before the one of the in-service
-+ * queue. If this is the case, then preempting the in-service queue
-+ * allows this goal to be achieved, apart from the unpreemptible,
-+ * outstanding requests mentioned above.
-+ *
-+ * Unfortunately, regardless of which of the above two goals one wants
-+ * to achieve, service trees need first to be updated to know whether
-+ * the in-service queue must be preempted. To have service trees
-+ * correctly updated, the in-service queue must be expired and
-+ * rescheduled, and bfqq must be scheduled too. This is one of the
-+ * most costly operations (in future versions, the scheduling
-+ * mechanism may be re-designed in such a way to make it possible to
-+ * know whether preemption is needed without needing to update service
-+ * trees). In addition, queue preemptions almost always cause random
-+ * I/O, and thus loss of throughput. Because of these facts, the next
-+ * function adopts the following simple scheme to avoid both costly
-+ * operations and too frequent preemptions: it requests the expiration
-+ * of the in-service queue (unconditionally) only for queues that need
-+ * to recover a hole, or that either are weight-raised or deserve to
-+ * be weight-raised.
-+ */
-+static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ bool arrived_in_time,
-+ bool wr_or_deserves_wr)
-+{
-+ struct bfq_entity *entity = &bfqq->entity;
-+
-+ /*
-+ * In the next compound condition, we check also whether there
-+ * is some budget left, because otherwise there is no point in
-+ * trying to go on serving bfqq with this same budget: bfqq
-+ * would be expired immediately after being selected for
-+ * service. This would only cause useless overhead.
-+ */
-+ if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
-+ bfq_bfqq_budget_left(bfqq) > 0) {
-+ /*
-+ * We do not clear the flag non_blocking_wait_rq here, as
-+ * the latter is used in bfq_activate_bfqq to signal
-+ * that timestamps need to be back-shifted (and is
-+ * cleared right after).
-+ */
-+
-+ /*
-+ * In next assignment we rely on that either
-+ * entity->service or entity->budget are not updated
-+ * on expiration if bfqq is empty (see
-+ * __bfq_bfqq_recalc_budget). Thus both quantities
-+ * remain unchanged after such an expiration, and the
-+ * following statement therefore assigns to
-+ * entity->budget the remaining budget on such an
-+ * expiration.
-+ */
-+ BUG_ON(bfqq->max_budget < 0);
-+ entity->budget = min_t(unsigned long,
-+ bfq_bfqq_budget_left(bfqq),
-+ bfqq->max_budget);
-+
-+ BUG_ON(entity->budget < 0);
-+
-+ /*
-+ * At this point, we have used entity->service to get
-+ * the budget left (needed for updating
-+ * entity->budget). Thus we finally can, and have to,
-+ * reset entity->service. The latter must be reset
-+ * because bfqq would otherwise be charged again for
-+ * the service it has received during its previous
-+ * service slot(s).
-+ */
-+ entity->service = 0;
-+
-+ return true;
-+ }
-+
-+ /*
-+ * We can finally complete expiration, by setting service to 0.
-+ */
-+ entity->service = 0;
-+ BUG_ON(bfqq->max_budget < 0);
-+ entity->budget = max_t(unsigned long, bfqq->max_budget,
-+ bfq_serv_to_charge(bfqq->next_rq, bfqq));
-+ BUG_ON(entity->budget < 0);
-+
-+ bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
-+ return wr_or_deserves_wr;
-+}
-+
-+/*
-+ * Return the farthest past time instant according to jiffies
-+ * macros.
-+ */
-+static unsigned long bfq_smallest_from_now(void)
-+{
-+ return jiffies - MAX_JIFFY_OFFSET;
-+}
-+
-+static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ unsigned int old_wr_coeff,
-+ bool wr_or_deserves_wr,
-+ bool interactive,
-+ bool in_burst,
-+ bool soft_rt)
-+{
-+ if (old_wr_coeff == 1 && wr_or_deserves_wr) {
-+ /* start a weight-raising period */
-+ if (interactive) {
-+ bfqq->service_from_wr = 0;
-+ bfqq->wr_coeff = bfqd->bfq_wr_coeff;
-+ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
-+ } else {
-+ /*
-+ * No interactive weight raising in progress
-+ * here: assign minus infinity to
-+ * wr_start_at_switch_to_srt, to make sure
-+ * that, at the end of the soft-real-time
-+ * weight raising periods that is starting
-+ * now, no interactive weight-raising period
-+ * may be wrongly considered as still in
-+ * progress (and thus actually started by
-+ * mistake).
-+ */
-+ bfqq->wr_start_at_switch_to_srt =
-+ bfq_smallest_from_now();
-+ bfqq->wr_coeff = bfqd->bfq_wr_coeff *
-+ BFQ_SOFTRT_WEIGHT_FACTOR;
-+ bfqq->wr_cur_max_time =
-+ bfqd->bfq_wr_rt_max_time;
-+ }
-+ /*
-+ * If needed, further reduce budget to make sure it is
-+ * close to bfqq's backlog, so as to reduce the
-+ * scheduling-error component due to a too large
-+ * budget. Do not care about throughput consequences,
-+ * but only about latency. Finally, do not assign a
-+ * too small budget either, to avoid increasing
-+ * latency by causing too frequent expirations.
-+ */
-+ bfqq->entity.budget = min_t(unsigned long,
-+ bfqq->entity.budget,
-+ 2 * bfq_min_budget(bfqd));
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "wrais starting at %lu, rais_max_time %u",
-+ jiffies,
-+ jiffies_to_msecs(bfqq->wr_cur_max_time));
-+ } else if (old_wr_coeff > 1) {
-+ if (interactive) { /* update wr coeff and duration */
-+ bfqq->wr_coeff = bfqd->bfq_wr_coeff;
-+ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
-+ } else if (in_burst) {
-+ bfqq->wr_coeff = 1;
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "wrais ending at %lu, rais_max_time %u",
-+ jiffies,
-+ jiffies_to_msecs(bfqq->
-+ wr_cur_max_time));
-+ } else if (soft_rt) {
-+ /*
-+ * The application is now or still meeting the
-+ * requirements for being deemed soft rt. We
-+ * can then correctly and safely (re)charge
-+ * the weight-raising duration for the
-+ * application with the weight-raising
-+ * duration for soft rt applications.
-+ *
-+ * In particular, doing this recharge now, i.e.,
-+ * before the weight-raising period for the
-+ * application finishes, reduces the probability
-+ * of the following negative scenario:
-+ * 1) the weight of a soft rt application is
-+ * raised at startup (as for any newly
-+ * created application),
-+ * 2) since the application is not interactive,
-+ * at a certain time weight-raising is
-+ * stopped for the application,
-+ * 3) at that time the application happens to
-+ * still have pending requests, and hence
-+ * is destined to not have a chance to be
-+ * deemed soft rt before these requests are
-+ * completed (see the comments to the
-+ * function bfq_bfqq_softrt_next_start()
-+ * for details on soft rt detection),
-+ * 4) these pending requests experience a high
-+ * latency because the application is not
-+ * weight-raised while they are pending.
-+ */
-+ if (bfqq->wr_cur_max_time !=
-+ bfqd->bfq_wr_rt_max_time) {
-+ bfqq->wr_start_at_switch_to_srt =
-+ bfqq->last_wr_start_finish;
-+ BUG_ON(time_is_after_jiffies(bfqq->last_wr_start_finish));
-+
-+ bfqq->wr_cur_max_time =
-+ bfqd->bfq_wr_rt_max_time;
-+ bfqq->wr_coeff = bfqd->bfq_wr_coeff *
-+ BFQ_SOFTRT_WEIGHT_FACTOR;
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "switching to soft_rt wr");
-+ } else
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "moving forward soft_rt wr duration");
-+ bfqq->last_wr_start_finish = jiffies;
-+ }
-+ }
-+}
-+
-+static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ return bfqq->dispatched == 0 &&
-+ time_is_before_jiffies(
-+ bfqq->budget_timeout +
-+ bfqd->bfq_wr_min_idle_time);
-+}
-+
-+static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ int old_wr_coeff,
-+ struct request *rq,
-+ bool *interactive)
-+{
-+ bool soft_rt, in_burst, wr_or_deserves_wr,
-+ bfqq_wants_to_preempt,
-+ idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
-+ /*
-+ * See the comments on
-+ * bfq_bfqq_update_budg_for_activation for
-+ * details on the usage of the next variable.
-+ */
-+ arrived_in_time = ktime_get_ns() <=
-+ RQ_BIC(rq)->ttime.last_end_request +
-+ bfqd->bfq_slice_idle * 3;
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "bfq_add_request non-busy: "
-+ "jiffies %lu, in_time %d, idle_long %d busyw %d "
-+ "wr_coeff %u",
-+ jiffies, arrived_in_time,
-+ idle_for_long_time,
-+ bfq_bfqq_non_blocking_wait_rq(bfqq),
-+ old_wr_coeff);
-+
-+ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
-+
-+ BUG_ON(bfqq == bfqd->in_service_queue);
-+ bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq, rq->cmd_flags);
-+
-+ /*
-+ * bfqq deserves to be weight-raised if:
-+ * - it is sync,
-+ * - it does not belong to a large burst,
-+ * - it has been idle for enough time or is soft real-time,
-+ * - is linked to a bfq_io_cq (it is not shared in any sense)
-+ */
-+ in_burst = bfq_bfqq_in_large_burst(bfqq);
-+ soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
-+ !in_burst &&
-+ time_is_before_jiffies(bfqq->soft_rt_next_start) &&
-+ bfqq->dispatched == 0;
-+ *interactive =
-+ !in_burst &&
-+ idle_for_long_time;
-+ wr_or_deserves_wr = bfqd->low_latency &&
-+ (bfqq->wr_coeff > 1 ||
-+ (bfq_bfqq_sync(bfqq) &&
-+ bfqq->bic && (*interactive || soft_rt)));
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "bfq_add_request: "
-+ "in_burst %d, "
-+ "soft_rt %d (next %lu), inter %d, bic %p",
-+ bfq_bfqq_in_large_burst(bfqq), soft_rt,
-+ bfqq->soft_rt_next_start,
-+ *interactive,
-+ bfqq->bic);
-+
-+ /*
-+ * Using the last flag, update budget and check whether bfqq
-+ * may want to preempt the in-service queue.
-+ */
-+ bfqq_wants_to_preempt =
-+ bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
-+ arrived_in_time,
-+ wr_or_deserves_wr);
-+
-+ /*
-+ * If bfqq happened to be activated in a burst, but has been
-+ * idle for much more than an interactive queue, then we
-+ * assume that, in the overall I/O initiated in the burst, the
-+ * I/O associated with bfqq is finished. So bfqq does not need
-+ * to be treated as a queue belonging to a burst
-+ * anymore. Accordingly, we reset bfqq's in_large_burst flag
-+ * if set, and remove bfqq from the burst list if it's
-+ * there. We do not decrement burst_size, because the fact
-+ * that bfqq does not need to belong to the burst list any
-+ * more does not invalidate the fact that bfqq was created in
-+ * a burst.
-+ */
-+ if (likely(!bfq_bfqq_just_created(bfqq)) &&
-+ idle_for_long_time &&
-+ time_is_before_jiffies(
-+ bfqq->budget_timeout +
-+ msecs_to_jiffies(10000))) {
-+ hlist_del_init(&bfqq->burst_list_node);
-+ bfq_clear_bfqq_in_large_burst(bfqq);
-+ }
-+
-+ bfq_clear_bfqq_just_created(bfqq);
-+
-+ if (!bfq_bfqq_IO_bound(bfqq)) {
-+ if (arrived_in_time) {
-+ bfqq->requests_within_timer++;
-+ if (bfqq->requests_within_timer >=
-+ bfqd->bfq_requests_within_timer)
-+ bfq_mark_bfqq_IO_bound(bfqq);
-+ } else
-+ bfqq->requests_within_timer = 0;
-+ bfq_log_bfqq(bfqd, bfqq, "requests in time %d",
-+ bfqq->requests_within_timer);
-+ }
-+
-+ if (bfqd->low_latency) {
-+ if (unlikely(time_is_after_jiffies(bfqq->split_time)))
-+ /* wraparound */
-+ bfqq->split_time =
-+ jiffies - bfqd->bfq_wr_min_idle_time - 1;
-+
-+ if (time_is_before_jiffies(bfqq->split_time +
-+ bfqd->bfq_wr_min_idle_time)) {
-+ bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
-+ old_wr_coeff,
-+ wr_or_deserves_wr,
-+ *interactive,
-+ in_burst,
-+ soft_rt);
-+
-+ if (old_wr_coeff != bfqq->wr_coeff)
-+ bfqq->entity.prio_changed = 1;
-+ }
-+ }
-+
-+ bfqq->last_idle_bklogged = jiffies;
-+ bfqq->service_from_backlogged = 0;
-+ bfq_clear_bfqq_softrt_update(bfqq);
-+
-+ bfq_add_bfqq_busy(bfqd, bfqq);
-+
-+ /*
-+ * Expire in-service queue only if preemption may be needed
-+ * for guarantees. In this respect, the function
-+ * next_queue_may_preempt just checks a simple, necessary
-+ * condition, and not a sufficient condition based on
-+ * timestamps. In fact, for the latter condition to be
-+ * evaluated, timestamps would need first to be updated, and
-+ * this operation is quite costly (see the comments on the
-+ * function bfq_bfqq_update_budg_for_activation).
-+ */
-+ if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
-+ bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
-+ next_queue_may_preempt(bfqd)) {
-+ struct bfq_queue *in_serv =
-+ bfqd->in_service_queue;
-+ BUG_ON(in_serv == bfqq);
-+
-+ bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
-+ false, BFQ_BFQQ_PREEMPTED);
-+ }
-+}
-+
-+static void bfq_add_request(struct request *rq)
-+{
-+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
-+ struct bfq_data *bfqd = bfqq->bfqd;
-+ struct request *next_rq, *prev;
-+ unsigned int old_wr_coeff = bfqq->wr_coeff;
-+ bool interactive = false;
-+
-+ bfq_log_bfqq(bfqd, bfqq, "size %u %s",
-+ blk_rq_sectors(rq), rq_is_sync(rq) ? "S" : "A");
-+
-+ if (bfqq->wr_coeff > 1) /* queue is being weight-raised */
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
-+ jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
-+ jiffies_to_msecs(bfqq->wr_cur_max_time),
-+ bfqq->wr_coeff,
-+ bfqq->entity.weight, bfqq->entity.orig_weight);
-+
-+ bfqq->queued[rq_is_sync(rq)]++;
-+ bfqd->queued++;
-+
-+ elv_rb_add(&bfqq->sort_list, rq);
-+
-+ /*
-+ * Check if this request is a better next-to-serve candidate.
-+ */
-+ prev = bfqq->next_rq;
-+ next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
-+ BUG_ON(!next_rq);
-+ bfqq->next_rq = next_rq;
-+
-+ /*
-+ * Adjust priority tree position, if next_rq changes.
-+ */
-+ if (prev != bfqq->next_rq)
-+ bfq_pos_tree_add_move(bfqd, bfqq);
-+
-+ if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
-+ bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
-+ rq, &interactive);
-+ else {
-+ if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
-+ time_is_before_jiffies(
-+ bfqq->last_wr_start_finish +
-+ bfqd->bfq_wr_min_inter_arr_async)) {
-+ bfqq->wr_coeff = bfqd->bfq_wr_coeff;
-+ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
-+
-+ bfqd->wr_busy_queues++;
-+ BUG_ON(bfqd->wr_busy_queues > bfq_tot_busy_queues(bfqd));
-+ bfqq->entity.prio_changed = 1;
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "non-idle wrais starting, "
-+ "wr_max_time %u wr_busy %d",
-+ jiffies_to_msecs(bfqq->wr_cur_max_time),
-+ bfqd->wr_busy_queues);
-+ }
-+ if (prev != bfqq->next_rq)
-+ bfq_updated_next_req(bfqd, bfqq);
-+ }
-+
-+ /*
-+ * Assign jiffies to last_wr_start_finish in the following
-+ * cases:
-+ *
-+ * . if bfqq is not going to be weight-raised, because, for
-+ * non weight-raised queues, last_wr_start_finish stores the
-+ * arrival time of the last request; as of now, this piece
-+ * of information is used only for deciding whether to
-+ * weight-raise async queues
-+ *
-+ * . if bfqq is not weight-raised, because, if bfqq is now
-+ * switching to weight-raised, then last_wr_start_finish
-+ * stores the time when weight-raising starts
-+ *
-+ * . if bfqq is interactive, because, regardless of whether
-+ * bfqq is currently weight-raised, the weight-raising
-+ * period must start or restart (this case is considered
-+ * separately because it is not detected by the above
-+ * conditions, if bfqq is already weight-raised)
-+ *
-+ * last_wr_start_finish has to be updated also if bfqq is soft
-+ * real-time, because the weight-raising period is constantly
-+ * restarted on idle-to-busy transitions for these queues, but
-+ * this is already done in bfq_bfqq_handle_idle_busy_switch if
-+ * needed.
-+ */
-+ if (bfqd->low_latency &&
-+ (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
-+ bfqq->last_wr_start_finish = jiffies;
-+}
-+
-+static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
-+ struct bio *bio)
-+{
-+ struct task_struct *tsk = current;
-+ struct bfq_io_cq *bic;
-+ struct bfq_queue *bfqq;
-+
-+ bic = bfq_bic_lookup(bfqd, tsk->io_context);
-+ if (!bic)
-+ return NULL;
-+
-+ bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
-+ if (bfqq)
-+ return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
-+
-+ return NULL;
-+}
-+
-+static sector_t get_sdist(sector_t last_pos, struct request *rq)
-+{
-+ sector_t sdist = 0;
-+
-+ if (last_pos) {
-+ if (last_pos < blk_rq_pos(rq))
-+ sdist = blk_rq_pos(rq) - last_pos;
-+ else
-+ sdist = last_pos - blk_rq_pos(rq);
-+ }
-+
-+ return sdist;
-+}
-+
-+static void bfq_activate_request(struct request_queue *q, struct request *rq)
-+{
-+ struct bfq_data *bfqd = q->elevator->elevator_data;
-+ bfqd->rq_in_driver++;
-+}
-+
-+static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
-+{
-+ struct bfq_data *bfqd = q->elevator->elevator_data;
-+
-+ BUG_ON(bfqd->rq_in_driver == 0);
-+ bfqd->rq_in_driver--;
-+}
-+
-+static void bfq_remove_request(struct request *rq)
-+{
-+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
-+ struct bfq_data *bfqd = bfqq->bfqd;
-+ const int sync = rq_is_sync(rq);
-+
-+ /*
-+ * NOTE:
-+ * (bfqq->entity.service > bfqq->entity.budget) may hold here,
-+ * in case of forced dispatches.
-+ */
-+
-+ if (bfqq->next_rq == rq) {
-+ bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
-+ bfq_updated_next_req(bfqd, bfqq);
-+ }
-+
-+ if (rq->queuelist.prev != &rq->queuelist)
-+ list_del_init(&rq->queuelist);
-+ BUG_ON(bfqq->queued[sync] == 0);
-+ bfqq->queued[sync]--;
-+ bfqd->queued--;
-+ elv_rb_del(&bfqq->sort_list, rq);
-+
-+ if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
-+ bfqq->next_rq = NULL;
-+
-+ BUG_ON(bfqq->entity.budget < 0);
-+
-+ if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
-+ BUG_ON(bfqq->ref < 2); /* referred by rq and on tree */
-+ bfq_del_bfqq_busy(bfqd, bfqq, false);
-+ /*
-+ * bfqq emptied. In normal operation, when
-+ * bfqq is empty, bfqq->entity.service and
-+ * bfqq->entity.budget must contain,
-+ * respectively, the service received and the
-+ * budget used last time bfqq emptied. These
-+ * facts do not hold in this case, as at least
-+ * this last removal occurred while bfqq is
-+ * not in service. To avoid inconsistencies,
-+ * reset both bfqq->entity.service and
-+ * bfqq->entity.budget, if bfqq has still a
-+ * process that may issue I/O requests to it.
-+ */
-+ bfqq->entity.budget = bfqq->entity.service = 0;
-+ }
-+
-+ /*
-+ * Remove queue from request-position tree as it is empty.
-+ */
-+ if (bfqq->pos_root) {
-+ rb_erase(&bfqq->pos_node, bfqq->pos_root);
-+ bfqq->pos_root = NULL;
-+ }
-+ } else {
-+ BUG_ON(!bfqq->next_rq);
-+ bfq_pos_tree_add_move(bfqd, bfqq);
-+ }
-+
-+ if (rq->cmd_flags & REQ_META) {
-+ BUG_ON(bfqq->meta_pending == 0);
-+ bfqq->meta_pending--;
-+ }
-+ bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags);
-+}
-+
-+static enum elv_merge bfq_merge(struct request_queue *q, struct request **req,
-+ struct bio *bio)
-+{
-+ struct bfq_data *bfqd = q->elevator->elevator_data;
-+ struct request *__rq;
-+
-+ __rq = bfq_find_rq_fmerge(bfqd, bio);
-+ if (__rq && elv_bio_merge_ok(__rq, bio)) {
-+ *req = __rq;
-+ return ELEVATOR_FRONT_MERGE;
-+ }
-+
-+ return ELEVATOR_NO_MERGE;
-+}
-+
-+static void bfq_merged_request(struct request_queue *q, struct request *req,
-+ enum elv_merge type)
-+{
-+ if (type == ELEVATOR_FRONT_MERGE &&
-+ rb_prev(&req->rb_node) &&
-+ blk_rq_pos(req) <
-+ blk_rq_pos(container_of(rb_prev(&req->rb_node),
-+ struct request, rb_node))) {
-+ struct bfq_queue *bfqq = RQ_BFQQ(req);
-+ struct bfq_data *bfqd = bfqq->bfqd;
-+ struct request *prev, *next_rq;
-+
-+ /* Reposition request in its sort_list */
-+ elv_rb_del(&bfqq->sort_list, req);
-+ elv_rb_add(&bfqq->sort_list, req);
-+ /* Choose next request to be served for bfqq */
-+ prev = bfqq->next_rq;
-+ next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
-+ bfqd->last_position);
-+ BUG_ON(!next_rq);
-+ bfqq->next_rq = next_rq;
-+ /*
-+ * If next_rq changes, update both the queue's budget to
-+ * fit the new request and the queue's position in its
-+ * rq_pos_tree.
-+ */
-+ if (prev != bfqq->next_rq) {
-+ bfq_updated_next_req(bfqd, bfqq);
-+ bfq_pos_tree_add_move(bfqd, bfqq);
-+ }
-+ }
-+}
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+static void bfq_bio_merged(struct request_queue *q, struct request *req,
-+ struct bio *bio)
-+{
-+ bfqg_stats_update_io_merged(bfqq_group(RQ_BFQQ(req)), bio->bi_opf);
-+}
-+#endif
-+
-+static void bfq_merged_requests(struct request_queue *q, struct request *rq,
-+ struct request *next)
-+{
-+ struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next);
-+
-+ /*
-+ * If next and rq belong to the same bfq_queue and next is older
-+ * than rq, then reposition rq in the fifo (by substituting next
-+ * with rq). Otherwise, if next and rq belong to different
-+ * bfq_queues, never reposition rq: in fact, we would have to
-+ * reposition it with respect to next's position in its own fifo,
-+ * which would most certainly be too expensive with respect to
-+ * the benefits.
-+ */
-+ if (bfqq == next_bfqq &&
-+ !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
-+ next->fifo_time < rq->fifo_time) {
-+ list_del_init(&rq->queuelist);
-+ list_replace_init(&next->queuelist, &rq->queuelist);
-+ rq->fifo_time = next->fifo_time;
-+ }
-+
-+ if (bfqq->next_rq == next)
-+ bfqq->next_rq = rq;
-+
-+ bfq_remove_request(next);
-+ bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
-+}
-+
-+/* Must be called with bfqq != NULL */
-+static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
-+{
-+ BUG_ON(!bfqq);
-+
-+ if (bfq_bfqq_busy(bfqq)) {
-+ bfqq->bfqd->wr_busy_queues--;
-+ BUG_ON(bfqq->bfqd->wr_busy_queues < 0);
-+ }
-+ bfqq->wr_coeff = 1;
-+ bfqq->wr_cur_max_time = 0;
-+ bfqq->last_wr_start_finish = jiffies;
-+ /*
-+ * Trigger a weight change on the next invocation of
-+ * __bfq_entity_update_weight_prio.
-+ */
-+ bfqq->entity.prio_changed = 1;
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "wrais ending at %lu, rais_max_time %u",
-+ bfqq->last_wr_start_finish,
-+ jiffies_to_msecs(bfqq->wr_cur_max_time));
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "wr_busy %d",
-+ bfqq->bfqd->wr_busy_queues);
-+}
-+
-+static void bfq_end_wr_async_queues(struct bfq_data *bfqd,
-+ struct bfq_group *bfqg)
-+{
-+ int i, j;
-+
-+ for (i = 0; i < 2; i++)
-+ for (j = 0; j < IOPRIO_BE_NR; j++)
-+ if (bfqg->async_bfqq[i][j])
-+ bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
-+ if (bfqg->async_idle_bfqq)
-+ bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
-+}
-+
-+static void bfq_end_wr(struct bfq_data *bfqd)
-+{
-+ struct bfq_queue *bfqq;
-+
-+ spin_lock_irq(bfqd->queue->queue_lock);
-+
-+ list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
-+ bfq_bfqq_end_wr(bfqq);
-+ list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
-+ bfq_bfqq_end_wr(bfqq);
-+ bfq_end_wr_async(bfqd);
-+
-+ spin_unlock_irq(bfqd->queue->queue_lock);
-+}
-+
-+static sector_t bfq_io_struct_pos(void *io_struct, bool request)
-+{
-+ if (request)
-+ return blk_rq_pos(io_struct);
-+ else
-+ return ((struct bio *)io_struct)->bi_iter.bi_sector;
-+}
-+
-+static int bfq_rq_close_to_sector(void *io_struct, bool request,
-+ sector_t sector)
-+{
-+ return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
-+ BFQQ_CLOSE_THR;
-+}
-+
-+static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ sector_t sector)
-+{
-+ struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
-+ struct rb_node *parent, *node;
-+ struct bfq_queue *__bfqq;
-+
-+ if (RB_EMPTY_ROOT(root))
-+ return NULL;
-+
-+ /*
-+ * First, if we find a request starting at the end of the last
-+ * request, choose it.
-+ */
-+ __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
-+ if (__bfqq)
-+ return __bfqq;
-+
-+ /*
-+ * If the exact sector wasn't found, the parent of the NULL leaf
-+ * will contain the closest sector (rq_pos_tree sorted by
-+ * next_request position).
-+ */
-+ __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
-+ if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
-+ return __bfqq;
-+
-+ if (blk_rq_pos(__bfqq->next_rq) < sector)
-+ node = rb_next(&__bfqq->pos_node);
-+ else
-+ node = rb_prev(&__bfqq->pos_node);
-+ if (!node)
-+ return NULL;
-+
-+ __bfqq = rb_entry(node, struct bfq_queue, pos_node);
-+ if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
-+ return __bfqq;
-+
-+ return NULL;
-+}
-+
-+static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
-+ struct bfq_queue *cur_bfqq,
-+ sector_t sector)
-+{
-+ struct bfq_queue *bfqq;
-+
-+ /*
-+ * We shall notice if some of the queues are cooperating,
-+ * e.g., working closely on the same area of the device. In
-+ * that case, we can group them together and: 1) don't waste
-+ * time idling, and 2) serve the union of their requests in
-+ * the best possible order for throughput.
-+ */
-+ bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
-+ if (!bfqq || bfqq == cur_bfqq)
-+ return NULL;
-+
-+ return bfqq;
-+}
-+
-+static struct bfq_queue *
-+bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
-+{
-+ int process_refs, new_process_refs;
-+ struct bfq_queue *__bfqq;
-+
-+ /*
-+ * If there are no process references on the new_bfqq, then it is
-+ * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
-+ * may have dropped their last reference (not just their last process
-+ * reference).
-+ */
-+ if (!bfqq_process_refs(new_bfqq))
-+ return NULL;
-+
-+ /* Avoid a circular list and skip interim queue merges. */
-+ while ((__bfqq = new_bfqq->new_bfqq)) {
-+ if (__bfqq == bfqq)
-+ return NULL;
-+ new_bfqq = __bfqq;
-+ }
-+
-+ process_refs = bfqq_process_refs(bfqq);
-+ new_process_refs = bfqq_process_refs(new_bfqq);
-+ /*
-+ * If the process for the bfqq has gone away, there is no
-+ * sense in merging the queues.
-+ */
-+ if (process_refs == 0 || new_process_refs == 0)
-+ return NULL;
-+
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
-+ new_bfqq->pid);
-+
-+ /*
-+ * Merging is just a redirection: the requests of the process
-+ * owning one of the two queues are redirected to the other queue.
-+ * The latter queue, in its turn, is set as shared if this is the
-+ * first time that the requests of some process are redirected to
-+ * it.
-+ *
-+ * We redirect bfqq to new_bfqq and not the opposite, because we
-+ * are in the context of the process owning bfqq, hence we have
-+ * the io_cq of this process. So we can immediately configure this
-+ * io_cq to redirect the requests of the process to new_bfqq.
-+ *
-+ * NOTE, even if new_bfqq coincides with the in-service queue, the
-+ * io_cq of new_bfqq is not available, because, if the in-service
-+ * queue is shared, bfqd->in_service_bic may not point to the
-+ * io_cq of the in-service queue.
-+ * Redirecting the requests of the process owning bfqq to the
-+ * currently in-service queue is in any case the best option, as
-+ * we feed the in-service queue with new requests close to the
-+ * last request served and, by doing so, hopefully increase the
-+ * throughput.
-+ */
-+ bfqq->new_bfqq = new_bfqq;
-+ new_bfqq->ref += process_refs;
-+ return new_bfqq;
-+}
-+
-+static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
-+ struct bfq_queue *new_bfqq)
-+{
-+ if (bfq_too_late_for_merging(new_bfqq)) {
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "too late for bfq%d to be merged",
-+ new_bfqq->pid);
-+ return false;
-+ }
-+
-+ if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
-+ (bfqq->ioprio_class != new_bfqq->ioprio_class))
-+ return false;
-+
-+ /*
-+ * If either of the queues has already been detected as seeky,
-+ * then merging it with the other queue is unlikely to lead to
-+ * sequential I/O.
-+ */
-+ if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
-+ return false;
-+
-+ /*
-+ * Interleaved I/O is known to be done by (some) applications
-+ * only for reads, so it does not make sense to merge async
-+ * queues.
-+ */
-+ if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
-+ return false;
-+
-+ return true;
-+}
-+
-+/*
-+ * Attempt to schedule a merge of bfqq with the currently in-service
-+ * queue or with a close queue among the scheduled queues. Return
-+ * NULL if no merge was scheduled, a pointer to the shared bfq_queue
-+ * structure otherwise.
-+ *
-+ * The OOM queue is not allowed to participate to cooperation: in fact, since
-+ * the requests temporarily redirected to the OOM queue could be redirected
-+ * again to dedicated queues at any time, the state needed to correctly
-+ * handle merging with the OOM queue would be quite complex and expensive
-+ * to maintain. Besides, in such a critical condition as an out of memory,
-+ * the benefits of queue merging may be little relevant, or even negligible.
-+ *
-+ * WARNING: queue merging may impair fairness among non-weight raised
-+ * queues, for at least two reasons: 1) the original weight of a
-+ * merged queue may change during the merged state, 2) even being the
-+ * weight the same, a merged queue may be bloated with many more
-+ * requests than the ones produced by its originally-associated
-+ * process.
-+ */
-+static struct bfq_queue *
-+bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
-+ void *io_struct, bool request)
-+{
-+ struct bfq_queue *in_service_bfqq, *new_bfqq;
-+
-+ /*
-+ * Prevent bfqq from being merged if it has been created too
-+ * long ago. The idea is that true cooperating processes, and
-+ * thus their associated bfq_queues, are supposed to be
-+ * created shortly after each other. This is the case, e.g.,
-+ * for KVM/QEMU and dump I/O threads. Basing on this
-+ * assumption, the following filtering greatly reduces the
-+ * probability that two non-cooperating processes, which just
-+ * happen to do close I/O for some short time interval, have
-+ * their queues merged by mistake.
-+ */
-+ if (bfq_too_late_for_merging(bfqq)) {
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "would have looked for coop, but too late");
-+ return NULL;
-+ }
-+
-+ if (bfqq->new_bfqq)
-+ return bfqq->new_bfqq;
-+
-+ if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
-+ return NULL;
-+
-+ /* If there is only one backlogged queue, don't search. */
-+ if (bfq_tot_busy_queues(bfqd) == 1)
-+ return NULL;
-+
-+ in_service_bfqq = bfqd->in_service_queue;
-+
-+ if (in_service_bfqq && in_service_bfqq != bfqq &&
-+ likely(in_service_bfqq != &bfqd->oom_bfqq) &&
-+ bfq_rq_close_to_sector(io_struct, request, bfqd->in_serv_last_pos) &&
-+ bfqq->entity.parent == in_service_bfqq->entity.parent &&
-+ bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
-+ new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
-+ if (new_bfqq)
-+ return new_bfqq;
-+ }
-+ /*
-+ * Check whether there is a cooperator among currently scheduled
-+ * queues. The only thing we need is that the bio/request is not
-+ * NULL, as we need it to establish whether a cooperator exists.
-+ */
-+ new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
-+ bfq_io_struct_pos(io_struct, request));
-+
-+ BUG_ON(new_bfqq && bfqq->entity.parent != new_bfqq->entity.parent);
-+
-+ if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
-+ bfq_may_be_close_cooperator(bfqq, new_bfqq))
-+ return bfq_setup_merge(bfqq, new_bfqq);
-+
-+ return NULL;
-+}
-+
-+static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
-+{
-+ struct bfq_io_cq *bic = bfqq->bic;
-+
-+ /*
-+ * If !bfqq->bic, the queue is already shared or its requests
-+ * have already been redirected to a shared queue; both idle window
-+ * and weight raising state have already been saved. Do nothing.
-+ */
-+ if (!bic)
-+ return;
-+
-+ bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
-+ bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
-+ bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
-+ bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
-+ if (unlikely(bfq_bfqq_just_created(bfqq) &&
-+ !bfq_bfqq_in_large_burst(bfqq) &&
-+ bfqq->bfqd->low_latency)) {
-+ /*
-+ * bfqq being merged ritgh after being created: bfqq
-+ * would have deserved interactive weight raising, but
-+ * did not make it to be set in a weight-raised state,
-+ * because of this early merge. Store directly the
-+ * weight-raising state that would have been assigned
-+ * to bfqq, so that to avoid that bfqq unjustly fails
-+ * to enjoy weight raising if split soon.
-+ */
-+ bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
-+ bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
-+ bic->saved_last_wr_start_finish = jiffies;
-+ } else {
-+ bic->saved_wr_coeff = bfqq->wr_coeff;
-+ bic->saved_wr_start_at_switch_to_srt =
-+ bfqq->wr_start_at_switch_to_srt;
-+ bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
-+ bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
-+ }
-+ BUG_ON(time_is_after_jiffies(bfqq->last_wr_start_finish));
-+}
-+
-+static void bfq_get_bic_reference(struct bfq_queue *bfqq)
-+{
-+ /*
-+ * If bfqq->bic has a non-NULL value, the bic to which it belongs
-+ * is about to begin using a shared bfq_queue.
-+ */
-+ if (bfqq->bic)
-+ atomic_long_inc(&bfqq->bic->icq.ioc->refcount);
-+}
-+
-+static void
-+bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
-+ struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
-+{
-+ bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
-+ (unsigned long) new_bfqq->pid);
-+ /* Save weight raising and idle window of the merged queues */
-+ bfq_bfqq_save_state(bfqq);
-+ bfq_bfqq_save_state(new_bfqq);
-+ if (bfq_bfqq_IO_bound(bfqq))
-+ bfq_mark_bfqq_IO_bound(new_bfqq);
-+ bfq_clear_bfqq_IO_bound(bfqq);
-+
-+ /*
-+ * If bfqq is weight-raised, then let new_bfqq inherit
-+ * weight-raising. To reduce false positives, neglect the case
-+ * where bfqq has just been created, but has not yet made it
-+ * to be weight-raised (which may happen because EQM may merge
-+ * bfqq even before bfq_add_request is executed for the first
-+ * time for bfqq). Handling this case would however be very
-+ * easy, thanks to the flag just_created.
-+ */
-+ if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
-+ new_bfqq->wr_coeff = bfqq->wr_coeff;
-+ new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
-+ new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
-+ new_bfqq->wr_start_at_switch_to_srt =
-+ bfqq->wr_start_at_switch_to_srt;
-+ if (bfq_bfqq_busy(new_bfqq)) {
-+ bfqd->wr_busy_queues++;
-+ BUG_ON(bfqd->wr_busy_queues >
-+ bfq_tot_busy_queues(bfqd));
-+ }
-+
-+ new_bfqq->entity.prio_changed = 1;
-+ bfq_log_bfqq(bfqd, new_bfqq,
-+ "wr start after merge with %d, rais_max_time %u",
-+ bfqq->pid,
-+ jiffies_to_msecs(bfqq->wr_cur_max_time));
-+ }
-+
-+ if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
-+ bfqq->wr_coeff = 1;
-+ bfqq->entity.prio_changed = 1;
-+ if (bfq_bfqq_busy(bfqq)) {
-+ bfqd->wr_busy_queues--;
-+ BUG_ON(bfqd->wr_busy_queues < 0);
-+ }
-+
-+ }
-+
-+ bfq_log_bfqq(bfqd, new_bfqq, "wr_busy %d",
-+ bfqd->wr_busy_queues);
-+
-+ /*
-+ * Grab a reference to the bic, to prevent it from being destroyed
-+ * before being possibly touched by a bfq_split_bfqq().
-+ */
-+ bfq_get_bic_reference(bfqq);
-+ bfq_get_bic_reference(new_bfqq);
-+ /*
-+ * Merge queues (that is, let bic redirect its requests to new_bfqq)
-+ */
-+ bic_set_bfqq(bic, new_bfqq, 1);
-+ bfq_mark_bfqq_coop(new_bfqq);
-+ /*
-+ * new_bfqq now belongs to at least two bics (it is a shared queue):
-+ * set new_bfqq->bic to NULL. bfqq either:
-+ * - does not belong to any bic any more, and hence bfqq->bic must
-+ * be set to NULL, or
-+ * - is a queue whose owning bics have already been redirected to a
-+ * different queue, hence the queue is destined to not belong to
-+ * any bic soon and bfqq->bic is already NULL (therefore the next
-+ * assignment causes no harm).
-+ */
-+ new_bfqq->bic = NULL;
-+ bfqq->bic = NULL;
-+ /* release process reference to bfqq */
-+ bfq_put_queue(bfqq);
-+}
-+
-+static int bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
-+ struct bio *bio)
-+{
-+ struct bfq_data *bfqd = q->elevator->elevator_data;
-+ bool is_sync = op_is_sync(bio->bi_opf);
-+ struct bfq_io_cq *bic;
-+ struct bfq_queue *bfqq, *new_bfqq;
-+
-+ /*
-+ * Disallow merge of a sync bio into an async request.
-+ */
-+ if (is_sync && !rq_is_sync(rq))
-+ return false;
-+
-+ /*
-+ * Lookup the bfqq that this bio will be queued with. Allow
-+ * merge only if rq is queued there.
-+ * Queue lock is held here.
-+ */
-+ bic = bfq_bic_lookup(bfqd, current->io_context);
-+ if (!bic)
-+ return false;
-+
-+ bfqq = bic_to_bfqq(bic, is_sync);
-+ /*
-+ * We take advantage of this function to perform an early merge
-+ * of the queues of possible cooperating processes.
-+ */
-+ if (bfqq) {
-+ new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
-+ if (new_bfqq) {
-+ bfq_merge_bfqqs(bfqd, bic, bfqq, new_bfqq);
-+ /*
-+ * If we get here, the bio will be queued in the
-+ * shared queue, i.e., new_bfqq, so use new_bfqq
-+ * to decide whether bio and rq can be merged.
-+ */
-+ bfqq = new_bfqq;
-+ }
-+ }
-+
-+ return bfqq == RQ_BFQQ(rq);
-+}
-+
-+static int bfq_allow_rq_merge(struct request_queue *q, struct request *rq,
-+ struct request *next)
-+{
-+ return RQ_BFQQ(rq) == RQ_BFQQ(next);
-+}
-+
-+/*
-+ * Set the maximum time for the in-service queue to consume its
-+ * budget. This prevents seeky processes from lowering the throughput.
-+ * In practice, a time-slice service scheme is used with seeky
-+ * processes.
-+ */
-+static void bfq_set_budget_timeout(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ unsigned int timeout_coeff;
-+
-+ if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
-+ timeout_coeff = 1;
-+ else
-+ timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
-+
-+ bfqd->last_budget_start = ktime_get();
-+
-+ bfqq->budget_timeout = jiffies +
-+ bfqd->bfq_timeout * timeout_coeff;
-+
-+ bfq_log_bfqq(bfqd, bfqq, "%u",
-+ jiffies_to_msecs(bfqd->bfq_timeout * timeout_coeff));
-+}
-+
-+static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ if (bfqq) {
-+ bfqg_stats_update_avg_queue_size(bfqq_group(bfqq));
-+ bfq_mark_bfqq_must_alloc(bfqq);
-+ bfq_clear_bfqq_fifo_expire(bfqq);
-+
-+ bfqd->budgets_assigned = (bfqd->budgets_assigned*7 + 256) / 8;
-+
-+ BUG_ON(bfqq == bfqd->in_service_queue);
-+ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
-+
-+ if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
-+ bfqq->wr_coeff > 1 &&
-+ bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
-+ time_is_before_jiffies(bfqq->budget_timeout)) {
-+ /*
-+ * For soft real-time queues, move the start
-+ * of the weight-raising period forward by the
-+ * time the queue has not received any
-+ * service. Otherwise, a relatively long
-+ * service delay is likely to cause the
-+ * weight-raising period of the queue to end,
-+ * because of the short duration of the
-+ * weight-raising period of a soft real-time
-+ * queue. It is worth noting that this move
-+ * is not so dangerous for the other queues,
-+ * because soft real-time queues are not
-+ * greedy.
-+ *
-+ * To not add a further variable, we use the
-+ * overloaded field budget_timeout to
-+ * determine for how long the queue has not
-+ * received service, i.e., how much time has
-+ * elapsed since the queue expired. However,
-+ * this is a little imprecise, because
-+ * budget_timeout is set to jiffies if bfqq
-+ * not only expires, but also remains with no
-+ * request.
-+ */
-+ if (time_after(bfqq->budget_timeout,
-+ bfqq->last_wr_start_finish))
-+ bfqq->last_wr_start_finish +=
-+ jiffies - bfqq->budget_timeout;
-+ else
-+ bfqq->last_wr_start_finish = jiffies;
-+
-+ if (time_is_after_jiffies(bfqq->last_wr_start_finish)) {
-+ pr_crit(
-+ "BFQ WARNING:last %lu budget %lu jiffies %lu",
-+ bfqq->last_wr_start_finish,
-+ bfqq->budget_timeout,
-+ jiffies);
-+ pr_crit("diff %lu", jiffies -
-+ max_t(unsigned long,
-+ bfqq->last_wr_start_finish,
-+ bfqq->budget_timeout));
-+ bfqq->last_wr_start_finish = jiffies;
-+ }
-+ }
-+
-+ bfq_set_budget_timeout(bfqd, bfqq);
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "cur-budget = %d prio_class %d",
-+ bfqq->entity.budget, bfqq->ioprio_class);
-+ } else
-+ bfq_log(bfqd, "NULL");
-+
-+ bfqd->in_service_queue = bfqq;
-+}
-+
-+/*
-+ * Get and set a new queue for service.
-+ */
-+static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
-+{
-+ struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
-+
-+ __bfq_set_in_service_queue(bfqd, bfqq);
-+ return bfqq;
-+}
-+
-+static void bfq_arm_slice_timer(struct bfq_data *bfqd)
-+{
-+ struct bfq_queue *bfqq = bfqd->in_service_queue;
-+ struct bfq_io_cq *bic;
-+ u32 sl;
-+
-+ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
-+
-+ /* Processes have exited, don't wait. */
-+ bic = bfqd->in_service_bic;
-+ if (!bic || atomic_read(&bic->icq.ioc->active_ref) == 0)
-+ return;
-+
-+ bfq_mark_bfqq_wait_request(bfqq);
-+
-+ /*
-+ * We don't want to idle for seeks, but we do want to allow
-+ * fair distribution of slice time for a process doing back-to-back
-+ * seeks. So allow a little bit of time for him to submit a new rq.
-+ *
-+ * To prevent processes with (partly) seeky workloads from
-+ * being too ill-treated, grant them a small fraction of the
-+ * assigned budget before reducing the waiting time to
-+ * BFQ_MIN_TT. This happened to help reduce latency.
-+ */
-+ sl = bfqd->bfq_slice_idle;
-+ /*
-+ * Unless the queue is being weight-raised or the scenario is
-+ * asymmetric, grant only minimum idle time if the queue
-+ * is seeky. A long idling is preserved for a weight-raised
-+ * queue, or, more in general, in an asymemtric scenario,
-+ * because a long idling is needed for guaranteeing to a queue
-+ * its reserved share of the throughput (in particular, it is
-+ * needed if the queue has a higher weight than some other
-+ * queue).
-+ */
-+ if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
-+ bfq_symmetric_scenario(bfqd))
-+ sl = min_t(u32, sl, BFQ_MIN_TT);
-+
-+ bfqd->last_idling_start = ktime_get();
-+ hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
-+ HRTIMER_MODE_REL);
-+ bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
-+ bfq_log(bfqd, "arm idle: %ld/%ld ms",
-+ sl / NSEC_PER_MSEC, bfqd->bfq_slice_idle / NSEC_PER_MSEC);
-+}
-+
-+/*
-+ * In autotuning mode, max_budget is dynamically recomputed as the
-+ * amount of sectors transferred in timeout at the estimated peak
-+ * rate. This enables BFQ to utilize a full timeslice with a full
-+ * budget, even if the in-service queue is served at peak rate. And
-+ * this maximises throughput with sequential workloads.
-+ */
-+static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
-+{
-+ return (u64)bfqd->peak_rate * USEC_PER_MSEC *
-+ jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
-+}
-+
-+/*
-+ * Update parameters related to throughput and responsiveness, as a
-+ * function of the estimated peak rate. See comments on
-+ * bfq_calc_max_budget(), and on the ref_wr_duration array.
-+ */
-+static void update_thr_responsiveness_params(struct bfq_data *bfqd)
-+{
-+ if (bfqd->bfq_user_max_budget == 0) {
-+ bfqd->bfq_max_budget =
-+ bfq_calc_max_budget(bfqd);
-+ BUG_ON(bfqd->bfq_max_budget < 0);
-+ bfq_log(bfqd, "new max_budget = %d",
-+ bfqd->bfq_max_budget);
-+ }
-+}
-+
-+static void bfq_reset_rate_computation(struct bfq_data *bfqd, struct request *rq)
-+{
-+ if (rq != NULL) { /* new rq dispatch now, reset accordingly */
-+ bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns() ;
-+ bfqd->peak_rate_samples = 1;
-+ bfqd->sequential_samples = 0;
-+ bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
-+ blk_rq_sectors(rq);
-+ } else /* no new rq dispatched, just reset the number of samples */
-+ bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
-+
-+ bfq_log(bfqd,
-+ "at end, sample %u/%u tot_sects %llu",
-+ bfqd->peak_rate_samples, bfqd->sequential_samples,
-+ bfqd->tot_sectors_dispatched);
-+}
-+
-+static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
-+{
-+ u32 rate, weight, divisor;
-+
-+ /*
-+ * For the convergence property to hold (see comments on
-+ * bfq_update_peak_rate()) and for the assessment to be
-+ * reliable, a minimum number of samples must be present, and
-+ * a minimum amount of time must have elapsed. If not so, do
-+ * not compute new rate. Just reset parameters, to get ready
-+ * for a new evaluation attempt.
-+ */
-+ if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
-+ bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL) {
-+ bfq_log(bfqd,
-+ "only resetting, delta_first %lluus samples %d",
-+ bfqd->delta_from_first>>10, bfqd->peak_rate_samples);
-+ goto reset_computation;
-+ }
-+
-+ /*
-+ * If a new request completion has occurred after last
-+ * dispatch, then, to approximate the rate at which requests
-+ * have been served by the device, it is more precise to
-+ * extend the observation interval to the last completion.
-+ */
-+ bfqd->delta_from_first =
-+ max_t(u64, bfqd->delta_from_first,
-+ bfqd->last_completion - bfqd->first_dispatch);
-+
-+ BUG_ON(bfqd->delta_from_first == 0);
-+ /*
-+ * Rate computed in sects/usec, and not sects/nsec, for
-+ * precision issues.
-+ */
-+ rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
-+ div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
-+
-+ bfq_log(bfqd,
-+"tot_sects %llu delta_first %lluus rate %llu sects/s (%d)",
-+ bfqd->tot_sectors_dispatched, bfqd->delta_from_first>>10,
-+ ((USEC_PER_SEC*(u64)rate)>>BFQ_RATE_SHIFT),
-+ rate > 20<<BFQ_RATE_SHIFT);
-+
-+ /*
-+ * Peak rate not updated if:
-+ * - the percentage of sequential dispatches is below 3/4 of the
-+ * total, and rate is below the current estimated peak rate
-+ * - rate is unreasonably high (> 20M sectors/sec)
-+ */
-+ if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
-+ rate <= bfqd->peak_rate) ||
-+ rate > 20<<BFQ_RATE_SHIFT) {
-+ bfq_log(bfqd,
-+ "goto reset, samples %u/%u rate/peak %llu/%llu",
-+ bfqd->peak_rate_samples, bfqd->sequential_samples,
-+ ((USEC_PER_SEC*(u64)rate)>>BFQ_RATE_SHIFT),
-+ ((USEC_PER_SEC*(u64)bfqd->peak_rate)>>BFQ_RATE_SHIFT));
-+ goto reset_computation;
-+ } else {
-+ bfq_log(bfqd,
-+ "do update, samples %u/%u rate/peak %llu/%llu",
-+ bfqd->peak_rate_samples, bfqd->sequential_samples,
-+ ((USEC_PER_SEC*(u64)rate)>>BFQ_RATE_SHIFT),
-+ ((USEC_PER_SEC*(u64)bfqd->peak_rate)>>BFQ_RATE_SHIFT));
-+ }
-+
-+ /*
-+ * We have to update the peak rate, at last! To this purpose,
-+ * we use a low-pass filter. We compute the smoothing constant
-+ * of the filter as a function of the 'weight' of the new
-+ * measured rate.
-+ *
-+ * As can be seen in next formulas, we define this weight as a
-+ * quantity proportional to how sequential the workload is,
-+ * and to how long the observation time interval is.
-+ *
-+ * The weight runs from 0 to 8. The maximum value of the
-+ * weight, 8, yields the minimum value for the smoothing
-+ * constant. At this minimum value for the smoothing constant,
-+ * the measured rate contributes for half of the next value of
-+ * the estimated peak rate.
-+ *
-+ * So, the first step is to compute the weight as a function
-+ * of how sequential the workload is. Note that the weight
-+ * cannot reach 9, because bfqd->sequential_samples cannot
-+ * become equal to bfqd->peak_rate_samples, which, in its
-+ * turn, holds true because bfqd->sequential_samples is not
-+ * incremented for the first sample.
-+ */
-+ weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
-+
-+ /*
-+ * Second step: further refine the weight as a function of the
-+ * duration of the observation interval.
-+ */
-+ weight = min_t(u32, 8,
-+ div_u64(weight * bfqd->delta_from_first,
-+ BFQ_RATE_REF_INTERVAL));
-+
-+ /*
-+ * Divisor ranging from 10, for minimum weight, to 2, for
-+ * maximum weight.
-+ */
-+ divisor = 10 - weight;
-+ BUG_ON(divisor == 0);
-+
-+ /*
-+ * Finally, update peak rate:
-+ *
-+ * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
-+ */
-+ bfqd->peak_rate *= divisor-1;
-+ bfqd->peak_rate /= divisor;
-+ rate /= divisor; /* smoothing constant alpha = 1/divisor */
-+
-+ bfq_log(bfqd,
-+ "divisor %d tmp_peak_rate %llu tmp_rate %u",
-+ divisor,
-+ ((USEC_PER_SEC*(u64)bfqd->peak_rate)>>BFQ_RATE_SHIFT),
-+ (u32)((USEC_PER_SEC*(u64)rate)>>BFQ_RATE_SHIFT));
-+
-+ BUG_ON(bfqd->peak_rate == 0);
-+ BUG_ON(bfqd->peak_rate > 20<<BFQ_RATE_SHIFT);
-+
-+ bfqd->peak_rate += rate;
-+
-+ /*
-+ * For a very slow device, bfqd->peak_rate can reach 0 (see
-+ * the minimum representable values reported in the comments
-+ * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
-+ * divisions by zero where bfqd->peak_rate is used as a
-+ * divisor.
-+ */
-+ bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
-+
-+ update_thr_responsiveness_params(bfqd);
-+ BUG_ON(bfqd->peak_rate > 20<<BFQ_RATE_SHIFT);
-+
-+reset_computation:
-+ bfq_reset_rate_computation(bfqd, rq);
-+}
-+
-+/*
-+ * Update the read/write peak rate (the main quantity used for
-+ * auto-tuning, see update_thr_responsiveness_params()).
-+ *
-+ * It is not trivial to estimate the peak rate (correctly): because of
-+ * the presence of sw and hw queues between the scheduler and the
-+ * device components that finally serve I/O requests, it is hard to
-+ * say exactly when a given dispatched request is served inside the
-+ * device, and for how long. As a consequence, it is hard to know
-+ * precisely at what rate a given set of requests is actually served
-+ * by the device.
-+ *
-+ * On the opposite end, the dispatch time of any request is trivially
-+ * available, and, from this piece of information, the "dispatch rate"
-+ * of requests can be immediately computed. So, the idea in the next
-+ * function is to use what is known, namely request dispatch times
-+ * (plus, when useful, request completion times), to estimate what is
-+ * unknown, namely in-device request service rate.
-+ *
-+ * The main issue is that, because of the above facts, the rate at
-+ * which a certain set of requests is dispatched over a certain time
-+ * interval can vary greatly with respect to the rate at which the
-+ * same requests are then served. But, since the size of any
-+ * intermediate queue is limited, and the service scheme is lossless
-+ * (no request is silently dropped), the following obvious convergence
-+ * property holds: the number of requests dispatched MUST become
-+ * closer and closer to the number of requests completed as the
-+ * observation interval grows. This is the key property used in
-+ * the next function to estimate the peak service rate as a function
-+ * of the observed dispatch rate. The function assumes to be invoked
-+ * on every request dispatch.
-+ */
-+static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
-+{
-+ u64 now_ns = ktime_get_ns();
-+
-+ if (bfqd->peak_rate_samples == 0) { /* first dispatch */
-+ bfq_log(bfqd,
-+ "goto reset, samples %d",
-+ bfqd->peak_rate_samples) ;
-+ bfq_reset_rate_computation(bfqd, rq);
-+ goto update_last_values; /* will add one sample */
-+ }
-+
-+ /*
-+ * Device idle for very long: the observation interval lasting
-+ * up to this dispatch cannot be a valid observation interval
-+ * for computing a new peak rate (similarly to the late-
-+ * completion event in bfq_completed_request()). Go to
-+ * update_rate_and_reset to have the following three steps
-+ * taken:
-+ * - close the observation interval at the last (previous)
-+ * request dispatch or completion
-+ * - compute rate, if possible, for that observation interval
-+ * - start a new observation interval with this dispatch
-+ */
-+ if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
-+ bfqd->rq_in_driver == 0) {
-+ bfq_log(bfqd,
-+"jumping to updating&resetting delta_last %lluus samples %d",
-+ (now_ns - bfqd->last_dispatch)>>10,
-+ bfqd->peak_rate_samples) ;
-+ goto update_rate_and_reset;
-+ }
-+
-+ /* Update sampling information */
-+ bfqd->peak_rate_samples++;
-+
-+ if ((bfqd->rq_in_driver > 0 ||
-+ now_ns - bfqd->last_completion < BFQ_MIN_TT)
-+ && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
-+ bfqd->sequential_samples++;
-+
-+ bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
-+
-+ /* Reset max observed rq size every 32 dispatches */
-+ if (likely(bfqd->peak_rate_samples % 32))
-+ bfqd->last_rq_max_size =
-+ max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
-+ else
-+ bfqd->last_rq_max_size = blk_rq_sectors(rq);
-+
-+ bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
-+
-+ bfq_log(bfqd,
-+ "added samples %u/%u tot_sects %llu delta_first %lluus",
-+ bfqd->peak_rate_samples, bfqd->sequential_samples,
-+ bfqd->tot_sectors_dispatched,
-+ bfqd->delta_from_first>>10);
-+
-+ /* Target observation interval not yet reached, go on sampling */
-+ if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
-+ goto update_last_values;
-+
-+update_rate_and_reset:
-+ bfq_update_rate_reset(bfqd, rq);
-+update_last_values:
-+ bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
-+ if (RQ_BFQQ(rq) == bfqd->in_service_queue)
-+ bfqd->in_serv_last_pos = bfqd->last_position;
-+ bfqd->last_dispatch = now_ns;
-+
-+ bfq_log(bfqd,
-+ "delta_first %lluus last_pos %llu peak_rate %llu",
-+ (now_ns - bfqd->first_dispatch)>>10,
-+ (unsigned long long) bfqd->last_position,
-+ ((USEC_PER_SEC*(u64)bfqd->peak_rate)>>BFQ_RATE_SHIFT));
-+ bfq_log(bfqd,
-+ "samples at end %d", bfqd->peak_rate_samples);
-+}
-+
-+/*
-+ * Move request from internal lists to the dispatch list of the request queue
-+ */
-+static void bfq_dispatch_insert(struct request_queue *q, struct request *rq)
-+{
-+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
-+
-+ /*
-+ * For consistency, the next instruction should have been executed
-+ * after removing the request from the queue and dispatching it.
-+ * We execute instead this instruction before bfq_remove_request()
-+ * (and hence introduce a temporary inconsistency), for efficiency.
-+ * In fact, in a forced_dispatch, this prevents two counters related
-+ * to bfqq->dispatched to risk to be uselessly decremented if bfqq
-+ * is not in service, and then to be incremented again after
-+ * incrementing bfqq->dispatched.
-+ */
-+ bfqq->dispatched++;
-+ bfq_update_peak_rate(q->elevator->elevator_data, rq);
-+
-+ bfq_remove_request(rq);
-+ elv_dispatch_sort(q, rq);
-+}
-+
-+static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
-+{
-+ BUG_ON(bfqq != bfqd->in_service_queue);
-+
-+ /*
-+ * If this bfqq is shared between multiple processes, check
-+ * to make sure that those processes are still issuing I/Os
-+ * within the mean seek distance. If not, it may be time to
-+ * break the queues apart again.
-+ */
-+ if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
-+ bfq_mark_bfqq_split_coop(bfqq);
-+
-+ if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
-+ if (bfqq->dispatched == 0)
-+ /*
-+ * Overloading budget_timeout field to store
-+ * the time at which the queue remains with no
-+ * backlog and no outstanding request; used by
-+ * the weight-raising mechanism.
-+ */
-+ bfqq->budget_timeout = jiffies;
-+
-+ bfq_del_bfqq_busy(bfqd, bfqq, true);
-+ } else {
-+ bfq_requeue_bfqq(bfqd, bfqq, true);
-+ /*
-+ * Resort priority tree of potential close cooperators.
-+ */
-+ bfq_pos_tree_add_move(bfqd, bfqq);
-+ }
-+
-+ /*
-+ * All in-service entities must have been properly deactivated
-+ * or requeued before executing the next function, which
-+ * resets all in-service entites as no more in service.
-+ */
-+ __bfq_bfqd_reset_in_service(bfqd);
-+}
-+
-+/**
-+ * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
-+ * @bfqd: device data.
-+ * @bfqq: queue to update.
-+ * @reason: reason for expiration.
-+ *
-+ * Handle the feedback on @bfqq budget at queue expiration.
-+ * See the body for detailed comments.
-+ */
-+static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ enum bfqq_expiration reason)
-+{
-+ struct request *next_rq;
-+ int budget, min_budget;
-+
-+ BUG_ON(bfqq != bfqd->in_service_queue);
-+
-+ min_budget = bfq_min_budget(bfqd);
-+
-+ if (bfqq->wr_coeff == 1)
-+ budget = bfqq->max_budget;
-+ else /*
-+ * Use a constant, low budget for weight-raised queues,
-+ * to help achieve a low latency. Keep it slightly higher
-+ * than the minimum possible budget, to cause a little
-+ * bit fewer expirations.
-+ */
-+ budget = 2 * min_budget;
-+
-+ bfq_log_bfqq(bfqd, bfqq, "last budg %d, budg left %d",
-+ bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
-+ bfq_log_bfqq(bfqd, bfqq, "last max_budg %d, min budg %d",
-+ budget, bfq_min_budget(bfqd));
-+ bfq_log_bfqq(bfqd, bfqq, "sync %d, seeky %d",
-+ bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
-+
-+ if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
-+ switch (reason) {
-+ /*
-+ * Caveat: in all the following cases we trade latency
-+ * for throughput.
-+ */
-+ case BFQ_BFQQ_TOO_IDLE:
-+ /*
-+ * This is the only case where we may reduce
-+ * the budget: if there is no request of the
-+ * process still waiting for completion, then
-+ * we assume (tentatively) that the timer has
-+ * expired because the batch of requests of
-+ * the process could have been served with a
-+ * smaller budget. Hence, betting that
-+ * process will behave in the same way when it
-+ * becomes backlogged again, we reduce its
-+ * next budget. As long as we guess right,
-+ * this budget cut reduces the latency
-+ * experienced by the process.
-+ *
-+ * However, if there are still outstanding
-+ * requests, then the process may have not yet
-+ * issued its next request just because it is
-+ * still waiting for the completion of some of
-+ * the still outstanding ones. So in this
-+ * subcase we do not reduce its budget, on the
-+ * contrary we increase it to possibly boost
-+ * the throughput, as discussed in the
-+ * comments to the BUDGET_TIMEOUT case.
-+ */
-+ if (bfqq->dispatched > 0) /* still outstanding reqs */
-+ budget = min(budget * 2, bfqd->bfq_max_budget);
-+ else {
-+ if (budget > 5 * min_budget)
-+ budget -= 4 * min_budget;
-+ else
-+ budget = min_budget;
-+ }
-+ break;
-+ case BFQ_BFQQ_BUDGET_TIMEOUT:
-+ /*
-+ * We double the budget here because it gives
-+ * the chance to boost the throughput if this
-+ * is not a seeky process (and has bumped into
-+ * this timeout because of, e.g., ZBR).
-+ */
-+ budget = min(budget * 2, bfqd->bfq_max_budget);
-+ break;
-+ case BFQ_BFQQ_BUDGET_EXHAUSTED:
-+ /*
-+ * The process still has backlog, and did not
-+ * let either the budget timeout or the disk
-+ * idling timeout expire. Hence it is not
-+ * seeky, has a short thinktime and may be
-+ * happy with a higher budget too. So
-+ * definitely increase the budget of this good
-+ * candidate to boost the disk throughput.
-+ */
-+ budget = min(budget * 4, bfqd->bfq_max_budget);
-+ break;
-+ case BFQ_BFQQ_NO_MORE_REQUESTS:
-+ /*
-+ * For queues that expire for this reason, it
-+ * is particularly important to keep the
-+ * budget close to the actual service they
-+ * need. Doing so reduces the timestamp
-+ * misalignment problem described in the
-+ * comments in the body of
-+ * __bfq_activate_entity. In fact, suppose
-+ * that a queue systematically expires for
-+ * BFQ_BFQQ_NO_MORE_REQUESTS and presents a
-+ * new request in time to enjoy timestamp
-+ * back-shifting. The larger the budget of the
-+ * queue is with respect to the service the
-+ * queue actually requests in each service
-+ * slot, the more times the queue can be
-+ * reactivated with the same virtual finish
-+ * time. It follows that, even if this finish
-+ * time is pushed to the system virtual time
-+ * to reduce the consequent timestamp
-+ * misalignment, the queue unjustly enjoys for
-+ * many re-activations a lower finish time
-+ * than all newly activated queues.
-+ *
-+ * The service needed by bfqq is measured
-+ * quite precisely by bfqq->entity.service.
-+ * Since bfqq does not enjoy device idling,
-+ * bfqq->entity.service is equal to the number
-+ * of sectors that the process associated with
-+ * bfqq requested to read/write before waiting
-+ * for request completions, or blocking for
-+ * other reasons.
-+ */
-+ budget = max_t(int, bfqq->entity.service, min_budget);
-+ break;
-+ default:
-+ return;
-+ }
-+ } else if (!bfq_bfqq_sync(bfqq))
-+ /*
-+ * Async queues get always the maximum possible
-+ * budget, as for them we do not care about latency
-+ * (in addition, their ability to dispatch is limited
-+ * by the charging factor).
-+ */
-+ budget = bfqd->bfq_max_budget;
-+
-+ bfqq->max_budget = budget;
-+
-+ if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
-+ !bfqd->bfq_user_max_budget)
-+ bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
-+
-+ /*
-+ * If there is still backlog, then assign a new budget, making
-+ * sure that it is large enough for the next request. Since
-+ * the finish time of bfqq must be kept in sync with the
-+ * budget, be sure to call __bfq_bfqq_expire() *after* this
-+ * update.
-+ *
-+ * If there is no backlog, then no need to update the budget;
-+ * it will be updated on the arrival of a new request.
-+ */
-+ next_rq = bfqq->next_rq;
-+ if (next_rq) {
-+ BUG_ON(reason == BFQ_BFQQ_TOO_IDLE ||
-+ reason == BFQ_BFQQ_NO_MORE_REQUESTS);
-+ bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
-+ bfq_serv_to_charge(next_rq, bfqq));
-+ BUG_ON(!bfq_bfqq_busy(bfqq));
-+ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
-+ }
-+
-+ bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
-+ next_rq ? blk_rq_sectors(next_rq) : 0,
-+ bfqq->entity.budget);
-+}
-+
-+/*
-+ * Return true if the process associated with bfqq is "slow". The slow
-+ * flag is used, in addition to the budget timeout, to reduce the
-+ * amount of service provided to seeky processes, and thus reduce
-+ * their chances to lower the throughput. More details in the comments
-+ * on the function bfq_bfqq_expire().
-+ *
-+ * An important observation is in order: as discussed in the comments
-+ * on the function bfq_update_peak_rate(), with devices with internal
-+ * queues, it is hard if ever possible to know when and for how long
-+ * an I/O request is processed by the device (apart from the trivial
-+ * I/O pattern where a new request is dispatched only after the
-+ * previous one has been completed). This makes it hard to evaluate
-+ * the real rate at which the I/O requests of each bfq_queue are
-+ * served. In fact, for an I/O scheduler like BFQ, serving a
-+ * bfq_queue means just dispatching its requests during its service
-+ * slot (i.e., until the budget of the queue is exhausted, or the
-+ * queue remains idle, or, finally, a timeout fires). But, during the
-+ * service slot of a bfq_queue, around 100 ms at most, the device may
-+ * be even still processing requests of bfq_queues served in previous
-+ * service slots. On the opposite end, the requests of the in-service
-+ * bfq_queue may be completed after the service slot of the queue
-+ * finishes.
-+ *
-+ * Anyway, unless more sophisticated solutions are used
-+ * (where possible), the sum of the sizes of the requests dispatched
-+ * during the service slot of a bfq_queue is probably the only
-+ * approximation available for the service received by the bfq_queue
-+ * during its service slot. And this sum is the quantity used in this
-+ * function to evaluate the I/O speed of a process.
-+ */
-+static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
-+ bool compensate, enum bfqq_expiration reason,
-+ unsigned long *delta_ms)
-+{
-+ ktime_t delta_ktime;
-+ u32 delta_usecs;
-+ bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
-+
-+ if (!bfq_bfqq_sync(bfqq))
-+ return false;
-+
-+ if (compensate)
-+ delta_ktime = bfqd->last_idling_start;
-+ else
-+ delta_ktime = ktime_get();
-+ delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
-+ delta_usecs = ktime_to_us(delta_ktime);
-+
-+ /* don't use too short time intervals */
-+ if (delta_usecs < 1000) {
-+ if (blk_queue_nonrot(bfqd->queue))
-+ /*
-+ * give same worst-case guarantees as idling
-+ * for seeky
-+ */
-+ *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
-+ else /* charge at least one seek */
-+ *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
-+
-+ bfq_log(bfqd, "too short %u", delta_usecs);
-+
-+ return slow;
-+ }
-+
-+ *delta_ms = delta_usecs / USEC_PER_MSEC;
-+
-+ /*
-+ * Use only long (> 20ms) intervals to filter out excessive
-+ * spikes in service rate estimation.
-+ */
-+ if (delta_usecs > 20000) {
-+ /*
-+ * Caveat for rotational devices: processes doing I/O
-+ * in the slower disk zones tend to be slow(er) even
-+ * if not seeky. In this respect, the estimated peak
-+ * rate is likely to be an average over the disk
-+ * surface. Accordingly, to not be too harsh with
-+ * unlucky processes, a process is deemed slow only if
-+ * its rate has been lower than half of the estimated
-+ * peak rate.
-+ */
-+ slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
-+ bfq_log(bfqd, "relative rate %d/%d",
-+ bfqq->entity.service, bfqd->bfq_max_budget);
-+ }
-+
-+ bfq_log_bfqq(bfqd, bfqq, "slow %d", slow);
-+
-+ return slow;
-+}
-+
-+/*
-+ * To be deemed as soft real-time, an application must meet two
-+ * requirements. First, the application must not require an average
-+ * bandwidth higher than the approximate bandwidth required to playback or
-+ * record a compressed high-definition video.
-+ * The next function is invoked on the completion of the last request of a
-+ * batch, to compute the next-start time instant, soft_rt_next_start, such
-+ * that, if the next request of the application does not arrive before
-+ * soft_rt_next_start, then the above requirement on the bandwidth is met.
-+ *
-+ * The second requirement is that the request pattern of the application is
-+ * isochronous, i.e., that, after issuing a request or a batch of requests,
-+ * the application stops issuing new requests until all its pending requests
-+ * have been completed. After that, the application may issue a new batch,
-+ * and so on.
-+ * For this reason the next function is invoked to compute
-+ * soft_rt_next_start only for applications that meet this requirement,
-+ * whereas soft_rt_next_start is set to infinity for applications that do
-+ * not.
-+ *
-+ * Unfortunately, even a greedy (i.e., I/O-bound) application may
-+ * happen to meet, occasionally or systematically, both the above
-+ * bandwidth and isochrony requirements. This may happen at least in
-+ * the following circumstances. First, if the CPU load is high. The
-+ * application may stop issuing requests while the CPUs are busy
-+ * serving other processes, then restart, then stop again for a while,
-+ * and so on. The other circumstances are related to the storage
-+ * device: the storage device is highly loaded or reaches a low-enough
-+ * throughput with the I/O of the application (e.g., because the I/O
-+ * is random and/or the device is slow). In all these cases, the
-+ * I/O of the application may be simply slowed down enough to meet
-+ * the bandwidth and isochrony requirements. To reduce the probability
-+ * that greedy applications are deemed as soft real-time in these
-+ * corner cases, a further rule is used in the computation of
-+ * soft_rt_next_start: the return value of this function is forced to
-+ * be higher than the maximum between the following two quantities.
-+ *
-+ * (a) Current time plus: (1) the maximum time for which the arrival
-+ * of a request is waited for when a sync queue becomes idle,
-+ * namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
-+ * postpone for a moment the reason for adding a few extra
-+ * jiffies; we get back to it after next item (b). Lower-bounding
-+ * the return value of this function with the current time plus
-+ * bfqd->bfq_slice_idle tends to filter out greedy applications,
-+ * because the latter issue their next request as soon as possible
-+ * after the last one has been completed. In contrast, a soft
-+ * real-time application spends some time processing data, after a
-+ * batch of its requests has been completed.
-+ *
-+ * (b) Current value of bfqq->soft_rt_next_start. As pointed out
-+ * above, greedy applications may happen to meet both the
-+ * bandwidth and isochrony requirements under heavy CPU or
-+ * storage-device load. In more detail, in these scenarios, these
-+ * applications happen, only for limited time periods, to do I/O
-+ * slowly enough to meet all the requirements described so far,
-+ * including the filtering in above item (a). These slow-speed
-+ * time intervals are usually interspersed between other time
-+ * intervals during which these applications do I/O at a very high
-+ * speed. Fortunately, exactly because of the high speed of the
-+ * I/O in the high-speed intervals, the values returned by this
-+ * function happen to be so high, near the end of any such
-+ * high-speed interval, to be likely to fall *after* the end of
-+ * the low-speed time interval that follows. These high values are
-+ * stored in bfqq->soft_rt_next_start after each invocation of
-+ * this function. As a consequence, if the last value of
-+ * bfqq->soft_rt_next_start is constantly used to lower-bound the
-+ * next value that this function may return, then, from the very
-+ * beginning of a low-speed interval, bfqq->soft_rt_next_start is
-+ * likely to be constantly kept so high that any I/O request
-+ * issued during the low-speed interval is considered as arriving
-+ * to soon for the application to be deemed as soft
-+ * real-time. Then, in the high-speed interval that follows, the
-+ * application will not be deemed as soft real-time, just because
-+ * it will do I/O at a high speed. And so on.
-+ *
-+ * Getting back to the filtering in item (a), in the following two
-+ * cases this filtering might be easily passed by a greedy
-+ * application, if the reference quantity was just
-+ * bfqd->bfq_slice_idle:
-+ * 1) HZ is so low that the duration of a jiffy is comparable to or
-+ * higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
-+ * devices with HZ=100. The time granularity may be so coarse
-+ * that the approximation, in jiffies, of bfqd->bfq_slice_idle
-+ * is rather lower than the exact value.
-+ * 2) jiffies, instead of increasing at a constant rate, may stop increasing
-+ * for a while, then suddenly 'jump' by several units to recover the lost
-+ * increments. This seems to happen, e.g., inside virtual machines.
-+ * To address this issue, in the filtering in (a) we do not use as a
-+ * reference time interval just bfqd->bfq_slice_idle, but
-+ * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
-+ * minimum number of jiffies for which the filter seems to be quite
-+ * precise also in embedded systems and KVM/QEMU virtual machines.
-+ */
-+static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ bfq_log_bfqq(bfqd, bfqq,
-+"service_blkg %lu soft_rate %u sects/sec interval %u",
-+ bfqq->service_from_backlogged,
-+ bfqd->bfq_wr_max_softrt_rate,
-+ jiffies_to_msecs(HZ * bfqq->service_from_backlogged /
-+ bfqd->bfq_wr_max_softrt_rate));
-+
-+ return max3(bfqq->soft_rt_next_start,
-+ bfqq->last_idle_bklogged +
-+ HZ * bfqq->service_from_backlogged /
-+ bfqd->bfq_wr_max_softrt_rate,
-+ jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
-+}
-+
-+static bool bfq_bfqq_injectable(struct bfq_queue *bfqq)
-+{
-+ return BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
-+ blk_queue_nonrot(bfqq->bfqd->queue) &&
-+ bfqq->bfqd->hw_tag;
-+}
-+
-+/**
-+ * bfq_bfqq_expire - expire a queue.
-+ * @bfqd: device owning the queue.
-+ * @bfqq: the queue to expire.
-+ * @compensate: if true, compensate for the time spent idling.
-+ * @reason: the reason causing the expiration.
-+ *
-+ * If the process associated with bfqq does slow I/O (e.g., because it
-+ * issues random requests), we charge bfqq with the time it has been
-+ * in service instead of the service it has received (see
-+ * bfq_bfqq_charge_time for details on how this goal is achieved). As
-+ * a consequence, bfqq will typically get higher timestamps upon
-+ * reactivation, and hence it will be rescheduled as if it had
-+ * received more service than what it has actually received. In the
-+ * end, bfqq receives less service in proportion to how slowly its
-+ * associated process consumes its budgets (and hence how seriously it
-+ * tends to lower the throughput). In addition, this time-charging
-+ * strategy guarantees time fairness among slow processes. In
-+ * contrast, if the process associated with bfqq is not slow, we
-+ * charge bfqq exactly with the service it has received.
-+ *
-+ * Charging time to the first type of queues and the exact service to
-+ * the other has the effect of using the WF2Q+ policy to schedule the
-+ * former on a timeslice basis, without violating service domain
-+ * guarantees among the latter.
-+ */
-+static void bfq_bfqq_expire(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ bool compensate,
-+ enum bfqq_expiration reason)
-+{
-+ bool slow;
-+ unsigned long delta = 0;
-+ struct bfq_entity *entity = &bfqq->entity;
-+ int ref;
-+
-+ BUG_ON(bfqq != bfqd->in_service_queue);
-+
-+ /*
-+ * Check whether the process is slow (see bfq_bfqq_is_slow).
-+ */
-+ slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
-+
-+ /*
-+ * As above explained, charge slow (typically seeky) and
-+ * timed-out queues with the time and not the service
-+ * received, to favor sequential workloads.
-+ *
-+ * Processes doing I/O in the slower disk zones will tend to
-+ * be slow(er) even if not seeky. Therefore, since the
-+ * estimated peak rate is actually an average over the disk
-+ * surface, these processes may timeout just for bad luck. To
-+ * avoid punishing them, do not charge time to processes that
-+ * succeeded in consuming at least 2/3 of their budget. This
-+ * allows BFQ to preserve enough elasticity to still perform
-+ * bandwidth, and not time, distribution with little unlucky
-+ * or quasi-sequential processes.
-+ */
-+ if (bfqq->wr_coeff == 1 &&
-+ (slow ||
-+ (reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
-+ bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
-+ bfq_bfqq_charge_time(bfqd, bfqq, delta);
-+
-+ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
-+
-+ if (reason == BFQ_BFQQ_TOO_IDLE &&
-+ entity->service <= 2 * entity->budget / 10)
-+ bfq_clear_bfqq_IO_bound(bfqq);
-+
-+ if (bfqd->low_latency && bfqq->wr_coeff == 1)
-+ bfqq->last_wr_start_finish = jiffies;
-+
-+ if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
-+ RB_EMPTY_ROOT(&bfqq->sort_list)) {
-+ /*
-+ * If we get here, and there are no outstanding
-+ * requests, then the request pattern is isochronous
-+ * (see the comments on the function
-+ * bfq_bfqq_softrt_next_start()). Thus we can compute
-+ * soft_rt_next_start. And we do it, unless bfqq is in
-+ * interactive weight raising. We do not do it in the
-+ * latter subcase, for the following reason. bfqq may
-+ * be conveying the I/O needed to load a soft
-+ * real-time application. Such an application will
-+ * actually exhibit a soft real-time I/O pattern after
-+ * it finally starts doing its job. But, if
-+ * soft_rt_next_start is computed here for an
-+ * interactive bfqq, and bfqq had received a lot of
-+ * service before remaining with no outstanding
-+ * request (likely to happen on a fast device), then
-+ * soft_rt_next_start would be assigned such a high
-+ * value that, for a very long time, bfqq would be
-+ * prevented from being possibly considered as soft
-+ * real time.
-+ *
-+ * If, instead, the queue still has outstanding
-+ * requests, then we have to wait for the completion
-+ * of all the outstanding requests to discover whether
-+ * the request pattern is actually isochronous.
-+ */
-+ BUG_ON(bfq_tot_busy_queues(bfqd) < 1);
-+ if (bfqq->dispatched == 0 &&
-+ bfqq->wr_coeff != bfqd->bfq_wr_coeff) {
-+ bfqq->soft_rt_next_start =
-+ bfq_bfqq_softrt_next_start(bfqd, bfqq);
-+ bfq_log_bfqq(bfqd, bfqq, "new soft_rt_next %lu",
-+ bfqq->soft_rt_next_start);
-+ } else if (bfqq->dispatched > 0) {
-+ /*
-+ * Schedule an update of soft_rt_next_start to when
-+ * the task may be discovered to be isochronous.
-+ */
-+ bfq_mark_bfqq_softrt_update(bfqq);
-+ }
-+ }
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "expire (%s, slow %d, num_disp %d, short %d, weight %d, serv %d/%d)",
-+ reason_name[reason], slow, bfqq->dispatched,
-+ bfq_bfqq_has_short_ttime(bfqq), entity->weight,
-+ entity->service, entity->budget);
-+
-+ /*
-+ * Increase, decrease or leave budget unchanged according to
-+ * reason.
-+ */
-+ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
-+ __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
-+ BUG_ON(bfqq->next_rq == NULL &&
-+ bfqq->entity.budget < bfqq->entity.service);
-+ ref = bfqq->ref;
-+ __bfq_bfqq_expire(bfqd, bfqq);
-+
-+ if (ref == 1) /* bfqq is gone, no more actions on it */
-+ return;
-+
-+ BUG_ON(ref > 1 &&
-+ !bfq_bfqq_busy(bfqq) && reason == BFQ_BFQQ_BUDGET_EXHAUSTED &&
-+ !bfq_class_idle(bfqq));
-+
-+ bfqq->injected_service = 0;
-+
-+ /* mark bfqq as waiting a request only if a bic still points to it */
-+ if (!bfq_bfqq_busy(bfqq) &&
-+ reason != BFQ_BFQQ_BUDGET_TIMEOUT &&
-+ reason != BFQ_BFQQ_BUDGET_EXHAUSTED) {
-+ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
-+ BUG_ON(bfqq->next_rq);
-+ bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
-+ /*
-+ * Not setting service to 0, because, if the next rq
-+ * arrives in time, the queue will go on receiving
-+ * service with this same budget (as if it never expired)
-+ */
-+ } else {
-+ entity->service = 0;
-+ bfq_log_bfqq(bfqd, bfqq, "resetting service");
-+ }
-+
-+ /*
-+ * Reset the received-service counter for every parent entity.
-+ * Differently from what happens with bfqq->entity.service,
-+ * the resetting of this counter never needs to be postponed
-+ * for parent entities. In fact, in case bfqq may have a
-+ * chance to go on being served using the last, partially
-+ * consumed budget, bfqq->entity.service needs to be kept,
-+ * because if bfqq then actually goes on being served using
-+ * the same budget, the last value of bfqq->entity.service is
-+ * needed to properly decrement bfqq->entity.budget by the
-+ * portion already consumed. In contrast, it is not necessary
-+ * to keep entity->service for parent entities too, because
-+ * the bubble up of the new value of bfqq->entity.budget will
-+ * make sure that the budgets of parent entities are correct,
-+ * even in case bfqq and thus parent entities go on receiving
-+ * service with the same budget.
-+ */
-+ entity = entity->parent;
-+ for_each_entity(entity)
-+ entity->service = 0;
-+}
-+
-+/*
-+ * Budget timeout is not implemented through a dedicated timer, but
-+ * just checked on request arrivals and completions, as well as on
-+ * idle timer expirations.
-+ */
-+static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
-+{
-+ return time_is_before_eq_jiffies(bfqq->budget_timeout);
-+}
-+
-+/*
-+ * If we expire a queue that is actively waiting (i.e., with the
-+ * device idled) for the arrival of a new request, then we may incur
-+ * the timestamp misalignment problem described in the body of the
-+ * function __bfq_activate_entity. Hence we return true only if this
-+ * condition does not hold, or if the queue is slow enough to deserve
-+ * only to be kicked off for preserving a high throughput.
-+ */
-+static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
-+{
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "wait_request %d left %d timeout %d",
-+ bfq_bfqq_wait_request(bfqq),
-+ bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
-+ bfq_bfqq_budget_timeout(bfqq));
-+
-+ return (!bfq_bfqq_wait_request(bfqq) ||
-+ bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
-+ &&
-+ bfq_bfqq_budget_timeout(bfqq);
-+}
-+
-+static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ bool rot_without_queueing =
-+ !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
-+ bfqq_sequential_and_IO_bound,
-+ idling_boosts_thr;
-+
-+ bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
-+ bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
-+ /*
-+ * The next variable takes into account the cases where idling
-+ * boosts the throughput.
-+ *
-+ * The value of the variable is computed considering, first, that
-+ * idling is virtually always beneficial for the throughput if:
-+ * (a) the device is not NCQ-capable and rotational, or
-+ * (b) regardless of the presence of NCQ, the device is rotational and
-+ * the request pattern for bfqq is I/O-bound and sequential, or
-+ * (c) regardless of whether it is rotational, the device is
-+ * not NCQ-capable and the request pattern for bfqq is
-+ * I/O-bound and sequential.
-+ *
-+ * Secondly, and in contrast to the above item (b), idling an
-+ * NCQ-capable flash-based device would not boost the
-+ * throughput even with sequential I/O; rather it would lower
-+ * the throughput in proportion to how fast the device
-+ * is. Accordingly, the next variable is true if any of the
-+ * above conditions (a), (b) or (c) is true, and, in
-+ * particular, happens to be false if bfqd is an NCQ-capable
-+ * flash-based device.
-+ */
-+ idling_boosts_thr = rot_without_queueing ||
-+ ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
-+ bfqq_sequential_and_IO_bound);
-+
-+ bfq_log_bfqq(bfqd, bfqq, "idling_boosts_thr %d", idling_boosts_thr);
-+
-+ /*
-+ * The return value of this function is equal to that of
-+ * idling_boosts_thr, unless a special case holds. In this
-+ * special case, described below, idling may cause problems to
-+ * weight-raised queues.
-+ *
-+ * When the request pool is saturated (e.g., in the presence
-+ * of write hogs), if the processes associated with
-+ * non-weight-raised queues ask for requests at a lower rate,
-+ * then processes associated with weight-raised queues have a
-+ * higher probability to get a request from the pool
-+ * immediately (or at least soon) when they need one. Thus
-+ * they have a higher probability to actually get a fraction
-+ * of the device throughput proportional to their high
-+ * weight. This is especially true with NCQ-capable drives,
-+ * which enqueue several requests in advance, and further
-+ * reorder internally-queued requests.
-+ *
-+ * For this reason, we force to false the return value if
-+ * there are weight-raised busy queues. In this case, and if
-+ * bfqq is not weight-raised, this guarantees that the device
-+ * is not idled for bfqq (if, instead, bfqq is weight-raised,
-+ * then idling will be guaranteed by another variable, see
-+ * below). Combined with the timestamping rules of BFQ (see
-+ * [1] for details), this behavior causes bfqq, and hence any
-+ * sync non-weight-raised queue, to get a lower number of
-+ * requests served, and thus to ask for a lower number of
-+ * requests from the request pool, before the busy
-+ * weight-raised queues get served again. This often mitigates
-+ * starvation problems in the presence of heavy write
-+ * workloads and NCQ, thereby guaranteeing a higher
-+ * application and system responsiveness in these hostile
-+ * scenarios.
-+ */
-+ return idling_boosts_thr &&
-+ bfqd->wr_busy_queues == 0;
-+}
-+
-+/*
-+ * There is a case where idling must be performed not for
-+ * throughput concerns, but to preserve service guarantees.
-+ *
-+ * To introduce this case, we can note that allowing the drive
-+ * to enqueue more than one request at a time, and hence
-+ * delegating de facto final scheduling decisions to the
-+ * drive's internal scheduler, entails loss of control on the
-+ * actual request service order. In particular, the critical
-+ * situation is when requests from different processes happen
-+ * to be present, at the same time, in the internal queue(s)
-+ * of the drive. In such a situation, the drive, by deciding
-+ * the service order of the internally-queued requests, does
-+ * determine also the actual throughput distribution among
-+ * these processes. But the drive typically has no notion or
-+ * concern about per-process throughput distribution, and
-+ * makes its decisions only on a per-request basis. Therefore,
-+ * the service distribution enforced by the drive's internal
-+ * scheduler is likely to coincide with the desired
-+ * device-throughput distribution only in a completely
-+ * symmetric scenario where:
-+ * (i) each of these processes must get the same throughput as
-+ * the others;
-+ * (ii) the I/O of each process has the same properties, in
-+ * terms of locality (sequential or random), direction
-+ * (reads or writes), request sizes, greediness
-+ * (from I/O-bound to sporadic), and so on.
-+ * In fact, in such a scenario, the drive tends to treat
-+ * the requests of each of these processes in about the same
-+ * way as the requests of the others, and thus to provide
-+ * each of these processes with about the same throughput
-+ * (which is exactly the desired throughput distribution). In
-+ * contrast, in any asymmetric scenario, device idling is
-+ * certainly needed to guarantee that bfqq receives its
-+ * assigned fraction of the device throughput (see [1] for
-+ * details).
-+ * The problem is that idling may significantly reduce
-+ * throughput with certain combinations of types of I/O and
-+ * devices. An important example is sync random I/O, on flash
-+ * storage with command queueing. So, unless bfqq falls in the
-+ * above cases where idling also boosts throughput, it would
-+ * be important to check conditions (i) and (ii) accurately,
-+ * so as to avoid idling when not strictly needed for service
-+ * guarantees.
-+ *
-+ * Unfortunately, it is extremely difficult to thoroughly
-+ * check condition (ii). And, in case there are active groups,
-+ * it becomes very difficult to check condition (i) too. In
-+ * fact, if there are active groups, then, for condition (i)
-+ * to become false, it is enough that an active group contains
-+ * more active processes or sub-groups than some other active
-+ * group. More precisely, for condition (i) to hold because of
-+ * such a group, it is not even necessary that the group is
-+ * (still) active: it is sufficient that, even if the group
-+ * has become inactive, some of its descendant processes still
-+ * have some request already dispatched but still waiting for
-+ * completion. In fact, requests have still to be guaranteed
-+ * their share of the throughput even after being
-+ * dispatched. In this respect, it is easy to show that, if a
-+ * group frequently becomes inactive while still having
-+ * in-flight requests, and if, when this happens, the group is
-+ * not considered in the calculation of whether the scenario
-+ * is asymmetric, then the group may fail to be guaranteed its
-+ * fair share of the throughput (basically because idling may
-+ * not be performed for the descendant processes of the group,
-+ * but it had to be). We address this issue with the
-+ * following bi-modal behavior, implemented in the function
-+ * bfq_symmetric_scenario().
-+ *
-+ * If there are groups with requests waiting for completion
-+ * (as commented above, some of these groups may even be
-+ * already inactive), then the scenario is tagged as
-+ * asymmetric, conservatively, without checking any of the
-+ * conditions (i) and (ii). So the device is idled for bfqq.
-+ * This behavior matches also the fact that groups are created
-+ * exactly if controlling I/O is a primary concern (to
-+ * preserve bandwidth and latency guarantees).
-+ *
-+ * On the opposite end, if there are no groups with requests
-+ * waiting for completion, then only condition (i) is actually
-+ * controlled, i.e., provided that condition (i) holds, idling
-+ * is not performed, regardless of whether condition (ii)
-+ * holds. In other words, only if condition (i) does not hold,
-+ * then idling is allowed, and the device tends to be
-+ * prevented from queueing many requests, possibly of several
-+ * processes. Since there are no groups with requests waiting
-+ * for completion, then, to control condition (i) it is enough
-+ * to check just whether all the queues with requests waiting
-+ * for completion also have the same weight.
-+ *
-+ * Not checking condition (ii) evidently exposes bfqq to the
-+ * risk of getting less throughput than its fair share.
-+ * However, for queues with the same weight, a further
-+ * mechanism, preemption, mitigates or even eliminates this
-+ * problem. And it does so without consequences on overall
-+ * throughput. This mechanism and its benefits are explained
-+ * in the next three paragraphs.
-+ *
-+ * Even if a queue, say Q, is expired when it remains idle, Q
-+ * can still preempt the new in-service queue if the next
-+ * request of Q arrives soon (see the comments on
-+ * bfq_bfqq_update_budg_for_activation). If all queues and
-+ * groups have the same weight, this form of preemption,
-+ * combined with the hole-recovery heuristic described in the
-+ * comments on function bfq_bfqq_update_budg_for_activation,
-+ * are enough to preserve a correct bandwidth distribution in
-+ * the mid term, even without idling. In fact, even if not
-+ * idling allows the internal queues of the device to contain
-+ * many requests, and thus to reorder requests, we can rather
-+ * safely assume that the internal scheduler still preserves a
-+ * minimum of mid-term fairness.
-+ *
-+ * More precisely, this preemption-based, idleless approach
-+ * provides fairness in terms of IOPS, and not sectors per
-+ * second. This can be seen with a simple example. Suppose
-+ * that there are two queues with the same weight, but that
-+ * the first queue receives requests of 8 sectors, while the
-+ * second queue receives requests of 1024 sectors. In
-+ * addition, suppose that each of the two queues contains at
-+ * most one request at a time, which implies that each queue
-+ * always remains idle after it is served. Finally, after
-+ * remaining idle, each queue receives very quickly a new
-+ * request. It follows that the two queues are served
-+ * alternatively, preempting each other if needed. This
-+ * implies that, although both queues have the same weight,
-+ * the queue with large requests receives a service that is
-+ * 1024/8 times as high as the service received by the other
-+ * queue.
-+ *
-+ * The motivation for using preemption instead of idling (for
-+ * queues with the same weight) is that, by not idling,
-+ * service guarantees are preserved (completely or at least in
-+ * part) without minimally sacrificing throughput. And, if
-+ * there is no active group, then the primary expectation for
-+ * this device is probably a high throughput.
-+ *
-+ * We are now left only with explaining the additional
-+ * compound condition that is checked below for deciding
-+ * whether the scenario is asymmetric. To explain this
-+ * compound condition, we need to add that the function
-+ * bfq_symmetric_scenario checks the weights of only
-+ * non-weight-raised queues, for efficiency reasons (see
-+ * comments on bfq_weights_tree_add()). Then the fact that
-+ * bfqq is weight-raised is checked explicitly here. More
-+ * precisely, the compound condition below takes into account
-+ * also the fact that, even if bfqq is being weight-raised,
-+ * the scenario is still symmetric if all queues with requests
-+ * waiting for completion happen to be
-+ * weight-raised. Actually, we should be even more precise
-+ * here, and differentiate between interactive weight raising
-+ * and soft real-time weight raising.
-+ *
-+ * As a side note, it is worth considering that the above
-+ * device-idling countermeasures may however fail in the
-+ * following unlucky scenario: if idling is (correctly)
-+ * disabled in a time period during which all symmetry
-+ * sub-conditions hold, and hence the device is allowed to
-+ * enqueue many requests, but at some later point in time some
-+ * sub-condition stops to hold, then it may become impossible
-+ * to let requests be served in the desired order until all
-+ * the requests already queued in the device have been served.
-+ */
-+static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ bool asymmetric_scenario = (bfqq->wr_coeff > 1 &&
-+ bfqd->wr_busy_queues <
-+ bfq_tot_busy_queues(bfqd)) ||
-+ !bfq_symmetric_scenario(bfqd);
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "wr_coeff %d wr_busy %d busy %d asymmetric %d",
-+ bfqq->wr_coeff,
-+ bfqd->wr_busy_queues,
-+ bfq_tot_busy_queues(bfqd),
-+ asymmetric_scenario);
-+
-+ return asymmetric_scenario;
-+}
-+
-+/*
-+ * For a queue that becomes empty, device idling is allowed only if
-+ * this function returns true for that queue. As a consequence, since
-+ * device idling plays a critical role for both throughput boosting
-+ * and service guarantees, the return value of this function plays a
-+ * critical role as well.
-+ *
-+ * In a nutshell, this function returns true only if idling is
-+ * beneficial for throughput or, even if detrimental for throughput,
-+ * idling is however necessary to preserve service guarantees (low
-+ * latency, desired throughput distribution, ...). In particular, on
-+ * NCQ-capable devices, this function tries to return false, so as to
-+ * help keep the drives' internal queues full, whenever this helps the
-+ * device boost the throughput without causing any service-guarantee
-+ * issue.
-+ *
-+ * Most of the issues taken into account to get the return value of
-+ * this function are not trivial. We discuss these issues in the two
-+ * functions providing the main pieces of information needed by this
-+ * function.
-+ */
-+static bool bfq_better_to_idle(struct bfq_queue *bfqq)
-+{
-+ struct bfq_data *bfqd = bfqq->bfqd;
-+ bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
-+
-+ if (unlikely(bfqd->strict_guarantees))
-+ return true;
-+
-+ /*
-+ * Idling is performed only if slice_idle > 0. In addition, we
-+ * do not idle if
-+ * (a) bfqq is async
-+ * (b) bfqq is in the idle io prio class: in this case we do
-+ * not idle because we want to minimize the bandwidth that
-+ * queues in this class can steal to higher-priority queues
-+ */
-+ if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
-+ bfq_class_idle(bfqq))
-+ return false;
-+
-+ idling_boosts_thr_with_no_issue =
-+ idling_boosts_thr_without_issues(bfqd, bfqq);
-+
-+ idling_needed_for_service_guar =
-+ idling_needed_for_service_guarantees(bfqd, bfqq);
-+
-+ /*
-+ * We have now the two components we need to compute the
-+ * return value of the function, which is true only if idling
-+ * either boosts the throughput (without issues), or is
-+ * necessary to preserve service guarantees.
-+ */
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "wr_busy %d boosts %d IO-bound %d guar %d",
-+ bfqd->wr_busy_queues,
-+ idling_boosts_thr_with_no_issue,
-+ bfq_bfqq_IO_bound(bfqq),
-+ idling_needed_for_service_guar);
-+
-+ return idling_boosts_thr_with_no_issue ||
-+ idling_needed_for_service_guar;
-+}
-+
-+/*
-+ * If the in-service queue is empty but the function bfq_better_to_idle
-+ * returns true, then:
-+ * 1) the queue must remain in service and cannot be expired, and
-+ * 2) the device must be idled to wait for the possible arrival of a new
-+ * request for the queue.
-+ * See the comments on the function bfq_better_to_idle for the reasons
-+ * why performing device idling is the best choice to boost the throughput
-+ * and preserve service guarantees when bfq_better_to_idle itself
-+ * returns true.
-+ */
-+static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
-+{
-+ return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
-+}
-+
-+static struct bfq_queue *bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
-+{
-+ struct bfq_queue *bfqq;
-+
-+ /*
-+ * A linear search; but, with a high probability, very few
-+ * steps are needed to find a candidate queue, i.e., a queue
-+ * with enough budget left for its next request. In fact:
-+ * - BFQ dynamically updates the budget of every queue so as
-+ * to accomodate the expected backlog of the queue;
-+ * - if a queue gets all its requests dispatched as injected
-+ * service, then the queue is removed from the active list
-+ * (and re-added only if it gets new requests, but with
-+ * enough budget for its new backlog).
-+ */
-+ list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
-+ if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
-+ bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
-+ bfq_bfqq_budget_left(bfqq)) {
-+ bfq_log_bfqq(bfqd, bfqq, "returned this queue");
-+ return bfqq;
-+ }
-+
-+ bfq_log(bfqd, "no queue found");
-+ return NULL;
-+}
-+
-+/*
-+ * Select a queue for service. If we have a current queue in service,
-+ * check whether to continue servicing it, or retrieve and set a new one.
-+ */
-+static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
-+{
-+ struct bfq_queue *bfqq;
-+ struct request *next_rq;
-+ enum bfqq_expiration reason = BFQ_BFQQ_BUDGET_TIMEOUT;
-+
-+ bfqq = bfqd->in_service_queue;
-+ if (!bfqq)
-+ goto new_queue;
-+
-+ bfq_log_bfqq(bfqd, bfqq, "already in-service queue");
-+
-+ /*
-+ * Do not expire bfqq for budget timeout if bfqq may be about
-+ * to enjoy device idling. The reason why, in this case, we
-+ * prevent bfqq from expiring is the same as in the comments
-+ * on the case where bfq_bfqq_must_idle() returns true, in
-+ * bfq_completed_request().
-+ */
-+ if (bfq_may_expire_for_budg_timeout(bfqq) &&
-+ !bfq_bfqq_must_idle(bfqq))
-+ goto expire;
-+
-+check_queue:
-+ /*
-+ * This loop is rarely executed more than once. Even when it
-+ * happens, it is much more convenient to re-execute this loop
-+ * than to return NULL and trigger a new dispatch to get a
-+ * request served.
-+ */
-+ next_rq = bfqq->next_rq;
-+ /*
-+ * If bfqq has requests queued and it has enough budget left to
-+ * serve them, keep the queue, otherwise expire it.
-+ */
-+ if (next_rq) {
-+ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
-+
-+ if (bfq_serv_to_charge(next_rq, bfqq) >
-+ bfq_bfqq_budget_left(bfqq)) {
-+ /*
-+ * Expire the queue for budget exhaustion,
-+ * which makes sure that the next budget is
-+ * enough to serve the next request, even if
-+ * it comes from the fifo expired path.
-+ */
-+ reason = BFQ_BFQQ_BUDGET_EXHAUSTED;
-+ goto expire;
-+ } else {
-+ /*
-+ * The idle timer may be pending because we may
-+ * not disable disk idling even when a new request
-+ * arrives.
-+ */
-+ if (bfq_bfqq_wait_request(bfqq)) {
-+ BUG_ON(!hrtimer_active(&bfqd->idle_slice_timer));
-+ /*
-+ * If we get here: 1) at least a new request
-+ * has arrived but we have not disabled the
-+ * timer because the request was too small,
-+ * 2) then the block layer has unplugged
-+ * the device, causing the dispatch to be
-+ * invoked.
-+ *
-+ * Since the device is unplugged, now the
-+ * requests are probably large enough to
-+ * provide a reasonable throughput.
-+ * So we disable idling.
-+ */
-+ bfq_clear_bfqq_wait_request(bfqq);
-+ hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
-+ bfqg_stats_update_idle_time(bfqq_group(bfqq));
-+ }
-+ goto keep_queue;
-+ }
-+ }
-+
-+ /*
-+ * No requests pending. However, if the in-service queue is idling
-+ * for a new request, or has requests waiting for a completion and
-+ * may idle after their completion, then keep it anyway.
-+ *
-+ * Yet, to boost throughput, inject service from other queues if
-+ * possible.
-+ */
-+ if (hrtimer_active(&bfqd->idle_slice_timer) ||
-+ (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
-+ if (bfq_bfqq_injectable(bfqq) &&
-+ bfqq->injected_service * bfqq->inject_coeff <
-+ bfqq->entity.service * 10) {
-+ bfq_log_bfqq(bfqd, bfqq, "looking for queue for injection");
-+ bfqq = bfq_choose_bfqq_for_injection(bfqd);
-+ } else {
-+ if (BFQQ_SEEKY(bfqq))
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "injection saturated %d * %d >= %d * 10",
-+ bfqq->injected_service, bfqq->inject_coeff,
-+ bfqq->entity.service);
-+ bfqq = NULL;
-+ }
-+ goto keep_queue;
-+ }
-+
-+ reason = BFQ_BFQQ_NO_MORE_REQUESTS;
-+expire:
-+ bfq_bfqq_expire(bfqd, bfqq, false, reason);
-+new_queue:
-+ bfqq = bfq_set_in_service_queue(bfqd);
-+ if (bfqq) {
-+ bfq_log_bfqq(bfqd, bfqq, "checking new queue");
-+ goto check_queue;
-+ }
-+keep_queue:
-+ if (bfqq)
-+ bfq_log_bfqq(bfqd, bfqq, "returned this queue");
-+ else
-+ bfq_log(bfqd, "no queue returned");
-+
-+ return bfqq;
-+}
-+
-+static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
-+{
-+ struct bfq_entity *entity = &bfqq->entity;
-+
-+ if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
-+ BUG_ON(bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
-+ time_is_after_jiffies(bfqq->last_wr_start_finish));
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
-+ jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
-+ jiffies_to_msecs(bfqq->wr_cur_max_time),
-+ bfqq->wr_coeff,
-+ bfqq->entity.weight, bfqq->entity.orig_weight);
-+
-+ BUG_ON(bfqq != bfqd->in_service_queue && entity->weight !=
-+ entity->orig_weight * bfqq->wr_coeff);
-+ if (entity->prio_changed)
-+ bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
-+
-+ /*
-+ * If the queue was activated in a burst, or too much
-+ * time has elapsed from the beginning of this
-+ * weight-raising period, then end weight raising.
-+ */
-+ if (bfq_bfqq_in_large_burst(bfqq))
-+ bfq_bfqq_end_wr(bfqq);
-+ else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
-+ bfqq->wr_cur_max_time)) {
-+ if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
-+ time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
-+ bfq_wr_duration(bfqd)))
-+ bfq_bfqq_end_wr(bfqq);
-+ else {
-+ switch_back_to_interactive_wr(bfqq, bfqd);
-+ BUG_ON(time_is_after_jiffies(
-+ bfqq->last_wr_start_finish));
-+ bfqq->entity.prio_changed = 1;
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "back to interactive wr");
-+ }
-+ }
-+ if (bfqq->wr_coeff > 1 &&
-+ bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
-+ bfqq->service_from_wr > max_service_from_wr) {
-+ /* see comments on max_service_from_wr */
-+ bfq_bfqq_end_wr(bfqq);
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "too much service");
-+ }
-+ }
-+ /*
-+ * To improve latency (for this or other queues), immediately
-+ * update weight both if it must be raised and if it must be
-+ * lowered. Since, entity may be on some active tree here, and
-+ * might have a pending change of its ioprio class, invoke
-+ * next function with the last parameter unset (see the
-+ * comments on the function).
-+ */
-+ if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
-+ __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
-+ entity, false);
-+}
-+
-+/*
-+ * Dispatch one request from bfqq, moving it to the request queue
-+ * dispatch list.
-+ */
-+static int bfq_dispatch_request(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ int dispatched = 0;
-+ struct request *rq = bfqq->next_rq;
-+ unsigned long service_to_charge;
-+
-+ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
-+ BUG_ON(!rq);
-+ service_to_charge = bfq_serv_to_charge(rq, bfqq);
-+
-+ BUG_ON(service_to_charge > bfq_bfqq_budget_left(bfqq));
-+
-+ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
-+
-+ bfq_bfqq_served(bfqq, service_to_charge);
-+
-+ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
-+
-+ bfq_dispatch_insert(bfqd->queue, rq);
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "dispatched %u sec req (%llu), budg left %d, new disp_nr %d",
-+ blk_rq_sectors(rq),
-+ (unsigned long long) blk_rq_pos(rq),
-+ bfq_bfqq_budget_left(bfqq),
-+ bfqq->dispatched);
-+
-+ dispatched++;
-+
-+ if (bfqq != bfqd->in_service_queue) {
-+ if (likely(bfqd->in_service_queue)) {
-+ bfqd->in_service_queue->injected_service +=
-+ bfq_serv_to_charge(rq, bfqq);
-+ bfq_log_bfqq(bfqd, bfqd->in_service_queue,
-+ "injected_service increased to %d",
-+ bfqd->in_service_queue->injected_service);
-+ }
-+ return dispatched;
-+ }
-+
-+ /*
-+ * If weight raising has to terminate for bfqq, then next
-+ * function causes an immediate update of bfqq's weight,
-+ * without waiting for next activation. As a consequence, on
-+ * expiration, bfqq will be timestamped as if has never been
-+ * weight-raised during this service slot, even if it has
-+ * received part or even most of the service as a
-+ * weight-raised queue. This inflates bfqq's timestamps, which
-+ * is beneficial, as bfqq is then more willing to leave the
-+ * device immediately to possible other weight-raised queues.
-+ */
-+ bfq_update_wr_data(bfqd, bfqq);
-+
-+ if (!bfqd->in_service_bic) {
-+ atomic_long_inc(&RQ_BIC(rq)->icq.ioc->refcount);
-+ bfqd->in_service_bic = RQ_BIC(rq);
-+ BUG_ON(!bfqd->in_service_bic);
-+ }
-+
-+ if (bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq))
-+ goto expire;
-+
-+ return dispatched;
-+
-+expire:
-+ bfq_bfqq_expire(bfqd, bfqq, false, BFQ_BFQQ_BUDGET_EXHAUSTED);
-+ return dispatched;
-+}
-+
-+static int __bfq_forced_dispatch_bfqq(struct bfq_queue *bfqq)
-+{
-+ int dispatched = 0;
-+
-+ while (bfqq->next_rq) {
-+ bfq_dispatch_insert(bfqq->bfqd->queue, bfqq->next_rq);
-+ dispatched++;
-+ }
-+
-+ BUG_ON(!list_empty(&bfqq->fifo));
-+ return dispatched;
-+}
-+
-+/*
-+ * Drain our current requests.
-+ * Used for barriers and when switching io schedulers on-the-fly.
-+ */
-+static int bfq_forced_dispatch(struct bfq_data *bfqd)
-+{
-+ struct bfq_queue *bfqq, *n;
-+ struct bfq_service_tree *st;
-+ int dispatched = 0;
-+
-+ bfqq = bfqd->in_service_queue;
-+ if (bfqq)
-+ __bfq_bfqq_expire(bfqd, bfqq);
-+
-+ /*
-+ * Loop through classes, and be careful to leave the scheduler
-+ * in a consistent state, as feedback mechanisms and vtime
-+ * updates cannot be disabled during the process.
-+ */
-+ list_for_each_entry_safe(bfqq, n, &bfqd->active_list, bfqq_list) {
-+ st = bfq_entity_service_tree(&bfqq->entity);
-+
-+ dispatched += __bfq_forced_dispatch_bfqq(bfqq);
-+
-+ bfqq->max_budget = bfq_max_budget(bfqd);
-+ bfq_forget_idle(st);
-+ }
-+
-+ BUG_ON(bfq_tot_busy_queues(bfqd) != 0);
-+
-+ return dispatched;
-+}
-+
-+static int bfq_dispatch_requests(struct request_queue *q, int force)
-+{
-+ struct bfq_data *bfqd = q->elevator->elevator_data;
-+ struct bfq_queue *bfqq;
-+
-+ bfq_log(bfqd, "%d busy queues", bfq_tot_busy_queues(bfqd));
-+
-+ if (bfq_tot_busy_queues(bfqd) == 0)
-+ return 0;
-+
-+ if (unlikely(force))
-+ return bfq_forced_dispatch(bfqd);
-+
-+ /*
-+ * Force device to serve one request at a time if
-+ * strict_guarantees is true. Forcing this service scheme is
-+ * currently the ONLY way to guarantee that the request
-+ * service order enforced by the scheduler is respected by a
-+ * queueing device. Otherwise the device is free even to make
-+ * some unlucky request wait for as long as the device
-+ * wishes.
-+ *
-+ * Of course, serving one request at at time may cause loss of
-+ * throughput.
-+ */
-+ if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
-+ return 0;
-+
-+ bfqq = bfq_select_queue(bfqd);
-+ if (!bfqq)
-+ return 0;
-+
-+ BUG_ON(bfqq == bfqd->in_service_queue &&
-+ bfqq->entity.budget < bfqq->entity.service);
-+
-+ BUG_ON(bfqq == bfqd->in_service_queue &&
-+ bfq_bfqq_wait_request(bfqq));
-+
-+ if (!bfq_dispatch_request(bfqd, bfqq))
-+ return 0;
-+
-+ bfq_log_bfqq(bfqd, bfqq, "%s request",
-+ bfq_bfqq_sync(bfqq) ? "sync" : "async");
-+
-+ BUG_ON(bfqq->next_rq == NULL &&
-+ bfqq->entity.budget < bfqq->entity.service);
-+ return 1;
-+}
-+
-+/*
-+ * Task holds one reference to the queue, dropped when task exits. Each rq
-+ * in-flight on this queue also holds a reference, dropped when rq is freed.
-+ *
-+ * Queue lock must be held here. Recall not to use bfqq after calling
-+ * this function on it.
-+ */
-+static void bfq_put_queue(struct bfq_queue *bfqq)
-+{
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ struct bfq_group *bfqg = bfqq_group(bfqq);
-+#endif
-+
-+ BUG_ON(bfqq->ref <= 0);
-+
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "%p %d", bfqq, bfqq->ref);
-+ bfqq->ref--;
-+ if (bfqq->ref)
-+ return;
-+
-+ BUG_ON(rb_first(&bfqq->sort_list));
-+ BUG_ON(bfqq->allocated[READ] + bfqq->allocated[WRITE] != 0);
-+ BUG_ON(bfqq->entity.tree);
-+ BUG_ON(bfq_bfqq_busy(bfqq));
-+
-+ if (!hlist_unhashed(&bfqq->burst_list_node)) {
-+ hlist_del_init(&bfqq->burst_list_node);
-+ /*
-+ * Decrement also burst size after the removal, if the
-+ * process associated with bfqq is exiting, and thus
-+ * does not contribute to the burst any longer. This
-+ * decrement helps filter out false positives of large
-+ * bursts, when some short-lived process (often due to
-+ * the execution of commands by some service) happens
-+ * to start and exit while a complex application is
-+ * starting, and thus spawning several processes that
-+ * do I/O (and that *must not* be treated as a large
-+ * burst, see comments on bfq_handle_burst).
-+ *
-+ * In particular, the decrement is performed only if:
-+ * 1) bfqq is not a merged queue, because, if it is,
-+ * then this free of bfqq is not triggered by the exit
-+ * of the process bfqq is associated with, but exactly
-+ * by the fact that bfqq has just been merged.
-+ * 2) burst_size is greater than 0, to handle
-+ * unbalanced decrements. Unbalanced decrements may
-+ * happen in te following case: bfqq is inserted into
-+ * the current burst list--without incrementing
-+ * bust_size--because of a split, but the current
-+ * burst list is not the burst list bfqq belonged to
-+ * (see comments on the case of a split in
-+ * bfq_set_request).
-+ */
-+ if (bfqq->bic && bfqq->bfqd->burst_size > 0)
-+ bfqq->bfqd->burst_size--;
-+ }
-+
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "%p freed", bfqq);
-+
-+ kmem_cache_free(bfq_pool, bfqq);
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ bfqg_put(bfqg);
-+#endif
-+}
-+
-+static void bfq_put_cooperator(struct bfq_queue *bfqq)
-+{
-+ struct bfq_queue *__bfqq, *next;
-+
-+ /*
-+ * If this queue was scheduled to merge with another queue, be
-+ * sure to drop the reference taken on that queue (and others in
-+ * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
-+ */
-+ __bfqq = bfqq->new_bfqq;
-+ while (__bfqq) {
-+ if (__bfqq == bfqq)
-+ break;
-+ next = __bfqq->new_bfqq;
-+ bfq_put_queue(__bfqq);
-+ __bfqq = next;
-+ }
-+}
-+
-+static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
-+{
-+ if (bfqq == bfqd->in_service_queue) {
-+ __bfq_bfqq_expire(bfqd, bfqq);
-+ bfq_schedule_dispatch(bfqd);
-+ }
-+
-+ bfq_log_bfqq(bfqd, bfqq, "%p, %d", bfqq, bfqq->ref);
-+
-+ bfq_put_cooperator(bfqq);
-+
-+ bfq_put_queue(bfqq); /* release process reference */
-+}
-+
-+static void bfq_init_icq(struct io_cq *icq)
-+{
-+ icq_to_bic(icq)->ttime.last_end_request = ktime_get_ns() - (1ULL<<32);
-+}
-+
-+static void bfq_exit_icq(struct io_cq *icq)
-+{
-+ struct bfq_io_cq *bic = icq_to_bic(icq);
-+ struct bfq_data *bfqd = bic_to_bfqd(bic);
-+
-+ if (bic_to_bfqq(bic, false)) {
-+ bfq_exit_bfqq(bfqd, bic_to_bfqq(bic, false));
-+ bic_set_bfqq(bic, NULL, false);
-+ }
-+
-+ if (bic_to_bfqq(bic, true)) {
-+ /*
-+ * If the bic is using a shared queue, put the reference
-+ * taken on the io_context when the bic started using a
-+ * shared bfq_queue.
-+ */
-+ if (bfq_bfqq_coop(bic_to_bfqq(bic, true)))
-+ put_io_context(icq->ioc);
-+ bfq_exit_bfqq(bfqd, bic_to_bfqq(bic, true));
-+ bic_set_bfqq(bic, NULL, true);
-+ }
-+}
-+
-+/*
-+ * Update the entity prio values; note that the new values will not
-+ * be used until the next (re)activation.
-+ */
-+static void bfq_set_next_ioprio_data(struct bfq_queue *bfqq,
-+ struct bfq_io_cq *bic)
-+{
-+ struct task_struct *tsk = current;
-+ int ioprio_class;
-+
-+ ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
-+ switch (ioprio_class) {
-+ default:
-+ dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
-+ "bfq: bad prio class %d\n", ioprio_class);
-+ case IOPRIO_CLASS_NONE:
-+ /*
-+ * No prio set, inherit CPU scheduling settings.
-+ */
-+ bfqq->new_ioprio = task_nice_ioprio(tsk);
-+ bfqq->new_ioprio_class = task_nice_ioclass(tsk);
-+ break;
-+ case IOPRIO_CLASS_RT:
-+ bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
-+ bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
-+ break;
-+ case IOPRIO_CLASS_BE:
-+ bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
-+ bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
-+ break;
-+ case IOPRIO_CLASS_IDLE:
-+ bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
-+ bfqq->new_ioprio = 7;
-+ break;
-+ }
-+
-+ if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
-+ pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
-+ bfqq->new_ioprio);
-+ BUG();
-+ }
-+
-+ bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
-+ bfqq->entity.prio_changed = 1;
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "bic_class %d prio %d class %d",
-+ ioprio_class, bfqq->new_ioprio, bfqq->new_ioprio_class);
-+}
-+
-+static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
-+{
-+ struct bfq_data *bfqd = bic_to_bfqd(bic);
-+ struct bfq_queue *bfqq;
-+ unsigned long uninitialized_var(flags);
-+ int ioprio = bic->icq.ioc->ioprio;
-+
-+ /*
-+ * This condition may trigger on a newly created bic, be sure to
-+ * drop the lock before returning.
-+ */
-+ if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
-+ return;
-+
-+ bic->ioprio = ioprio;
-+
-+ bfqq = bic_to_bfqq(bic, false);
-+ if (bfqq) {
-+ /* release process reference on this queue */
-+ bfq_put_queue(bfqq);
-+ bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
-+ bic_set_bfqq(bic, bfqq, false);
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "bfqq %p %d",
-+ bfqq, bfqq->ref);
-+ }
-+
-+ bfqq = bic_to_bfqq(bic, true);
-+ if (bfqq)
-+ bfq_set_next_ioprio_data(bfqq, bic);
-+}
-+
-+static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
-+ struct bfq_io_cq *bic, pid_t pid, int is_sync)
-+{
-+ RB_CLEAR_NODE(&bfqq->entity.rb_node);
-+ INIT_LIST_HEAD(&bfqq->fifo);
-+ INIT_HLIST_NODE(&bfqq->burst_list_node);
-+ BUG_ON(!hlist_unhashed(&bfqq->burst_list_node));
-+
-+ bfqq->ref = 0;
-+ bfqq->bfqd = bfqd;
-+
-+ if (bic)
-+ bfq_set_next_ioprio_data(bfqq, bic);
-+
-+ if (is_sync) {
-+ /*
-+ * No need to mark as has_short_ttime if in
-+ * idle_class, because no device idling is performed
-+ * for queues in idle class
-+ */
-+ if (!bfq_class_idle(bfqq))
-+ /* tentatively mark as has_short_ttime */
-+ bfq_mark_bfqq_has_short_ttime(bfqq);
-+ bfq_mark_bfqq_sync(bfqq);
-+ bfq_mark_bfqq_just_created(bfqq);
-+ /*
-+ * Aggressively inject a lot of service: up to 90%.
-+ * This coefficient remains constant during bfqq life,
-+ * but this behavior might be changed, after enough
-+ * testing and tuning.
-+ */
-+ bfqq->inject_coeff = 1;
-+ } else
-+ bfq_clear_bfqq_sync(bfqq);
-+ bfq_mark_bfqq_IO_bound(bfqq);
-+
-+ /* Tentative initial value to trade off between thr and lat */
-+ bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
-+ bfqq->pid = pid;
-+
-+ bfqq->wr_coeff = 1;
-+ bfqq->last_wr_start_finish = jiffies;
-+ bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
-+ bfqq->budget_timeout = bfq_smallest_from_now();
-+ bfqq->split_time = bfq_smallest_from_now();
-+
-+ /*
-+ * To not forget the possibly high bandwidth consumed by a
-+ * process/queue in the recent past,
-+ * bfq_bfqq_softrt_next_start() returns a value at least equal
-+ * to the current value of bfqq->soft_rt_next_start (see
-+ * comments on bfq_bfqq_softrt_next_start). Set
-+ * soft_rt_next_start to now, to mean that bfqq has consumed
-+ * no bandwidth so far.
-+ */
-+ bfqq->soft_rt_next_start = jiffies;
-+
-+ /* first request is almost certainly seeky */
-+ bfqq->seek_history = 1;
-+}
-+
-+static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
-+ struct bfq_group *bfqg,
-+ int ioprio_class, int ioprio)
-+{
-+ switch (ioprio_class) {
-+ case IOPRIO_CLASS_RT:
-+ return &bfqg->async_bfqq[0][ioprio];
-+ case IOPRIO_CLASS_NONE:
-+ ioprio = IOPRIO_NORM;
-+ /* fall through */
-+ case IOPRIO_CLASS_BE:
-+ return &bfqg->async_bfqq[1][ioprio];
-+ case IOPRIO_CLASS_IDLE:
-+ return &bfqg->async_idle_bfqq;
-+ default:
-+ BUG();
-+ }
-+}
-+
-+static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
-+ struct bio *bio, bool is_sync,
-+ struct bfq_io_cq *bic)
-+{
-+ const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
-+ const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
-+ struct bfq_queue **async_bfqq = NULL;
-+ struct bfq_queue *bfqq;
-+ struct bfq_group *bfqg;
-+
-+ rcu_read_lock();
-+
-+ bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
-+ if (!bfqg) {
-+ bfqq = &bfqd->oom_bfqq;
-+ goto out;
-+ }
-+
-+ if (!is_sync) {
-+ async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
-+ ioprio);
-+ bfqq = *async_bfqq;
-+ if (bfqq)
-+ goto out;
-+ }
-+
-+ bfqq = kmem_cache_alloc_node(bfq_pool,
-+ GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
-+ bfqd->queue->node);
-+
-+ if (bfqq) {
-+ bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
-+ is_sync);
-+ bfq_init_entity(&bfqq->entity, bfqg);
-+ bfq_log_bfqq(bfqd, bfqq, "allocated");
-+ } else {
-+ bfqq = &bfqd->oom_bfqq;
-+ bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
-+ goto out;
-+ }
-+
-+ /*
-+ * Pin the queue now that it's allocated, scheduler exit will
-+ * prune it.
-+ */
-+ if (async_bfqq) {
-+ bfqq->ref++; /*
-+ * Extra group reference, w.r.t. sync
-+ * queue. This extra reference is removed
-+ * only if bfqq->bfqg disappears, to
-+ * guarantee that this queue is not freed
-+ * until its group goes away.
-+ */
-+ bfq_log_bfqq(bfqd, bfqq, "bfqq not in async: %p, %d",
-+ bfqq, bfqq->ref);
-+ *async_bfqq = bfqq;
-+ }
-+
-+out:
-+ bfqq->ref++; /* get a process reference to this queue */
-+ bfq_log_bfqq(bfqd, bfqq, "at end: %p, %d", bfqq, bfqq->ref);
-+ rcu_read_unlock();
-+ return bfqq;
-+}
-+
-+static void bfq_update_io_thinktime(struct bfq_data *bfqd,
-+ struct bfq_io_cq *bic)
-+{
-+ struct bfq_ttime *ttime = &bic->ttime;
-+ u64 elapsed = ktime_get_ns() - bic->ttime.last_end_request;
-+
-+ elapsed = min_t(u64, elapsed, 2 * bfqd->bfq_slice_idle);
-+
-+ ttime->ttime_samples = (7*bic->ttime.ttime_samples + 256) / 8;
-+ ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
-+ ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
-+ ttime->ttime_samples);
-+}
-+
-+static void
-+bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
-+ struct request *rq)
-+{
-+ bfqq->seek_history <<= 1;
-+ bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
-+}
-+
-+static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ struct bfq_io_cq *bic)
-+{
-+ bool has_short_ttime = true;
-+
-+ /*
-+ * No need to update has_short_ttime if bfqq is async or in
-+ * idle io prio class, or if bfq_slice_idle is zero, because
-+ * no device idling is performed for bfqq in this case.
-+ */
-+ if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
-+ bfqd->bfq_slice_idle == 0)
-+ return;
-+
-+ /* Idle window just restored, statistics are meaningless. */
-+ if (time_is_after_eq_jiffies(bfqq->split_time +
-+ bfqd->bfq_wr_min_idle_time))
-+ return;
-+
-+ /* Think time is infinite if no process is linked to
-+ * bfqq. Otherwise check average think time to
-+ * decide whether to mark as has_short_ttime
-+ */
-+ if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
-+ (bfq_sample_valid(bic->ttime.ttime_samples) &&
-+ bic->ttime.ttime_mean > bfqd->bfq_slice_idle))
-+ has_short_ttime = false;
-+
-+ bfq_log_bfqq(bfqd, bfqq, "has_short_ttime %d",
-+ has_short_ttime);
-+
-+ if (has_short_ttime)
-+ bfq_mark_bfqq_has_short_ttime(bfqq);
-+ else
-+ bfq_clear_bfqq_has_short_ttime(bfqq);
-+}
-+
-+/*
-+ * Called when a new fs request (rq) is added to bfqq. Check if there's
-+ * something we should do about it.
-+ */
-+static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
-+ struct request *rq)
-+{
-+ struct bfq_io_cq *bic = RQ_BIC(rq);
-+
-+ if (rq->cmd_flags & REQ_META)
-+ bfqq->meta_pending++;
-+
-+ bfq_update_io_thinktime(bfqd, bic);
-+ bfq_update_has_short_ttime(bfqd, bfqq, bic);
-+ bfq_update_io_seektime(bfqd, bfqq, rq);
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "has_short_ttime=%d (seeky %d)",
-+ bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
-+
-+ bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
-+
-+ if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
-+ bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
-+ blk_rq_sectors(rq) < 32;
-+ bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
-+
-+ /*
-+ * There is just this request queued: if
-+ * - the request is small, and
-+ * - we are idling to boost throughput, and
-+ * - the queue is not to be expired,
-+ * then just exit.
-+ *
-+ * In this way, if the device is being idled to wait
-+ * for a new request from the in-service queue, we
-+ * avoid unplugging the device and committing the
-+ * device to serve just a small request. In contrast
-+ * we wait for the block layer to decide when to
-+ * unplug the device: hopefully, new requests will be
-+ * merged to this one quickly, then the device will be
-+ * unplugged and larger requests will be dispatched.
-+ */
-+ if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
-+ !budget_timeout)
-+ return;
-+
-+ /*
-+ * A large enough request arrived, or idling is being
-+ * performed to preserve service guarantees, or
-+ * finally the queue is to be expired: in all these
-+ * cases disk idling is to be stopped, so clear
-+ * wait_request flag and reset timer.
-+ */
-+ bfq_clear_bfqq_wait_request(bfqq);
-+ hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
-+ bfqg_stats_update_idle_time(bfqq_group(bfqq));
-+
-+ /*
-+ * The queue is not empty, because a new request just
-+ * arrived. Hence we can safely expire the queue, in
-+ * case of budget timeout, without risking that the
-+ * timestamps of the queue are not updated correctly.
-+ * See [1] for more details.
-+ */
-+ if (budget_timeout)
-+ bfq_bfqq_expire(bfqd, bfqq, false,
-+ BFQ_BFQQ_BUDGET_TIMEOUT);
-+
-+ /*
-+ * Let the request rip immediately, or let a new queue be
-+ * selected if bfqq has just been expired.
-+ */
-+ __blk_run_queue(bfqd->queue);
-+ }
-+}
-+
-+static void bfq_insert_request(struct request_queue *q, struct request *rq)
-+{
-+ struct bfq_data *bfqd = q->elevator->elevator_data;
-+ struct bfq_queue *bfqq = RQ_BFQQ(rq), *new_bfqq;
-+
-+ assert_spin_locked(bfqd->queue->queue_lock);
-+
-+ /*
-+ * An unplug may trigger a requeue of a request from the device
-+ * driver: make sure we are in process context while trying to
-+ * merge two bfq_queues.
-+ */
-+ if (!in_interrupt()) {
-+ new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
-+ if (new_bfqq) {
-+ if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
-+ new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
-+ /*
-+ * Release the request's reference to the old bfqq
-+ * and make sure one is taken to the shared queue.
-+ */
-+ new_bfqq->allocated[rq_data_dir(rq)]++;
-+ bfqq->allocated[rq_data_dir(rq)]--;
-+ new_bfqq->ref++;
-+ if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
-+ bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
-+ bfqq, new_bfqq);
-+
-+ bfq_clear_bfqq_just_created(bfqq);
-+ /*
-+ * rq is about to be enqueued into new_bfqq,
-+ * release rq reference on bfqq
-+ */
-+ bfq_put_queue(bfqq);
-+ rq->elv.priv[1] = new_bfqq;
-+ bfqq = new_bfqq;
-+ }
-+ }
-+
-+ bfq_add_request(rq);
-+
-+ rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
-+ list_add_tail(&rq->queuelist, &bfqq->fifo);
-+
-+ bfq_rq_enqueued(bfqd, bfqq, rq);
-+}
-+
-+static void bfq_update_hw_tag(struct bfq_data *bfqd)
-+{
-+ struct bfq_queue *bfqq = bfqd->in_service_queue;
-+
-+ bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
-+ bfqd->rq_in_driver);
-+
-+ if (bfqd->hw_tag == 1)
-+ return;
-+
-+ /*
-+ * This sample is valid if the number of outstanding requests
-+ * is large enough to allow a queueing behavior. Note that the
-+ * sum is not exact, as it's not taking into account deactivated
-+ * requests.
-+ */
-+ if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
-+ return;
-+
-+ /*
-+ * If active queue hasn't enough requests and can idle, bfq might not
-+ * dispatch sufficient requests to hardware. Don't zero hw_tag in this
-+ * case
-+ */
-+ if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
-+ bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
-+ BFQ_HW_QUEUE_THRESHOLD && bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
-+ return;
-+
-+ if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
-+ return;
-+
-+ bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
-+ bfqd->max_rq_in_driver = 0;
-+ bfqd->hw_tag_samples = 0;
-+}
-+
-+static void bfq_completed_request(struct request_queue *q, struct request *rq)
-+{
-+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
-+ struct bfq_data *bfqd = bfqq->bfqd;
-+ u64 now_ns;
-+ u32 delta_us;
-+
-+ bfq_log_bfqq(bfqd, bfqq, "completed one req with %u sects left",
-+ blk_rq_sectors(rq));
-+
-+ assert_spin_locked(bfqd->queue->queue_lock);
-+ bfq_update_hw_tag(bfqd);
-+
-+ BUG_ON(!bfqd->rq_in_driver);
-+ BUG_ON(!bfqq->dispatched);
-+ bfqd->rq_in_driver--;
-+ bfqq->dispatched--;
-+ bfqg_stats_update_completion(bfqq_group(bfqq),
-+ rq->start_time_ns,
-+ rq->io_start_time_ns,
-+ rq->cmd_flags);
-+
-+ if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
-+ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
-+ /*
-+ * Set budget_timeout (which we overload to store the
-+ * time at which the queue remains with no backlog and
-+ * no outstanding request; used by the weight-raising
-+ * mechanism).
-+ */
-+ bfqq->budget_timeout = jiffies;
-+
-+ bfq_weights_tree_remove(bfqd, bfqq);
-+ }
-+
-+ now_ns = ktime_get_ns();
-+
-+ RQ_BIC(rq)->ttime.last_end_request = now_ns;
-+
-+ /*
-+ * Using us instead of ns, to get a reasonable precision in
-+ * computing rate in next check.
-+ */
-+ delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
-+
-+ bfq_log(bfqd, "delta %uus/%luus max_size %u rate %llu/%llu",
-+ delta_us, BFQ_MIN_TT/NSEC_PER_USEC, bfqd->last_rq_max_size,
-+ delta_us > 0 ?
-+ (USEC_PER_SEC*
-+ (u64)((bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us))
-+ >>BFQ_RATE_SHIFT :
-+ (USEC_PER_SEC*
-+ (u64)(bfqd->last_rq_max_size<<BFQ_RATE_SHIFT))>>BFQ_RATE_SHIFT,
-+ (USEC_PER_SEC*(u64)(1UL<<(BFQ_RATE_SHIFT-10)))>>BFQ_RATE_SHIFT);
-+
-+ /*
-+ * If the request took rather long to complete, and, according
-+ * to the maximum request size recorded, this completion latency
-+ * implies that the request was certainly served at a very low
-+ * rate (less than 1M sectors/sec), then the whole observation
-+ * interval that lasts up to this time instant cannot be a
-+ * valid time interval for computing a new peak rate. Invoke
-+ * bfq_update_rate_reset to have the following three steps
-+ * taken:
-+ * - close the observation interval at the last (previous)
-+ * request dispatch or completion
-+ * - compute rate, if possible, for that observation interval
-+ * - reset to zero samples, which will trigger a proper
-+ * re-initialization of the observation interval on next
-+ * dispatch
-+ */
-+ if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
-+ (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
-+ 1UL<<(BFQ_RATE_SHIFT - 10))
-+ bfq_update_rate_reset(bfqd, NULL);
-+ bfqd->last_completion = now_ns;
-+
-+ /*
-+ * If we are waiting to discover whether the request pattern
-+ * of the task associated with the queue is actually
-+ * isochronous, and both requisites for this condition to hold
-+ * are now satisfied, then compute soft_rt_next_start (see the
-+ * comments on the function bfq_bfqq_softrt_next_start()). We
-+ * do not compute soft_rt_next_start if bfqq is in interactive
-+ * weight raising (see the comments in bfq_bfqq_expire() for
-+ * an explanation). We schedule this delayed update when bfqq
-+ * expires, if it still has in-flight requests.
-+ */
-+ if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
-+ RB_EMPTY_ROOT(&bfqq->sort_list) &&
-+ bfqq->wr_coeff != bfqd->bfq_wr_coeff)
-+ bfqq->soft_rt_next_start =
-+ bfq_bfqq_softrt_next_start(bfqd, bfqq);
-+
-+ /*
-+ * If this is the in-service queue, check if it needs to be expired,
-+ * or if we want to idle in case it has no pending requests.
-+ */
-+ if (bfqd->in_service_queue == bfqq) {
-+ if (bfq_bfqq_must_idle(bfqq)) {
-+ if (bfqq->dispatched == 0)
-+ bfq_arm_slice_timer(bfqd);
-+ /*
-+ * If we get here, we do not expire bfqq, even
-+ * if bfqq was in budget timeout or had no
-+ * more requests (as controlled in the next
-+ * conditional instructions). The reason for
-+ * not expiring bfqq is as follows.
-+ *
-+ * Here bfqq->dispatched > 0 holds, but
-+ * bfq_bfqq_must_idle() returned true. This
-+ * implies that, even if no request arrives
-+ * for bfqq before bfqq->dispatched reaches 0,
-+ * bfqq will, however, not be expired on the
-+ * completion event that causes bfqq->dispatch
-+ * to reach zero. In contrast, on this event,
-+ * bfqq will start enjoying device idling
-+ * (I/O-dispatch plugging).
-+ *
-+ * But, if we expired bfqq here, bfqq would
-+ * not have the chance to enjoy device idling
-+ * when bfqq->dispatched finally reaches
-+ * zero. This would expose bfqq to violation
-+ * of its reserved service guarantees.
-+ */
-+ goto out;
-+ } else if (bfq_may_expire_for_budg_timeout(bfqq))
-+ bfq_bfqq_expire(bfqd, bfqq, false,
-+ BFQ_BFQQ_BUDGET_TIMEOUT);
-+ else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
-+ (bfqq->dispatched == 0 ||
-+ !bfq_better_to_idle(bfqq)))
-+ bfq_bfqq_expire(bfqd, bfqq, false,
-+ BFQ_BFQQ_NO_MORE_REQUESTS);
-+ }
-+
-+ if (!bfqd->rq_in_driver)
-+ bfq_schedule_dispatch(bfqd);
-+
-+out:
-+ return;
-+}
-+
-+static int __bfq_may_queue(struct bfq_queue *bfqq)
-+{
-+ if (bfq_bfqq_wait_request(bfqq) && bfq_bfqq_must_alloc(bfqq)) {
-+ bfq_clear_bfqq_must_alloc(bfqq);
-+ return ELV_MQUEUE_MUST;
-+ }
-+
-+ return ELV_MQUEUE_MAY;
-+}
-+
-+static int bfq_may_queue(struct request_queue *q, unsigned int op)
-+{
-+ struct bfq_data *bfqd = q->elevator->elevator_data;
-+ struct task_struct *tsk = current;
-+ struct bfq_io_cq *bic;
-+ struct bfq_queue *bfqq;
-+
-+ /*
-+ * Don't force setup of a queue from here, as a call to may_queue
-+ * does not necessarily imply that a request actually will be
-+ * queued. So just lookup a possibly existing queue, or return
-+ * 'may queue' if that fails.
-+ */
-+ bic = bfq_bic_lookup(bfqd, tsk->io_context);
-+ if (!bic)
-+ return ELV_MQUEUE_MAY;
-+
-+ bfqq = bic_to_bfqq(bic, op_is_sync(op));
-+ if (bfqq)
-+ return __bfq_may_queue(bfqq);
-+
-+ return ELV_MQUEUE_MAY;
-+}
-+
-+/*
-+ * Queue lock held here.
-+ */
-+static void bfq_put_request(struct request *rq)
-+{
-+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
-+
-+ if (bfqq) {
-+ const int rw = rq_data_dir(rq);
-+
-+ BUG_ON(!bfqq->allocated[rw]);
-+ bfqq->allocated[rw]--;
-+
-+ rq->elv.priv[0] = NULL;
-+ rq->elv.priv[1] = NULL;
-+
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "%p, %d",
-+ bfqq, bfqq->ref);
-+ bfq_put_queue(bfqq);
-+ }
-+}
-+
-+/*
-+ * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
-+ * was the last process referring to that bfqq.
-+ */
-+static struct bfq_queue *
-+bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
-+{
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
-+
-+ put_io_context(bic->icq.ioc);
-+
-+ if (bfqq_process_refs(bfqq) == 1) {
-+ bfqq->pid = current->pid;
-+ bfq_clear_bfqq_coop(bfqq);
-+ bfq_clear_bfqq_split_coop(bfqq);
-+ return bfqq;
-+ }
-+
-+ bic_set_bfqq(bic, NULL, 1);
-+
-+ bfq_put_cooperator(bfqq);
-+
-+ bfq_put_queue(bfqq);
-+ return NULL;
-+}
-+
-+/*
-+ * Allocate bfq data structures associated with this request.
-+ */
-+static int bfq_set_request(struct request_queue *q, struct request *rq,
-+ struct bio *bio, gfp_t gfp_mask)
-+{
-+ struct bfq_data *bfqd = q->elevator->elevator_data;
-+ struct bfq_io_cq *bic = icq_to_bic(rq->elv.icq);
-+ const int rw = rq_data_dir(rq);
-+ const int is_sync = rq_is_sync(rq);
-+ struct bfq_queue *bfqq;
-+ unsigned long flags;
-+ bool bfqq_already_existing = false, split = false;
-+
-+ spin_lock_irqsave(q->queue_lock, flags);
-+
-+ if (!bic)
-+ goto queue_fail;
-+
-+ bfq_check_ioprio_change(bic, bio);
-+
-+ bfq_bic_update_cgroup(bic, bio);
-+
-+new_queue:
-+ bfqq = bic_to_bfqq(bic, is_sync);
-+ if (!bfqq || bfqq == &bfqd->oom_bfqq) {
-+ if (bfqq)
-+ bfq_put_queue(bfqq);
-+ bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
-+ BUG_ON(!hlist_unhashed(&bfqq->burst_list_node));
-+
-+ bic_set_bfqq(bic, bfqq, is_sync);
-+ if (split && is_sync) {
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "was_in_list %d "
-+ "was_in_large_burst %d "
-+ "large burst in progress %d",
-+ bic->was_in_burst_list,
-+ bic->saved_in_large_burst,
-+ bfqd->large_burst);
-+
-+ if ((bic->was_in_burst_list && bfqd->large_burst) ||
-+ bic->saved_in_large_burst) {
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "marking in "
-+ "large burst");
-+ bfq_mark_bfqq_in_large_burst(bfqq);
-+ } else {
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "clearing in "
-+ "large burst");
-+ bfq_clear_bfqq_in_large_burst(bfqq);
-+ if (bic->was_in_burst_list)
-+ /*
-+ * If bfqq was in the current
-+ * burst list before being
-+ * merged, then we have to add
-+ * it back. And we do not need
-+ * to increase burst_size, as
-+ * we did not decrement
-+ * burst_size when we removed
-+ * bfqq from the burst list as
-+ * a consequence of a merge
-+ * (see comments in
-+ * bfq_put_queue). In this
-+ * respect, it would be rather
-+ * costly to know whether the
-+ * current burst list is still
-+ * the same burst list from
-+ * which bfqq was removed on
-+ * the merge. To avoid this
-+ * cost, if bfqq was in a
-+ * burst list, then we add
-+ * bfqq to the current burst
-+ * list without any further
-+ * check. This can cause
-+ * inappropriate insertions,
-+ * but rarely enough to not
-+ * harm the detection of large
-+ * bursts significantly.
-+ */
-+ hlist_add_head(&bfqq->burst_list_node,
-+ &bfqd->burst_list);
-+ }
-+ bfqq->split_time = jiffies;
-+ }
-+ } else {
-+ /* If the queue was seeky for too long, break it apart. */
-+ if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
-+ bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
-+
-+ /* Update bic before losing reference to bfqq */
-+ if (bfq_bfqq_in_large_burst(bfqq))
-+ bic->saved_in_large_burst = true;
-+
-+ bfqq = bfq_split_bfqq(bic, bfqq);
-+ split = true;
-+ if (!bfqq)
-+ goto new_queue;
-+ else
-+ bfqq_already_existing = true;
-+ }
-+ }
-+
-+ bfqq->allocated[rw]++;
-+ bfqq->ref++;
-+ bfq_log_bfqq(bfqd, bfqq, "bfqq %p, %d", bfqq, bfqq->ref);
-+
-+ rq->elv.priv[0] = bic;
-+ rq->elv.priv[1] = bfqq;
-+
-+ /*
-+ * If a bfq_queue has only one process reference, it is owned
-+ * by only one bfq_io_cq: we can set the bic field of the
-+ * bfq_queue to the address of that structure. Also, if the
-+ * queue has just been split, mark a flag so that the
-+ * information is available to the other scheduler hooks.
-+ */
-+ if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
-+ bfqq->bic = bic;
-+ if (split) {
-+ /*
-+ * If the queue has just been split from a shared
-+ * queue, restore the idle window and the possible
-+ * weight raising period.
-+ */
-+ bfq_bfqq_resume_state(bfqq, bfqd, bic,
-+ bfqq_already_existing);
-+ }
-+ }
-+
-+ if (unlikely(bfq_bfqq_just_created(bfqq)))
-+ bfq_handle_burst(bfqd, bfqq);
-+
-+ spin_unlock_irqrestore(q->queue_lock, flags);
-+
-+ return 0;
-+
-+queue_fail:
-+ bfq_schedule_dispatch(bfqd);
-+ spin_unlock_irqrestore(q->queue_lock, flags);
-+
-+ return 1;
-+}
-+
-+static void bfq_kick_queue(struct work_struct *work)
-+{
-+ struct bfq_data *bfqd =
-+ container_of(work, struct bfq_data, unplug_work);
-+ struct request_queue *q = bfqd->queue;
-+
-+ spin_lock_irq(q->queue_lock);
-+ __blk_run_queue(q);
-+ spin_unlock_irq(q->queue_lock);
-+}
-+
-+/*
-+ * Handler of the expiration of the timer running if the in-service queue
-+ * is idling inside its time slice.
-+ */
-+static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
-+{
-+ struct bfq_data *bfqd = container_of(timer, struct bfq_data,
-+ idle_slice_timer);
-+ struct bfq_queue *bfqq;
-+ unsigned long flags;
-+ enum bfqq_expiration reason;
-+
-+ spin_lock_irqsave(bfqd->queue->queue_lock, flags);
-+
-+ bfqq = bfqd->in_service_queue;
-+ /*
-+ * Theoretical race here: the in-service queue can be NULL or
-+ * different from the queue that was idling if the timer handler
-+ * spins on the queue_lock and a new request arrives for the
-+ * current queue and there is a full dispatch cycle that changes
-+ * the in-service queue. This can hardly happen, but in the worst
-+ * case we just expire a queue too early.
-+ */
-+ if (bfqq) {
-+ bfq_log_bfqq(bfqd, bfqq, "expired");
-+ bfq_clear_bfqq_wait_request(bfqq);
-+
-+ if (bfq_bfqq_budget_timeout(bfqq))
-+ /*
-+ * Also here the queue can be safely expired
-+ * for budget timeout without wasting
-+ * guarantees
-+ */
-+ reason = BFQ_BFQQ_BUDGET_TIMEOUT;
-+ else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
-+ /*
-+ * The queue may not be empty upon timer expiration,
-+ * because we may not disable the timer when the
-+ * first request of the in-service queue arrives
-+ * during disk idling.
-+ */
-+ reason = BFQ_BFQQ_TOO_IDLE;
-+ else
-+ goto schedule_dispatch;
-+
-+ bfq_bfqq_expire(bfqd, bfqq, true, reason);
-+ }
-+
-+schedule_dispatch:
-+ bfq_schedule_dispatch(bfqd);
-+
-+ spin_unlock_irqrestore(bfqd->queue->queue_lock, flags);
-+ return HRTIMER_NORESTART;
-+}
-+
-+static void bfq_shutdown_timer_wq(struct bfq_data *bfqd)
-+{
-+ hrtimer_cancel(&bfqd->idle_slice_timer);
-+ cancel_work_sync(&bfqd->unplug_work);
-+}
-+
-+static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
-+ struct bfq_queue **bfqq_ptr)
-+{
-+ struct bfq_group *root_group = bfqd->root_group;
-+ struct bfq_queue *bfqq = *bfqq_ptr;
-+
-+ bfq_log(bfqd, "%p", bfqq);
-+ if (bfqq) {
-+ bfq_bfqq_move(bfqd, bfqq, root_group);
-+ bfq_log_bfqq(bfqd, bfqq, "putting %p, %d",
-+ bfqq, bfqq->ref);
-+ bfq_put_queue(bfqq);
-+ *bfqq_ptr = NULL;
-+ }
-+}
-+
-+/*
-+ * Release all the bfqg references to its async queues. If we are
-+ * deallocating the group these queues may still contain requests, so
-+ * we reparent them to the root cgroup (i.e., the only one that will
-+ * exist for sure until all the requests on a device are gone).
-+ */
-+static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
-+{
-+ int i, j;
-+
-+ for (i = 0; i < 2; i++)
-+ for (j = 0; j < IOPRIO_BE_NR; j++)
-+ __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
-+
-+ __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
-+}
-+
-+static void bfq_exit_queue(struct elevator_queue *e)
-+{
-+ struct bfq_data *bfqd = e->elevator_data;
-+ struct request_queue *q = bfqd->queue;
-+ struct bfq_queue *bfqq, *n;
-+
-+ bfq_shutdown_timer_wq(bfqd);
-+
-+ spin_lock_irq(q->queue_lock);
-+
-+ BUG_ON(bfqd->in_service_queue);
-+ list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
-+ bfq_deactivate_bfqq(bfqd, bfqq, false, false);
-+
-+ spin_unlock_irq(q->queue_lock);
-+
-+ bfq_shutdown_timer_wq(bfqd);
-+
-+ BUG_ON(hrtimer_active(&bfqd->idle_slice_timer));
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ /* release oom-queue reference to root group */
-+ bfqg_put(bfqd->root_group);
-+
-+ blkcg_deactivate_policy(q, &blkcg_policy_bfq);
-+#else
-+ bfq_put_async_queues(bfqd, bfqd->root_group);
-+ kfree(bfqd->root_group);
-+#endif
-+
-+ kfree(bfqd);
-+}
-+
-+static void bfq_init_root_group(struct bfq_group *root_group,
-+ struct bfq_data *bfqd)
-+{
-+ int i;
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ root_group->entity.parent = NULL;
-+ root_group->my_entity = NULL;
-+ root_group->bfqd = bfqd;
-+#endif
-+ root_group->rq_pos_tree = RB_ROOT;
-+ for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
-+ root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
-+ root_group->sched_data.bfq_class_idle_last_service = jiffies;
-+}
-+
-+static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
-+{
-+ struct bfq_data *bfqd;
-+ struct elevator_queue *eq;
-+
-+ eq = elevator_alloc(q, e);
-+ if (!eq)
-+ return -ENOMEM;
-+
-+ bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
-+ if (!bfqd) {
-+ kobject_put(&eq->kobj);
-+ return -ENOMEM;
-+ }
-+ eq->elevator_data = bfqd;
-+
-+ /*
-+ * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
-+ * Grab a permanent reference to it, so that the normal code flow
-+ * will not attempt to free it.
-+ */
-+ bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
-+ bfqd->oom_bfqq.ref++;
-+ bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
-+ bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
-+ bfqd->oom_bfqq.entity.new_weight =
-+ bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
-+
-+ /* oom_bfqq does not participate to bursts */
-+ bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
-+ /*
-+ * Trigger weight initialization, according to ioprio, at the
-+ * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
-+ * class won't be changed any more.
-+ */
-+ bfqd->oom_bfqq.entity.prio_changed = 1;
-+
-+ bfqd->queue = q;
-+
-+ spin_lock_irq(q->queue_lock);
-+ q->elevator = eq;
-+ spin_unlock_irq(q->queue_lock);
-+
-+ bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
-+ if (!bfqd->root_group)
-+ goto out_free;
-+ bfq_init_root_group(bfqd->root_group, bfqd);
-+ bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
-+
-+ hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
-+ HRTIMER_MODE_REL);
-+ bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
-+
-+ bfqd->queue_weights_tree = RB_ROOT;
-+ bfqd->num_groups_with_pending_reqs = 0;
-+
-+ INIT_WORK(&bfqd->unplug_work, bfq_kick_queue);
-+
-+ INIT_LIST_HEAD(&bfqd->active_list);
-+ INIT_LIST_HEAD(&bfqd->idle_list);
-+ INIT_HLIST_HEAD(&bfqd->burst_list);
-+
-+ bfqd->hw_tag = -1;
-+
-+ bfqd->bfq_max_budget = bfq_default_max_budget;
-+
-+ bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
-+ bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
-+ bfqd->bfq_back_max = bfq_back_max;
-+ bfqd->bfq_back_penalty = bfq_back_penalty;
-+ bfqd->bfq_slice_idle = bfq_slice_idle;
-+ bfqd->bfq_timeout = bfq_timeout;
-+
-+ bfqd->bfq_requests_within_timer = 120;
-+
-+ bfqd->bfq_large_burst_thresh = 8;
-+ bfqd->bfq_burst_interval = msecs_to_jiffies(180);
-+
-+ bfqd->low_latency = true;
-+
-+ /*
-+ * Trade-off between responsiveness and fairness.
-+ */
-+ bfqd->bfq_wr_coeff = 30;
-+ bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
-+ bfqd->bfq_wr_max_time = 0;
-+ bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
-+ bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
-+ bfqd->bfq_wr_max_softrt_rate = 7000; /*
-+ * Approximate rate required
-+ * to playback or record a
-+ * high-definition compressed
-+ * video.
-+ */
-+ bfqd->wr_busy_queues = 0;
-+
-+ /*
-+ * Begin by assuming, optimistically, that the device peak
-+ * rate is equal to 2/3 of the highest reference rate.
-+ */
-+ bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
-+ ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
-+ bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
-+
-+ return 0;
-+
-+out_free:
-+ kfree(bfqd);
-+ kobject_put(&eq->kobj);
-+ return -ENOMEM;
-+}
-+
-+static void bfq_registered_queue(struct request_queue *q)
-+{
-+ wbt_disable_default(q);
-+}
-+
-+static void bfq_slab_kill(void)
-+{
-+ kmem_cache_destroy(bfq_pool);
-+}
-+
-+static int __init bfq_slab_setup(void)
-+{
-+ bfq_pool = KMEM_CACHE(bfq_queue, 0);
-+ if (!bfq_pool)
-+ return -ENOMEM;
-+ return 0;
-+}
-+
-+static ssize_t bfq_var_show(unsigned int var, char *page)
-+{
-+ return sprintf(page, "%u\n", var);
-+}
-+
-+static ssize_t bfq_var_store(unsigned long *var, const char *page,
-+ size_t count)
-+{
-+ unsigned long new_val;
-+ int ret = kstrtoul(page, 10, &new_val);
-+
-+ if (ret == 0)
-+ *var = new_val;
-+
-+ return count;
-+}
-+
-+static ssize_t bfq_wr_max_time_show(struct elevator_queue *e, char *page)
-+{
-+ struct bfq_data *bfqd = e->elevator_data;
-+
-+ return sprintf(page, "%d\n", bfqd->bfq_wr_max_time > 0 ?
-+ jiffies_to_msecs(bfqd->bfq_wr_max_time) :
-+ jiffies_to_msecs(bfq_wr_duration(bfqd)));
-+}
-+
-+static ssize_t bfq_weights_show(struct elevator_queue *e, char *page)
-+{
-+ struct bfq_queue *bfqq;
-+ struct bfq_data *bfqd = e->elevator_data;
-+ ssize_t num_char = 0;
-+
-+ num_char += sprintf(page + num_char, "Tot reqs queued %d\n\n",
-+ bfqd->queued);
-+
-+ spin_lock_irq(bfqd->queue->queue_lock);
-+
-+ num_char += sprintf(page + num_char, "Active:\n");
-+ list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list) {
-+ num_char += sprintf(page + num_char,
-+ "pid%d: weight %hu, nr_queued %d %d, ",
-+ bfqq->pid,
-+ bfqq->entity.weight,
-+ bfqq->queued[0],
-+ bfqq->queued[1]);
-+ num_char += sprintf(page + num_char,
-+ "dur %d/%u\n",
-+ jiffies_to_msecs(
-+ jiffies -
-+ bfqq->last_wr_start_finish),
-+ jiffies_to_msecs(bfqq->wr_cur_max_time));
-+ }
-+
-+ num_char += sprintf(page + num_char, "Idle:\n");
-+ list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list) {
-+ num_char += sprintf(page + num_char,
-+ "pid%d: weight %hu, dur %d/%u\n",
-+ bfqq->pid,
-+ bfqq->entity.weight,
-+ jiffies_to_msecs(jiffies -
-+ bfqq->last_wr_start_finish),
-+ jiffies_to_msecs(bfqq->wr_cur_max_time));
-+ }
-+
-+ spin_unlock_irq(bfqd->queue->queue_lock);
-+
-+ return num_char;
-+}
-+
-+#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
-+static ssize_t __FUNC(struct elevator_queue *e, char *page) \
-+{ \
-+ struct bfq_data *bfqd = e->elevator_data; \
-+ u64 __data = __VAR; \
-+ if (__CONV == 1) \
-+ __data = jiffies_to_msecs(__data); \
-+ else if (__CONV == 2) \
-+ __data = div_u64(__data, NSEC_PER_MSEC); \
-+ return bfq_var_show(__data, (page)); \
-+}
-+SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
-+SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
-+SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
-+SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
-+SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
-+SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
-+SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
-+SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
-+SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
-+SHOW_FUNCTION(bfq_wr_coeff_show, bfqd->bfq_wr_coeff, 0);
-+SHOW_FUNCTION(bfq_wr_rt_max_time_show, bfqd->bfq_wr_rt_max_time, 1);
-+SHOW_FUNCTION(bfq_wr_min_idle_time_show, bfqd->bfq_wr_min_idle_time, 1);
-+SHOW_FUNCTION(bfq_wr_min_inter_arr_async_show, bfqd->bfq_wr_min_inter_arr_async,
-+ 1);
-+SHOW_FUNCTION(bfq_wr_max_softrt_rate_show, bfqd->bfq_wr_max_softrt_rate, 0);
-+#undef SHOW_FUNCTION
-+
-+#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
-+static ssize_t __FUNC(struct elevator_queue *e, char *page) \
-+{ \
-+ struct bfq_data *bfqd = e->elevator_data; \
-+ u64 __data = __VAR; \
-+ __data = div_u64(__data, NSEC_PER_USEC); \
-+ return bfq_var_show(__data, (page)); \
-+}
-+USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
-+#undef USEC_SHOW_FUNCTION
-+
-+#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
-+static ssize_t \
-+__FUNC(struct elevator_queue *e, const char *page, size_t count) \
-+{ \
-+ struct bfq_data *bfqd = e->elevator_data; \
-+ unsigned long uninitialized_var(__data); \
-+ int ret = bfq_var_store(&__data, (page), count); \
-+ if (__data < (MIN)) \
-+ __data = (MIN); \
-+ else if (__data > (MAX)) \
-+ __data = (MAX); \
-+ if (__CONV == 1) \
-+ *(__PTR) = msecs_to_jiffies(__data); \
-+ else if (__CONV == 2) \
-+ *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
-+ else \
-+ *(__PTR) = __data; \
-+ return ret; \
-+}
-+STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
-+ INT_MAX, 2);
-+STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
-+ INT_MAX, 2);
-+STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
-+STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
-+ INT_MAX, 0);
-+STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
-+STORE_FUNCTION(bfq_wr_coeff_store, &bfqd->bfq_wr_coeff, 1, INT_MAX, 0);
-+STORE_FUNCTION(bfq_wr_max_time_store, &bfqd->bfq_wr_max_time, 0, INT_MAX, 1);
-+STORE_FUNCTION(bfq_wr_rt_max_time_store, &bfqd->bfq_wr_rt_max_time, 0, INT_MAX,
-+ 1);
-+STORE_FUNCTION(bfq_wr_min_idle_time_store, &bfqd->bfq_wr_min_idle_time, 0,
-+ INT_MAX, 1);
-+STORE_FUNCTION(bfq_wr_min_inter_arr_async_store,
-+ &bfqd->bfq_wr_min_inter_arr_async, 0, INT_MAX, 1);
-+STORE_FUNCTION(bfq_wr_max_softrt_rate_store, &bfqd->bfq_wr_max_softrt_rate, 0,
-+ INT_MAX, 0);
-+#undef STORE_FUNCTION
-+
-+#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
-+static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
-+{ \
-+ struct bfq_data *bfqd = e->elevator_data; \
-+ unsigned long uninitialized_var(__data); \
-+ int ret = bfq_var_store(&__data, (page), count); \
-+ if (__data < (MIN)) \
-+ __data = (MIN); \
-+ else if (__data > (MAX)) \
-+ __data = (MAX); \
-+ *(__PTR) = (u64)__data * NSEC_PER_USEC; \
-+ return ret; \
-+}
-+USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
-+ UINT_MAX);
-+#undef USEC_STORE_FUNCTION
-+
-+/* do nothing for the moment */
-+static ssize_t bfq_weights_store(struct elevator_queue *e,
-+ const char *page, size_t count)
-+{
-+ return count;
-+}
-+
-+static ssize_t bfq_max_budget_store(struct elevator_queue *e,
-+ const char *page, size_t count)
-+{
-+ struct bfq_data *bfqd = e->elevator_data;
-+ unsigned long uninitialized_var(__data);
-+ int ret = bfq_var_store(&__data, (page), count);
-+
-+ if (__data == 0)
-+ bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
-+ else {
-+ if (__data > INT_MAX)
-+ __data = INT_MAX;
-+ bfqd->bfq_max_budget = __data;
-+ }
-+
-+ bfqd->bfq_user_max_budget = __data;
-+
-+ return ret;
-+}
-+
-+/*
-+ * Leaving this name to preserve name compatibility with cfq
-+ * parameters, but this timeout is used for both sync and async.
-+ */
-+static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
-+ const char *page, size_t count)
-+{
-+ struct bfq_data *bfqd = e->elevator_data;
-+ unsigned long uninitialized_var(__data);
-+ int ret = bfq_var_store(&__data, (page), count);
-+
-+ if (__data < 1)
-+ __data = 1;
-+ else if (__data > INT_MAX)
-+ __data = INT_MAX;
-+
-+ bfqd->bfq_timeout = msecs_to_jiffies(__data);
-+ if (bfqd->bfq_user_max_budget == 0)
-+ bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
-+
-+ return ret;
-+}
-+
-+static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
-+ const char *page, size_t count)
-+{
-+ struct bfq_data *bfqd = e->elevator_data;
-+ unsigned long uninitialized_var(__data);
-+ int ret = bfq_var_store(&__data, (page), count);
-+
-+ if (__data > 1)
-+ __data = 1;
-+ if (!bfqd->strict_guarantees && __data == 1
-+ && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
-+ bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
-+
-+ bfqd->strict_guarantees = __data;
-+
-+ return ret;
-+}
-+
-+static ssize_t bfq_low_latency_store(struct elevator_queue *e,
-+ const char *page, size_t count)
-+{
-+ struct bfq_data *bfqd = e->elevator_data;
-+ unsigned long uninitialized_var(__data);
-+ int ret = bfq_var_store(&__data, (page), count);
-+
-+ if (__data > 1)
-+ __data = 1;
-+ if (__data == 0 && bfqd->low_latency != 0)
-+ bfq_end_wr(bfqd);
-+ bfqd->low_latency = __data;
-+
-+ return ret;
-+}
-+
-+#define BFQ_ATTR(name) \
-+ __ATTR(name, S_IRUGO|S_IWUSR, bfq_##name##_show, bfq_##name##_store)
-+
-+static struct elv_fs_entry bfq_attrs[] = {
-+ BFQ_ATTR(fifo_expire_sync),
-+ BFQ_ATTR(fifo_expire_async),
-+ BFQ_ATTR(back_seek_max),
-+ BFQ_ATTR(back_seek_penalty),
-+ BFQ_ATTR(slice_idle),
-+ BFQ_ATTR(slice_idle_us),
-+ BFQ_ATTR(max_budget),
-+ BFQ_ATTR(timeout_sync),
-+ BFQ_ATTR(strict_guarantees),
-+ BFQ_ATTR(low_latency),
-+ BFQ_ATTR(wr_coeff),
-+ BFQ_ATTR(wr_max_time),
-+ BFQ_ATTR(wr_rt_max_time),
-+ BFQ_ATTR(wr_min_idle_time),
-+ BFQ_ATTR(wr_min_inter_arr_async),
-+ BFQ_ATTR(wr_max_softrt_rate),
-+ BFQ_ATTR(weights),
-+ __ATTR_NULL
-+};
-+
-+static struct elevator_type iosched_bfq = {
-+ .ops.sq = {
-+ .elevator_merge_fn = bfq_merge,
-+ .elevator_merged_fn = bfq_merged_request,
-+ .elevator_merge_req_fn = bfq_merged_requests,
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ .elevator_bio_merged_fn = bfq_bio_merged,
-+#endif
-+ .elevator_allow_bio_merge_fn = bfq_allow_bio_merge,
-+ .elevator_allow_rq_merge_fn = bfq_allow_rq_merge,
-+ .elevator_dispatch_fn = bfq_dispatch_requests,
-+ .elevator_add_req_fn = bfq_insert_request,
-+ .elevator_activate_req_fn = bfq_activate_request,
-+ .elevator_deactivate_req_fn = bfq_deactivate_request,
-+ .elevator_completed_req_fn = bfq_completed_request,
-+ .elevator_former_req_fn = elv_rb_former_request,
-+ .elevator_latter_req_fn = elv_rb_latter_request,
-+ .elevator_init_icq_fn = bfq_init_icq,
-+ .elevator_exit_icq_fn = bfq_exit_icq,
-+ .elevator_set_req_fn = bfq_set_request,
-+ .elevator_put_req_fn = bfq_put_request,
-+ .elevator_may_queue_fn = bfq_may_queue,
-+ .elevator_init_fn = bfq_init_queue,
-+ .elevator_exit_fn = bfq_exit_queue,
-+ .elevator_registered_fn = bfq_registered_queue,
-+ },
-+ .icq_size = sizeof(struct bfq_io_cq),
-+ .icq_align = __alignof__(struct bfq_io_cq),
-+ .elevator_attrs = bfq_attrs,
-+ .elevator_name = "bfq-sq",
-+ .elevator_owner = THIS_MODULE,
-+};
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+static struct blkcg_policy blkcg_policy_bfq = {
-+ .dfl_cftypes = bfq_blkg_files,
-+ .legacy_cftypes = bfq_blkcg_legacy_files,
-+
-+ .cpd_alloc_fn = bfq_cpd_alloc,
-+ .cpd_init_fn = bfq_cpd_init,
-+ .cpd_bind_fn = bfq_cpd_init,
-+ .cpd_free_fn = bfq_cpd_free,
-+
-+ .pd_alloc_fn = bfq_pd_alloc,
-+ .pd_init_fn = bfq_pd_init,
-+ .pd_offline_fn = bfq_pd_offline,
-+ .pd_free_fn = bfq_pd_free,
-+ .pd_reset_stats_fn = bfq_pd_reset_stats,
-+};
-+#endif
-+
-+static int __init bfq_init(void)
-+{
-+ int ret;
-+ char msg[60] = "BFQ I/O-scheduler: v9";
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ ret = blkcg_policy_register(&blkcg_policy_bfq);
-+ if (ret)
-+ return ret;
-+#endif
-+
-+ ret = -ENOMEM;
-+ if (bfq_slab_setup())
-+ goto err_pol_unreg;
-+
-+ /*
-+ * Times to load large popular applications for the typical
-+ * systems installed on the reference devices (see the
-+ * comments before the definition of the next
-+ * array). Actually, we use slightly lower values, as the
-+ * estimated peak rate tends to be smaller than the actual
-+ * peak rate. The reason for this last fact is that estimates
-+ * are computed over much shorter time intervals than the long
-+ * intervals typically used for benchmarking. Why? First, to
-+ * adapt more quickly to variations. Second, because an I/O
-+ * scheduler cannot rely on a peak-rate-evaluation workload to
-+ * be run for a long time.
-+ */
-+ ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
-+ ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
-+
-+ ret = elv_register(&iosched_bfq);
-+ if (ret)
-+ goto slab_kill;
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ strcat(msg, " (with cgroups support)");
-+#endif
-+ pr_info("%s", msg);
-+
-+ return 0;
-+
-+slab_kill:
-+ bfq_slab_kill();
-+err_pol_unreg:
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ blkcg_policy_unregister(&blkcg_policy_bfq);
-+#endif
-+ return ret;
-+}
-+
-+static void __exit bfq_exit(void)
-+{
-+ elv_unregister(&iosched_bfq);
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ blkcg_policy_unregister(&blkcg_policy_bfq);
-+#endif
-+ bfq_slab_kill();
-+}
-+
-+module_init(bfq_init);
-+module_exit(bfq_exit);
-+
-+MODULE_AUTHOR("Arianna Avanzini, Fabio Checconi, Paolo Valente");
-+MODULE_LICENSE("GPL");
-diff --git a/block/bfq.h b/block/bfq.h
-new file mode 100644
-index 000000000000..0177fc7205d7
---- /dev/null
-+++ b/block/bfq.h
-@@ -0,0 +1,1074 @@
-+/*
-+ * BFQ v9: data structures and common functions prototypes.
-+ *
-+ * Based on ideas and code from CFQ:
-+ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
-+ *
-+ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
-+ * Paolo Valente <paolo.valente@unimore.it>
-+ *
-+ * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
-+ *
-+ * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
-+ */
-+
-+#ifndef _BFQ_H
-+#define _BFQ_H
-+
-+#include <linux/hrtimer.h>
-+#include <linux/blk-cgroup.h>
-+
-+/*
-+ * Define an alternative macro to compile cgroups support. This is one
-+ * of the steps needed to let bfq-mq share the files bfq-sched.c and
-+ * bfq-cgroup.c with bfq-sq. For bfq-mq, the macro
-+ * BFQ_GROUP_IOSCHED_ENABLED will be defined as a function of whether
-+ * the configuration option CONFIG_BFQ_MQ_GROUP_IOSCHED, and not
-+ * CONFIG_BFQ_GROUP_IOSCHED, is defined.
-+ */
-+#ifdef CONFIG_BFQ_SQ_GROUP_IOSCHED
-+#define BFQ_GROUP_IOSCHED_ENABLED
-+#endif
-+
-+#define BFQ_IOPRIO_CLASSES 3
-+#define BFQ_CL_IDLE_TIMEOUT (HZ/5)
-+
-+#define BFQ_MIN_WEIGHT 1
-+#define BFQ_MAX_WEIGHT 1000
-+#define BFQ_WEIGHT_CONVERSION_COEFF 10
-+
-+#define BFQ_DEFAULT_QUEUE_IOPRIO 4
-+
-+#define BFQ_WEIGHT_LEGACY_DFL 100
-+#define BFQ_DEFAULT_GRP_IOPRIO 0
-+#define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE
-+
-+/*
-+ * Soft real-time applications are extremely more latency sensitive
-+ * than interactive ones. Over-raise the weight of the former to
-+ * privilege them against the latter.
-+ */
-+#define BFQ_SOFTRT_WEIGHT_FACTOR 100
-+
-+struct bfq_entity;
-+
-+/**
-+ * struct bfq_service_tree - per ioprio_class service tree.
-+ *
-+ * Each service tree represents a B-WF2Q+ scheduler on its own. Each
-+ * ioprio_class has its own independent scheduler, and so its own
-+ * bfq_service_tree. All the fields are protected by the queue lock
-+ * of the containing bfqd.
-+ */
-+struct bfq_service_tree {
-+ /* tree for active entities (i.e., those backlogged) */
-+ struct rb_root active;
-+ /* tree for idle entities (i.e., not backlogged, with V <= F_i)*/
-+ struct rb_root idle;
-+
-+ struct bfq_entity *first_idle; /* idle entity with minimum F_i */
-+ struct bfq_entity *last_idle; /* idle entity with maximum F_i */
-+
-+ u64 vtime; /* scheduler virtual time */
-+ /* scheduler weight sum; active and idle entities contribute to it */
-+ unsigned long wsum;
-+};
-+
-+/**
-+ * struct bfq_sched_data - multi-class scheduler.
-+ *
-+ * bfq_sched_data is the basic scheduler queue. It supports three
-+ * ioprio_classes, and can be used either as a toplevel queue or as an
-+ * intermediate queue in a hierarchical setup.
-+ *
-+ * The supported ioprio_classes are the same as in CFQ, in descending
-+ * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE.
-+ * Requests from higher priority queues are served before all the
-+ * requests from lower priority queues; among requests of the same
-+ * queue requests are served according to B-WF2Q+.
-+ *
-+ * The schedule is implemented by the service trees, plus the field
-+ * @next_in_service, which points to the entity on the active trees
-+ * that will be served next, if 1) no changes in the schedule occurs
-+ * before the current in-service entity is expired, 2) the in-service
-+ * queue becomes idle when it expires, and 3) if the entity pointed by
-+ * in_service_entity is not a queue, then the in-service child entity
-+ * of the entity pointed by in_service_entity becomes idle on
-+ * expiration. This peculiar definition allows for the following
-+ * optimization, not yet exploited: while a given entity is still in
-+ * service, we already know which is the best candidate for next
-+ * service among the other active entitities in the same parent
-+ * entity. We can then quickly compare the timestamps of the
-+ * in-service entity with those of such best candidate.
-+ *
-+ * All the fields are protected by the queue lock of the containing
-+ * bfqd.
-+ */
-+struct bfq_sched_data {
-+ struct bfq_entity *in_service_entity; /* entity in service */
-+ /* head-of-the-line entity in the scheduler (see comments above) */
-+ struct bfq_entity *next_in_service;
-+ /* array of service trees, one per ioprio_class */
-+ struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES];
-+ /* last time CLASS_IDLE was served */
-+ unsigned long bfq_class_idle_last_service;
-+
-+};
-+
-+/**
-+ * struct bfq_weight_counter - counter of the number of all active queues
-+ * with a given weight.
-+ */
-+struct bfq_weight_counter {
-+ unsigned int weight; /* weight of the queues this counter refers to */
-+ unsigned int num_active; /* nr of active queues with this weight */
-+ /*
-+ * Weights tree member (see bfq_data's @queue_weights_tree)
-+ */
-+ struct rb_node weights_node;
-+};
-+
-+/**
-+ * struct bfq_entity - schedulable entity.
-+ *
-+ * A bfq_entity is used to represent either a bfq_queue (leaf node in the
-+ * cgroup hierarchy) or a bfq_group into the upper level scheduler. Each
-+ * entity belongs to the sched_data of the parent group in the cgroup
-+ * hierarchy. Non-leaf entities have also their own sched_data, stored
-+ * in @my_sched_data.
-+ *
-+ * Each entity stores independently its priority values; this would
-+ * allow different weights on different devices, but this
-+ * functionality is not exported to userspace by now. Priorities and
-+ * weights are updated lazily, first storing the new values into the
-+ * new_* fields, then setting the @prio_changed flag. As soon as
-+ * there is a transition in the entity state that allows the priority
-+ * update to take place the effective and the requested priority
-+ * values are synchronized.
-+ *
-+ * Unless cgroups are used, the weight value is calculated from the
-+ * ioprio to export the same interface as CFQ. When dealing with
-+ * ``well-behaved'' queues (i.e., queues that do not spend too much
-+ * time to consume their budget and have true sequential behavior, and
-+ * when there are no external factors breaking anticipation) the
-+ * relative weights at each level of the cgroups hierarchy should be
-+ * guaranteed. All the fields are protected by the queue lock of the
-+ * containing bfqd.
-+ */
-+struct bfq_entity {
-+ struct rb_node rb_node; /* service_tree member */
-+
-+ /*
-+ * Flag, true if the entity is on a tree (either the active or
-+ * the idle one of its service_tree) or is in service.
-+ */
-+ bool on_st;
-+
-+ u64 finish; /* B-WF2Q+ finish timestamp (aka F_i) */
-+ u64 start; /* B-WF2Q+ start timestamp (aka S_i) */
-+
-+ /* tree the entity is enqueued into; %NULL if not on a tree */
-+ struct rb_root *tree;
-+
-+ /*
-+ * minimum start time of the (active) subtree rooted at this
-+ * entity; used for O(log N) lookups into active trees
-+ */
-+ u64 min_start;
-+
-+ /* amount of service received during the last service slot */
-+ int service;
-+
-+ /* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */
-+ int budget;
-+
-+ unsigned int weight; /* weight of the queue */
-+ unsigned int new_weight; /* next weight if a change is in progress */
-+
-+ /* original weight, used to implement weight boosting */
-+ unsigned int orig_weight;
-+
-+ /* parent entity, for hierarchical scheduling */
-+ struct bfq_entity *parent;
-+
-+ /*
-+ * For non-leaf nodes in the hierarchy, the associated
-+ * scheduler queue, %NULL on leaf nodes.
-+ */
-+ struct bfq_sched_data *my_sched_data;
-+ /* the scheduler queue this entity belongs to */
-+ struct bfq_sched_data *sched_data;
-+
-+ /* flag, set to request a weight, ioprio or ioprio_class change */
-+ int prio_changed;
-+
-+ /* flag, set if the entity is counted in groups_with_pending_reqs */
-+ bool in_groups_with_pending_reqs;
-+};
-+
-+struct bfq_group;
-+
-+/**
-+ * struct bfq_queue - leaf schedulable entity.
-+ *
-+ * A bfq_queue is a leaf request queue; it can be associated with an
-+ * io_context or more, if it is async or shared between cooperating
-+ * processes. @cgroup holds a reference to the cgroup, to be sure that it
-+ * does not disappear while a bfqq still references it (mostly to avoid
-+ * races between request issuing and task migration followed by cgroup
-+ * destruction).
-+ * All the fields are protected by the queue lock of the containing bfqd.
-+ */
-+struct bfq_queue {
-+ /* reference counter */
-+ int ref;
-+ /* parent bfq_data */
-+ struct bfq_data *bfqd;
-+
-+ /* current ioprio and ioprio class */
-+ unsigned short ioprio, ioprio_class;
-+ /* next ioprio and ioprio class if a change is in progress */
-+ unsigned short new_ioprio, new_ioprio_class;
-+
-+ /*
-+ * Shared bfq_queue if queue is cooperating with one or more
-+ * other queues.
-+ */
-+ struct bfq_queue *new_bfqq;
-+ /* request-position tree member (see bfq_group's @rq_pos_tree) */
-+ struct rb_node pos_node;
-+ /* request-position tree root (see bfq_group's @rq_pos_tree) */
-+ struct rb_root *pos_root;
-+
-+ /* sorted list of pending requests */
-+ struct rb_root sort_list;
-+ /* if fifo isn't expired, next request to serve */
-+ struct request *next_rq;
-+ /* number of sync and async requests queued */
-+ int queued[2];
-+ /* number of sync and async requests currently allocated */
-+ int allocated[2];
-+ /* number of pending metadata requests */
-+ int meta_pending;
-+ /* fifo list of requests in sort_list */
-+ struct list_head fifo;
-+
-+ /* entity representing this queue in the scheduler */
-+ struct bfq_entity entity;
-+
-+ /* pointer to the weight counter associated with this queue */
-+ struct bfq_weight_counter *weight_counter;
-+
-+ /* maximum budget allowed from the feedback mechanism */
-+ int max_budget;
-+ /* budget expiration (in jiffies) */
-+ unsigned long budget_timeout;
-+
-+ /* number of requests on the dispatch list or inside driver */
-+ int dispatched;
-+
-+ unsigned int flags; /* status flags.*/
-+
-+ /* node for active/idle bfqq list inside parent bfqd */
-+ struct list_head bfqq_list;
-+
-+ /* bit vector: a 1 for each seeky requests in history */
-+ u32 seek_history;
-+
-+ /* node for the device's burst list */
-+ struct hlist_node burst_list_node;
-+
-+ /* position of the last request enqueued */
-+ sector_t last_request_pos;
-+
-+ /* Number of consecutive pairs of request completion and
-+ * arrival, such that the queue becomes idle after the
-+ * completion, but the next request arrives within an idle
-+ * time slice; used only if the queue's IO_bound flag has been
-+ * cleared.
-+ */
-+ unsigned int requests_within_timer;
-+
-+ /* pid of the process owning the queue, used for logging purposes */
-+ pid_t pid;
-+
-+ /*
-+ * Pointer to the bfq_io_cq owning the bfq_queue, set to %NULL
-+ * if the queue is shared.
-+ */
-+ struct bfq_io_cq *bic;
-+
-+ /* current maximum weight-raising time for this queue */
-+ unsigned long wr_cur_max_time;
-+ /*
-+ * Minimum time instant such that, only if a new request is
-+ * enqueued after this time instant in an idle @bfq_queue with
-+ * no outstanding requests, then the task associated with the
-+ * queue it is deemed as soft real-time (see the comments on
-+ * the function bfq_bfqq_softrt_next_start())
-+ */
-+ unsigned long soft_rt_next_start;
-+ /*
-+ * Start time of the current weight-raising period if
-+ * the @bfq-queue is being weight-raised, otherwise
-+ * finish time of the last weight-raising period.
-+ */
-+ unsigned long last_wr_start_finish;
-+ /* factor by which the weight of this queue is multiplied */
-+ unsigned int wr_coeff;
-+ /*
-+ * Time of the last transition of the @bfq_queue from idle to
-+ * backlogged.
-+ */
-+ unsigned long last_idle_bklogged;
-+ /*
-+ * Cumulative service received from the @bfq_queue since the
-+ * last transition from idle to backlogged.
-+ */
-+ unsigned long service_from_backlogged;
-+ /*
-+ * Cumulative service received from the @bfq_queue since its
-+ * last transition to weight-raised state.
-+ */
-+ unsigned long service_from_wr;
-+ /*
-+ * Value of wr start time when switching to soft rt
-+ */
-+ unsigned long wr_start_at_switch_to_srt;
-+
-+ unsigned long split_time; /* time of last split */
-+
-+ unsigned long first_IO_time; /* time of first I/O for this queue */
-+
-+ /* max service rate measured so far */
-+ u32 max_service_rate;
-+ /*
-+ * Ratio between the service received by bfqq while it is in
-+ * service, and the cumulative service (of requests of other
-+ * queues) that may be injected while bfqq is empty but still
-+ * in service. To increase precision, the coefficient is
-+ * measured in tenths of unit. Here are some example of (1)
-+ * ratios, (2) resulting percentages of service injected
-+ * w.r.t. to the total service dispatched while bfqq is in
-+ * service, and (3) corresponding values of the coefficient:
-+ * 1 (50%) -> 10
-+ * 2 (33%) -> 20
-+ * 10 (9%) -> 100
-+ * 9.9 (9%) -> 99
-+ * 1.5 (40%) -> 15
-+ * 0.5 (66%) -> 5
-+ * 0.1 (90%) -> 1
-+ *
-+ * So, if the coefficient is lower than 10, then
-+ * injected service is more than bfqq service.
-+ */
-+ unsigned int inject_coeff;
-+ /* amount of service injected in current service slot */
-+ unsigned int injected_service;
-+};
-+
-+/**
-+ * struct bfq_ttime - per process thinktime stats.
-+ */
-+struct bfq_ttime {
-+ u64 last_end_request; /* completion time of last request */
-+
-+ u64 ttime_total; /* total process thinktime */
-+ unsigned long ttime_samples; /* number of thinktime samples */
-+ u64 ttime_mean; /* average process thinktime */
-+
-+};
-+
-+/**
-+ * struct bfq_io_cq - per (request_queue, io_context) structure.
-+ */
-+struct bfq_io_cq {
-+ /* associated io_cq structure */
-+ struct io_cq icq; /* must be the first member */
-+ /* array of two process queues, the sync and the async */
-+ struct bfq_queue *bfqq[2];
-+ /* associated @bfq_ttime struct */
-+ struct bfq_ttime ttime;
-+ /* per (request_queue, blkcg) ioprio */
-+ int ioprio;
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ uint64_t blkcg_serial_nr; /* the current blkcg serial */
-+#endif
-+
-+ /*
-+ * Snapshot of the has_short_time flag before merging; taken
-+ * to remember its value while the queue is merged, so as to
-+ * be able to restore it in case of split.
-+ */
-+ bool saved_has_short_ttime;
-+ /*
-+ * Same purpose as the previous two fields for the I/O bound
-+ * classification of a queue.
-+ */
-+ bool saved_IO_bound;
-+
-+ /*
-+ * Same purpose as the previous fields for the value of the
-+ * field keeping the queue's belonging to a large burst
-+ */
-+ bool saved_in_large_burst;
-+ /*
-+ * True if the queue belonged to a burst list before its merge
-+ * with another cooperating queue.
-+ */
-+ bool was_in_burst_list;
-+
-+ /*
-+ * Similar to previous fields: save wr information.
-+ */
-+ unsigned long saved_wr_coeff;
-+ unsigned long saved_last_wr_start_finish;
-+ unsigned long saved_wr_start_at_switch_to_srt;
-+ unsigned int saved_wr_cur_max_time;
-+};
-+
-+/**
-+ * struct bfq_data - per-device data structure.
-+ *
-+ * All the fields are protected by the @queue lock.
-+ */
-+struct bfq_data {
-+ /* request queue for the device */
-+ struct request_queue *queue;
-+
-+ /* root bfq_group for the device */
-+ struct bfq_group *root_group;
-+
-+ /*
-+ * rbtree of weight counters of @bfq_queues, sorted by
-+ * weight. Used to keep track of whether all @bfq_queues have
-+ * the same weight. The tree contains one counter for each
-+ * distinct weight associated to some active and not
-+ * weight-raised @bfq_queue (see the comments to the functions
-+ * bfq_weights_tree_[add|remove] for further details).
-+ */
-+ struct rb_root queue_weights_tree;
-+
-+ /*
-+ * Number of groups with at least one descendant process that
-+ * has at least one request waiting for completion. Note that
-+ * this accounts for also requests already dispatched, but not
-+ * yet completed. Therefore this number of groups may differ
-+ * (be larger) than the number of active groups, as a group is
-+ * considered active only if its corresponding entity has
-+ * descendant queues with at least one request queued. This
-+ * number is used to decide whether a scenario is symmetric.
-+ * For a detailed explanation see comments on the computation
-+ * of the variable asymmetric_scenario in the function
-+ * bfq_better_to_idle().
-+ *
-+ * However, it is hard to compute this number exactly, for
-+ * groups with multiple descendant processes. Consider a group
-+ * that is inactive, i.e., that has no descendant process with
-+ * pending I/O inside BFQ queues. Then suppose that
-+ * num_groups_with_pending_reqs is still accounting for this
-+ * group, because the group has descendant processes with some
-+ * I/O request still in flight. num_groups_with_pending_reqs
-+ * should be decremented when the in-flight request of the
-+ * last descendant process is finally completed (assuming that
-+ * nothing else has changed for the group in the meantime, in
-+ * terms of composition of the group and active/inactive state of child
-+ * groups and processes). To accomplish this, an additional
-+ * pending-request counter must be added to entities, and must
-+ * be updated correctly. To avoid this additional field and operations,
-+ * we resort to the following tradeoff between simplicity and
-+ * accuracy: for an inactive group that is still counted in
-+ * num_groups_with_pending_reqs, we decrement
-+ * num_groups_with_pending_reqs when the first descendant
-+ * process of the group remains with no request waiting for
-+ * completion.
-+ *
-+ * Even this simpler decrement strategy requires a little
-+ * carefulness: to avoid multiple decrements, we flag a group,
-+ * more precisely an entity representing a group, as still
-+ * counted in num_groups_with_pending_reqs when it becomes
-+ * inactive. Then, when the first descendant queue of the
-+ * entity remains with no request waiting for completion,
-+ * num_groups_with_pending_reqs is decremented, and this flag
-+ * is reset. After this flag is reset for the entity,
-+ * num_groups_with_pending_reqs won't be decremented any
-+ * longer in case a new descendant queue of the entity remains
-+ * with no request waiting for completion.
-+ */
-+ unsigned int num_groups_with_pending_reqs;
-+
-+ /*
-+ * Per-class (RT, BE, IDLE) number of bfq_queues containing
-+ * requests (including the queue in service, even if it is
-+ * idling).
-+ */
-+ unsigned int busy_queues[3];
-+ /* number of weight-raised busy @bfq_queues */
-+ int wr_busy_queues;
-+ /* number of queued requests */
-+ int queued;
-+ /* number of requests dispatched and waiting for completion */
-+ int rq_in_driver;
-+
-+ /*
-+ * Maximum number of requests in driver in the last
-+ * @hw_tag_samples completed requests.
-+ */
-+ int max_rq_in_driver;
-+ /* number of samples used to calculate hw_tag */
-+ int hw_tag_samples;
-+ /* flag set to one if the driver is showing a queueing behavior */
-+ int hw_tag;
-+
-+ /* number of budgets assigned */
-+ int budgets_assigned;
-+
-+ /*
-+ * Timer set when idling (waiting) for the next request from
-+ * the queue in service.
-+ */
-+ struct hrtimer idle_slice_timer;
-+ /* delayed work to restart dispatching on the request queue */
-+ struct work_struct unplug_work;
-+
-+ /* bfq_queue in service */
-+ struct bfq_queue *in_service_queue;
-+ /* bfq_io_cq (bic) associated with the @in_service_queue */
-+ struct bfq_io_cq *in_service_bic;
-+
-+ /* on-disk position of the last served request */
-+ sector_t last_position;
-+
-+ /* position of the last served request for the in-service queue */
-+ sector_t in_serv_last_pos;
-+
-+ /* time of last request completion (ns) */
-+ u64 last_completion;
-+
-+ /* time of first rq dispatch in current observation interval (ns) */
-+ u64 first_dispatch;
-+ /* time of last rq dispatch in current observation interval (ns) */
-+ u64 last_dispatch;
-+
-+ /* beginning of the last budget */
-+ ktime_t last_budget_start;
-+ /* beginning of the last idle slice */
-+ ktime_t last_idling_start;
-+
-+ /* number of samples in current observation interval */
-+ int peak_rate_samples;
-+ /* num of samples of seq dispatches in current observation interval */
-+ u32 sequential_samples;
-+ /* total num of sectors transferred in current observation interval */
-+ u64 tot_sectors_dispatched;
-+ /* max rq size seen during current observation interval (sectors) */
-+ u32 last_rq_max_size;
-+ /* time elapsed from first dispatch in current observ. interval (us) */
-+ u64 delta_from_first;
-+ /*
-+ * Current estimate of the device peak rate, measured in
-+ * [(sectors/usec) / 2^BFQ_RATE_SHIFT]. The left-shift by
-+ * BFQ_RATE_SHIFT is performed to increase precision in
-+ * fixed-point calculations.
-+ */
-+ u32 peak_rate;
-+
-+ /* maximum budget allotted to a bfq_queue before rescheduling */
-+ int bfq_max_budget;
-+
-+ /* list of all the bfq_queues active on the device */
-+ struct list_head active_list;
-+ /* list of all the bfq_queues idle on the device */
-+ struct list_head idle_list;
-+
-+ /*
-+ * Timeout for async/sync requests; when it fires, requests
-+ * are served in fifo order.
-+ */
-+ u64 bfq_fifo_expire[2];
-+ /* weight of backward seeks wrt forward ones */
-+ unsigned int bfq_back_penalty;
-+ /* maximum allowed backward seek */
-+ unsigned int bfq_back_max;
-+ /* maximum idling time */
-+ u32 bfq_slice_idle;
-+
-+ /* user-configured max budget value (0 for auto-tuning) */
-+ int bfq_user_max_budget;
-+ /*
-+ * Timeout for bfq_queues to consume their budget; used to
-+ * prevent seeky queues from imposing long latencies to
-+ * sequential or quasi-sequential ones (this also implies that
-+ * seeky queues cannot receive guarantees in the service
-+ * domain; after a timeout they are charged for the time they
-+ * have been in service, to preserve fairness among them, but
-+ * without service-domain guarantees).
-+ */
-+ unsigned int bfq_timeout;
-+
-+ /*
-+ * Number of consecutive requests that must be issued within
-+ * the idle time slice to set again idling to a queue which
-+ * was marked as non-I/O-bound (see the definition of the
-+ * IO_bound flag for further details).
-+ */
-+ unsigned int bfq_requests_within_timer;
-+
-+ /*
-+ * Force device idling whenever needed to provide accurate
-+ * service guarantees, without caring about throughput
-+ * issues. CAVEAT: this may even increase latencies, in case
-+ * of useless idling for processes that did stop doing I/O.
-+ */
-+ bool strict_guarantees;
-+
-+ /*
-+ * Last time at which a queue entered the current burst of
-+ * queues being activated shortly after each other; for more
-+ * details about this and the following parameters related to
-+ * a burst of activations, see the comments on the function
-+ * bfq_handle_burst.
-+ */
-+ unsigned long last_ins_in_burst;
-+ /*
-+ * Reference time interval used to decide whether a queue has
-+ * been activated shortly after @last_ins_in_burst.
-+ */
-+ unsigned long bfq_burst_interval;
-+ /* number of queues in the current burst of queue activations */
-+ int burst_size;
-+
-+ /* common parent entity for the queues in the burst */
-+ struct bfq_entity *burst_parent_entity;
-+ /* Maximum burst size above which the current queue-activation
-+ * burst is deemed as 'large'.
-+ */
-+ unsigned long bfq_large_burst_thresh;
-+ /* true if a large queue-activation burst is in progress */
-+ bool large_burst;
-+ /*
-+ * Head of the burst list (as for the above fields, more
-+ * details in the comments on the function bfq_handle_burst).
-+ */
-+ struct hlist_head burst_list;
-+
-+ /* if set to true, low-latency heuristics are enabled */
-+ bool low_latency;
-+ /*
-+ * Maximum factor by which the weight of a weight-raised queue
-+ * is multiplied.
-+ */
-+ unsigned int bfq_wr_coeff;
-+ /* maximum duration of a weight-raising period (jiffies) */
-+ unsigned int bfq_wr_max_time;
-+
-+ /* Maximum weight-raising duration for soft real-time processes */
-+ unsigned int bfq_wr_rt_max_time;
-+ /*
-+ * Minimum idle period after which weight-raising may be
-+ * reactivated for a queue (in jiffies).
-+ */
-+ unsigned int bfq_wr_min_idle_time;
-+ /*
-+ * Minimum period between request arrivals after which
-+ * weight-raising may be reactivated for an already busy async
-+ * queue (in jiffies).
-+ */
-+ unsigned long bfq_wr_min_inter_arr_async;
-+
-+ /* Max service-rate for a soft real-time queue, in sectors/sec */
-+ unsigned int bfq_wr_max_softrt_rate;
-+ /*
-+ * Cached value of the product ref_rate*ref_wr_duration, used
-+ * for computing the maximum duration of weight raising
-+ * automatically.
-+ */
-+ u64 rate_dur_prod;
-+
-+ /* fallback dummy bfqq for extreme OOM conditions */
-+ struct bfq_queue oom_bfqq;
-+};
-+
-+enum bfqq_state_flags {
-+ BFQ_BFQQ_FLAG_just_created = 0, /* queue just allocated */
-+ BFQ_BFQQ_FLAG_busy, /* has requests or is in service */
-+ BFQ_BFQQ_FLAG_wait_request, /* waiting for a request */
-+ BFQ_BFQQ_FLAG_non_blocking_wait_rq, /*
-+ * waiting for a request
-+ * without idling the device
-+ */
-+ BFQ_BFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
-+ BFQ_BFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
-+ BFQ_BFQQ_FLAG_has_short_ttime, /* queue has a short think time */
-+ BFQ_BFQQ_FLAG_sync, /* synchronous queue */
-+ BFQ_BFQQ_FLAG_IO_bound, /*
-+ * bfqq has timed-out at least once
-+ * having consumed at most 2/10 of
-+ * its budget
-+ */
-+ BFQ_BFQQ_FLAG_in_large_burst, /*
-+ * bfqq activated in a large burst,
-+ * see comments to bfq_handle_burst.
-+ */
-+ BFQ_BFQQ_FLAG_softrt_update, /*
-+ * may need softrt-next-start
-+ * update
-+ */
-+ BFQ_BFQQ_FLAG_coop, /* bfqq is shared */
-+ BFQ_BFQQ_FLAG_split_coop /* shared bfqq will be split */
-+};
-+
-+#define BFQ_BFQQ_FNS(name) \
-+static void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
-+{ \
-+ (bfqq)->flags |= (1 << BFQ_BFQQ_FLAG_##name); \
-+} \
-+static void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
-+{ \
-+ (bfqq)->flags &= ~(1 << BFQ_BFQQ_FLAG_##name); \
-+} \
-+static int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
-+{ \
-+ return ((bfqq)->flags & (1 << BFQ_BFQQ_FLAG_##name)) != 0; \
-+}
-+
-+BFQ_BFQQ_FNS(just_created);
-+BFQ_BFQQ_FNS(busy);
-+BFQ_BFQQ_FNS(wait_request);
-+BFQ_BFQQ_FNS(non_blocking_wait_rq);
-+BFQ_BFQQ_FNS(must_alloc);
-+BFQ_BFQQ_FNS(fifo_expire);
-+BFQ_BFQQ_FNS(has_short_ttime);
-+BFQ_BFQQ_FNS(sync);
-+BFQ_BFQQ_FNS(IO_bound);
-+BFQ_BFQQ_FNS(in_large_burst);
-+BFQ_BFQQ_FNS(coop);
-+BFQ_BFQQ_FNS(split_coop);
-+BFQ_BFQQ_FNS(softrt_update);
-+#undef BFQ_BFQQ_FNS
-+
-+/* Logging facilities. */
-+#ifdef CONFIG_BFQ_REDIRECT_TO_CONSOLE
-+
-+static const char *checked_dev_name(const struct device *dev)
-+{
-+ static const char nodev[] = "nodev";
-+
-+ if (dev)
-+ return dev_name(dev);
-+
-+ return nodev;
-+}
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
-+static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg);
-+
-+#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \
-+ char __pbuf[128]; \
-+ \
-+ assert_spin_locked((bfqd)->queue->queue_lock); \
-+ blkg_path(bfqg_to_blkg(bfqq_group(bfqq)), __pbuf, sizeof(__pbuf)); \
-+ pr_crit("%s bfq%d%c %s [%s] " fmt "\n", \
-+ checked_dev_name((bfqd)->queue->backing_dev_info->dev), \
-+ (bfqq)->pid, \
-+ bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
-+ __pbuf, __func__, ##args); \
-+} while (0)
-+
-+#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do { \
-+ char __pbuf[128]; \
-+ \
-+ blkg_path(bfqg_to_blkg(bfqg), __pbuf, sizeof(__pbuf)); \
-+ pr_crit("%s %s [%s] " fmt "\n", \
-+ checked_dev_name((bfqd)->queue->backing_dev_info->dev), \
-+ __pbuf, __func__, ##args); \
-+} while (0)
-+
-+#else /* BFQ_GROUP_IOSCHED_ENABLED */
-+
-+#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \
-+ pr_crit("%s bfq%d%c [%s] " fmt "\n", \
-+ checked_dev_name((bfqd)->queue->backing_dev_info->dev), \
-+ (bfqq)->pid, bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
-+ __func__, ##args)
-+#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do {} while (0)
-+
-+#endif /* BFQ_GROUP_IOSCHED_ENABLED */
-+
-+#define bfq_log(bfqd, fmt, args...) \
-+ pr_crit("%s bfq [%s] " fmt "\n", \
-+ checked_dev_name((bfqd)->queue->backing_dev_info->dev), \
-+ __func__, ##args)
-+
-+#else /* CONFIG_BFQ_REDIRECT_TO_CONSOLE */
-+
-+#if !defined(CONFIG_BLK_DEV_IO_TRACE)
-+
-+/* Avoid possible "unused-variable" warning. See commit message. */
-+
-+#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) ((void) (bfqq))
-+
-+#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) ((void) (bfqg))
-+
-+#define bfq_log(bfqd, fmt, args...) do {} while (0)
-+
-+#else /* CONFIG_BLK_DEV_IO_TRACE */
-+
-+#include <linux/blktrace_api.h>
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
-+static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg);
-+
-+#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \
-+ char __pbuf[128]; \
-+ \
-+ assert_spin_locked((bfqd)->queue->queue_lock); \
-+ blkg_path(bfqg_to_blkg(bfqq_group(bfqq)), __pbuf, sizeof(__pbuf)); \
-+ blk_add_trace_msg((bfqd)->queue, "bfq%d%c %s [%s] " fmt, \
-+ (bfqq)->pid, \
-+ bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
-+ __pbuf, __func__, ##args); \
-+} while (0)
-+
-+#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do { \
-+ char __pbuf[128]; \
-+ \
-+ blkg_path(bfqg_to_blkg(bfqg), __pbuf, sizeof(__pbuf)); \
-+ blk_add_trace_msg((bfqd)->queue, "%s [%s] " fmt, __pbuf, \
-+ __func__, ##args); \
-+} while (0)
-+
-+#else /* BFQ_GROUP_IOSCHED_ENABLED */
-+
-+#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \
-+ blk_add_trace_msg((bfqd)->queue, "bfq%d%c [%s] " fmt, (bfqq)->pid, \
-+ bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
-+ __func__, ##args)
-+#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do {} while (0)
-+
-+#endif /* BFQ_GROUP_IOSCHED_ENABLED */
-+
-+#define bfq_log(bfqd, fmt, args...) \
-+ blk_add_trace_msg((bfqd)->queue, "bfq [%s] " fmt, __func__, ##args)
-+
-+#endif /* CONFIG_BLK_DEV_IO_TRACE */
-+#endif /* CONFIG_BFQ_REDIRECT_TO_CONSOLE */
-+
-+/* Expiration reasons. */
-+enum bfqq_expiration {
-+ BFQ_BFQQ_TOO_IDLE = 0, /*
-+ * queue has been idling for
-+ * too long
-+ */
-+ BFQ_BFQQ_BUDGET_TIMEOUT, /* budget took too long to be used */
-+ BFQ_BFQQ_BUDGET_EXHAUSTED, /* budget consumed */
-+ BFQ_BFQQ_NO_MORE_REQUESTS, /* the queue has no more requests */
-+ BFQ_BFQQ_PREEMPTED /* preemption in progress */
-+};
-+
-+
-+struct bfqg_stats {
-+#if defined(BFQ_GROUP_IOSCHED_ENABLED) && defined(CONFIG_DEBUG_BLK_CGROUP)
-+ /* number of ios merged */
-+ struct blkg_rwstat merged;
-+ /* total time spent on device in ns, may not be accurate w/ queueing */
-+ struct blkg_rwstat service_time;
-+ /* total time spent waiting in scheduler queue in ns */
-+ struct blkg_rwstat wait_time;
-+ /* number of IOs queued up */
-+ struct blkg_rwstat queued;
-+ /* total disk time and nr sectors dispatched by this group */
-+ struct blkg_stat time;
-+ /* sum of number of ios queued across all samples */
-+ struct blkg_stat avg_queue_size_sum;
-+ /* count of samples taken for average */
-+ struct blkg_stat avg_queue_size_samples;
-+ /* how many times this group has been removed from service tree */
-+ struct blkg_stat dequeue;
-+ /* total time spent waiting for it to be assigned a timeslice. */
-+ struct blkg_stat group_wait_time;
-+ /* time spent idling for this blkcg_gq */
-+ struct blkg_stat idle_time;
-+ /* total time with empty current active q with other requests queued */
-+ struct blkg_stat empty_time;
-+ /* fields after this shouldn't be cleared on stat reset */
-+ uint64_t start_group_wait_time;
-+ uint64_t start_idle_time;
-+ uint64_t start_empty_time;
-+ uint16_t flags;
-+#endif /* BFQ_GROUP_IOSCHED_ENABLED && CONFIG_DEBUG_BLK_CGROUP */
-+};
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+/*
-+ * struct bfq_group_data - per-blkcg storage for the blkio subsystem.
-+ *
-+ * @ps: @blkcg_policy_storage that this structure inherits
-+ * @weight: weight of the bfq_group
-+ */
-+struct bfq_group_data {
-+ /* must be the first member */
-+ struct blkcg_policy_data pd;
-+
-+ unsigned int weight;
-+};
-+
-+/**
-+ * struct bfq_group - per (device, cgroup) data structure.
-+ * @entity: schedulable entity to insert into the parent group sched_data.
-+ * @sched_data: own sched_data, to contain child entities (they may be
-+ * both bfq_queues and bfq_groups).
-+ * @bfqd: the bfq_data for the device this group acts upon.
-+ * @async_bfqq: array of async queues for all the tasks belonging to
-+ * the group, one queue per ioprio value per ioprio_class,
-+ * except for the idle class that has only one queue.
-+ * @async_idle_bfqq: async queue for the idle class (ioprio is ignored).
-+ * @my_entity: pointer to @entity, %NULL for the toplevel group; used
-+ * to avoid too many special cases during group creation/
-+ * migration.
-+ * @active_entities: number of active entities belonging to the group;
-+ * unused for the root group. Used to know whether there
-+ * are groups with more than one active @bfq_entity
-+ * (see the comments to the function
-+ * bfq_bfqq_may_idle()).
-+ * @rq_pos_tree: rbtree sorted by next_request position, used when
-+ * determining if two or more queues have interleaving
-+ * requests (see bfq_find_close_cooperator()).
-+ *
-+ * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup
-+ * there is a set of bfq_groups, each one collecting the lower-level
-+ * entities belonging to the group that are acting on the same device.
-+ *
-+ * Locking works as follows:
-+ * o @bfqd is protected by the queue lock, RCU is used to access it
-+ * from the readers.
-+ * o All the other fields are protected by the @bfqd queue lock.
-+ */
-+struct bfq_group {
-+ /* must be the first member */
-+ struct blkg_policy_data pd;
-+
-+ struct bfq_entity entity;
-+ struct bfq_sched_data sched_data;
-+
-+ void *bfqd;
-+
-+ struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
-+ struct bfq_queue *async_idle_bfqq;
-+
-+ struct bfq_entity *my_entity;
-+
-+ int active_entities;
-+
-+ struct rb_root rq_pos_tree;
-+
-+ struct bfqg_stats stats;
-+};
-+
-+#else
-+struct bfq_group {
-+ struct bfq_sched_data sched_data;
-+
-+ struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
-+ struct bfq_queue *async_idle_bfqq;
-+
-+ struct rb_root rq_pos_tree;
-+};
-+#endif
-+
-+static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
-+
-+static unsigned int bfq_class_idx(struct bfq_entity *entity)
-+{
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+
-+ return bfqq ? bfqq->ioprio_class - 1 :
-+ BFQ_DEFAULT_GRP_CLASS - 1;
-+}
-+
-+static unsigned int bfq_tot_busy_queues(struct bfq_data *bfqd)
-+{
-+ return bfqd->busy_queues[0] + bfqd->busy_queues[1] +
-+ bfqd->busy_queues[2];
-+}
-+
-+static struct bfq_service_tree *
-+bfq_entity_service_tree(struct bfq_entity *entity)
-+{
-+ struct bfq_sched_data *sched_data = entity->sched_data;
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+ unsigned int idx = bfq_class_idx(entity);
-+
-+ BUG_ON(idx >= BFQ_IOPRIO_CLASSES);
-+ BUG_ON(sched_data == NULL);
-+
-+ if (bfqq)
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "%p %d",
-+ sched_data->service_tree + idx, idx);
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+ else {
-+ struct bfq_group *bfqg =
-+ container_of(entity, struct bfq_group, entity);
-+
-+ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
-+ "%p %d",
-+ sched_data->service_tree + idx, idx);
-+ }
-+#endif
-+ return sched_data->service_tree + idx;
-+}
-+
-+static struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
-+{
-+ return bic->bfqq[is_sync];
-+}
-+
-+static void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq,
-+ bool is_sync)
-+{
-+ bic->bfqq[is_sync] = bfqq;
-+}
-+
-+static struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
-+{
-+ return bic->icq.q->elevator->elevator_data;
-+}
-+
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+
-+static struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
-+{
-+ struct bfq_entity *group_entity = bfqq->entity.parent;
-+
-+ if (!group_entity)
-+ group_entity = &bfqq->bfqd->root_group->entity;
-+
-+ return container_of(group_entity, struct bfq_group, entity);
-+}
-+
-+#else
-+
-+static struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
-+{
-+ return bfqq->bfqd->root_group;
-+}
-+
-+#endif
-+
-+static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio);
-+static void bfq_put_queue(struct bfq_queue *bfqq);
-+static void bfq_dispatch_insert(struct request_queue *q, struct request *rq);
-+static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
-+ struct bio *bio, bool is_sync,
-+ struct bfq_io_cq *bic);
-+static void bfq_end_wr_async_queues(struct bfq_data *bfqd,
-+ struct bfq_group *bfqg);
-+#ifdef BFQ_GROUP_IOSCHED_ENABLED
-+static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
-+#endif
-+static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
-+
-+#endif /* _BFQ_H */
-diff --git a/block/blk-mq.c b/block/blk-mq.c
-index e3c39ea8e17b..7a57368841f6 100644
---- a/block/blk-mq.c
-+++ b/block/blk-mq.c
-@@ -2878,6 +2878,8 @@ int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
- }
- if (ret)
- break;
-+ if (q->elevator && q->elevator->type->ops.mq.depth_updated)
-+ q->elevator->type->ops.mq.depth_updated(hctx);
- }
-
- if (!ret)
-diff --git a/include/linux/blkdev.h b/include/linux/blkdev.h
-index 6980014357d4..8c4568ea6884 100644
---- a/include/linux/blkdev.h
-+++ b/include/linux/blkdev.h
-@@ -54,7 +54,7 @@ struct blk_stat_callback;
- * Maximum number of blkcg policies allowed to be registered concurrently.
- * Defined here to simplify include dependency.
- */
--#define BLKCG_MAX_POLS 5
-+#define BLKCG_MAX_POLS 7
-
- typedef void (rq_end_io_fn)(struct request *, blk_status_t);
-
-@@ -127,6 +127,10 @@ typedef __u32 __bitwise req_flags_t;
- #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20))
- /* ->timeout has been called, don't expire again */
- #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
-+/* DEBUG: rq in bfq-mq dispatch list */
-+#define RQF_DISP_LIST ((__force req_flags_t)(1 << 22))
-+/* DEBUG: rq had get_rq_private executed on it */
-+#define RQF_GOT ((__force req_flags_t)(1 << 23))
-
- /* flags that prevent us from merging requests: */
- #define RQF_NOMERGE_FLAGS \
-diff --git a/include/linux/elevator.h b/include/linux/elevator.h
-index a02deea30185..a2bf4a6b9316 100644
---- a/include/linux/elevator.h
-+++ b/include/linux/elevator.h
-@@ -99,6 +99,7 @@ struct elevator_mq_ops {
- void (*exit_sched)(struct elevator_queue *);
- int (*init_hctx)(struct blk_mq_hw_ctx *, unsigned int);
- void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
-+ void (*depth_updated)(struct blk_mq_hw_ctx *);
-
- bool (*allow_merge)(struct request_queue *, struct request *, struct bio *);
- bool (*bio_merge)(struct blk_mq_hw_ctx *, struct bio *);