summaryrefslogtreecommitdiff
path: root/sys-kernel/linux-sources-redcore-lts/files/4.19-bfq-sq-mq-v9r1-2K190204-rc1.patch
diff options
context:
space:
mode:
Diffstat (limited to 'sys-kernel/linux-sources-redcore-lts/files/4.19-bfq-sq-mq-v9r1-2K190204-rc1.patch')
-rw-r--r--sys-kernel/linux-sources-redcore-lts/files/4.19-bfq-sq-mq-v9r1-2K190204-rc1.patch18511
1 files changed, 18511 insertions, 0 deletions
diff --git a/sys-kernel/linux-sources-redcore-lts/files/4.19-bfq-sq-mq-v9r1-2K190204-rc1.patch b/sys-kernel/linux-sources-redcore-lts/files/4.19-bfq-sq-mq-v9r1-2K190204-rc1.patch
new file mode 100644
index 00000000..039c8fcd
--- /dev/null
+++ b/sys-kernel/linux-sources-redcore-lts/files/4.19-bfq-sq-mq-v9r1-2K190204-rc1.patch
@@ -0,0 +1,18511 @@
+diff --git a/Documentation/block/bfq-iosched.txt b/Documentation/block/bfq-iosched.txt
+index 8d8d8f06cab2..41d0200944f1 100644
+--- a/Documentation/block/bfq-iosched.txt
++++ b/Documentation/block/bfq-iosched.txt
+@@ -1,3 +1,6 @@
++[ THIS TREE CONTAINS ALSO THE DEV VERSION OF BFQ.
++ DETAILS AT THE END OF THIS DOCUMENT. ]
++
+ BFQ (Budget Fair Queueing)
+ ==========================
+
+@@ -11,6 +14,15 @@ controllers), BFQ's main features are:
+ groups (switching back to time distribution when needed to keep
+ throughput high).
+
++If bfq-mq patches have been applied, then the following three
++instances of BFQ are available (otherwise only the first instance):
++- bfq: mainline version of BFQ, for blk-mq
++- bfq-mq: development version of BFQ for blk-mq; this version contains
++ also all latest features and fixes not yet landed in mainline, plus many
++ safety checks
++- bfq-sq: BFQ for legacy blk; also this version contains latest features
++ and fixes, as well as safety checks
++
+ In its default configuration, BFQ privileges latency over
+ throughput. So, when needed for achieving a lower latency, BFQ builds
+ schedules that may lead to a lower throughput. If your main or only
+@@ -22,27 +34,42 @@ latency and throughput, or on how to maximize throughput.
+
+ BFQ has a non-null overhead, which limits the maximum IOPS that a CPU
+ can process for a device scheduled with BFQ. To give an idea of the
+-limits on slow or average CPUs, here are, first, the limits of BFQ for
+-three different CPUs, on, respectively, an average laptop, an old
+-desktop, and a cheap embedded system, in case full hierarchical
+-support is enabled (i.e., CONFIG_BFQ_GROUP_IOSCHED is set), but
++limits on slow or average CPUs, here are, first, the limits of bfq-mq
++and bfq for three different CPUs, on, respectively, an average laptop,
++an old desktop, and a cheap embedded system, in case full hierarchical
++support is enabled (i.e., CONFIG_MQ_BFQ_GROUP_IOSCHED is set for
++bfq-mq, or CONFIG_BFQ_GROUP_IOSCHED is set for bfq), but
+ CONFIG_DEBUG_BLK_CGROUP is not set (Section 4-2):
+ - Intel i7-4850HQ: 400 KIOPS
+ - AMD A8-3850: 250 KIOPS
+ - ARM CortexTM-A53 Octa-core: 80 KIOPS
+
+-If CONFIG_DEBUG_BLK_CGROUP is set (and of course full hierarchical
+-support is enabled), then the sustainable throughput with BFQ
+-decreases, because all blkio.bfq* statistics are created and updated
+-(Section 4-2). For BFQ, this leads to the following maximum
+-sustainable throughputs, on the same systems as above:
++As for bfq-sq, it cannot reach the above IOPS, because of the
++inherent, lower parallelism of legacy blk and of the components within
++it (including bfq-sq itself). In particular, results with
++CONFIG_DEBUG_BLK_CGROUP unset are rather fluctuating. The limits
++reported below for the case CONFIG_DEBUG_BLK_CGROUP set will however
++provide a lower bound to the limits of bfq-sq.
++
++Turning back to bfq-mq and bfq, If CONFIG_DEBUG_BLK_CGROUP is set (and
++of course full hierarchical support is enabled), then the sustainable
++throughput with bfq-mq and bfq decreases, because all blkio.bfq*
++statistics are created and updated (Section 4-2). For bfq-mq and bfq,
++this leads to the following maximum sustainable throughputs, on the
++same systems as above:
+ - Intel i7-4850HQ: 310 KIOPS
+ - AMD A8-3850: 200 KIOPS
+ - ARM CortexTM-A53 Octa-core: 56 KIOPS
+
+-BFQ works for multi-queue devices too.
++Finally, if CONFIG_DEBUG_BLK_CGROUP is set (and full hierarchical
++support is enabled), then bfq-sq exhibits the following limits:
++- Intel i7-4850HQ: 250 KIOPS
++- AMD A8-3850: 170 KIOPS
++- ARM CortexTM-A53 Octa-core: 45 KIOPS
+
+-The table of contents follow. Impatients can just jump to Section 3.
++BFQ works for multi-queue devices too (bfq and bfq-mq instances).
++
++The table of contents follows. Impatients can just jump to Section 3.
+
+ CONTENTS
+
+@@ -509,25 +536,27 @@ To get proportional sharing of bandwidth with BFQ for a given device,
+ BFQ must of course be the active scheduler for that device.
+
+ Within each group directory, the names of the files associated with
+-BFQ-specific cgroup parameters and stats begin with the "bfq."
+-prefix. So, with cgroups-v1 or cgroups-v2, the full prefix for
+-BFQ-specific files is "blkio.bfq." or "io.bfq." For example, the group
+-parameter to set the weight of a group with BFQ is blkio.bfq.weight
++BFQ-specific cgroup parameters and stats begin with the "bfq.",
++"bfq-sq." or "bfq-mq." prefix, depending on which instance of bfq you
++want to use. So, with cgroups-v1 or cgroups-v2, the full prefix for
++BFQ-specific files is "blkio.bfqX." or "io.bfqX.", where X can be ""
++(i.e., null string), "-sq" or "-mq". For example, the group parameter
++to set the weight of a group with the mainline BFQ is blkio.bfq.weight
+ or io.bfq.weight.
+
+ As for cgroups-v1 (blkio controller), the exact set of stat files
+-created, and kept up-to-date by bfq, depends on whether
+-CONFIG_DEBUG_BLK_CGROUP is set. If it is set, then bfq creates all
++created, and kept up-to-date by bfq*, depends on whether
++CONFIG_DEBUG_BLK_CGROUP is set. If it is set, then bfq* creates all
+ the stat files documented in
+ Documentation/cgroup-v1/blkio-controller.txt. If, instead,
+-CONFIG_DEBUG_BLK_CGROUP is not set, then bfq creates only the files
+-blkio.bfq.io_service_bytes
+-blkio.bfq.io_service_bytes_recursive
+-blkio.bfq.io_serviced
+-blkio.bfq.io_serviced_recursive
++CONFIG_DEBUG_BLK_CGROUP is not set, then bfq* creates only the files
++blkio.bfq*.io_service_bytes
++blkio.bfq*.io_service_bytes_recursive
++blkio.bfq*.io_serviced
++blkio.bfq*.io_serviced_recursive
+
+ The value of CONFIG_DEBUG_BLK_CGROUP greatly influences the maximum
+-throughput sustainable with bfq, because updating the blkio.bfq.*
++throughput sustainable with bfq*, because updating the blkio.bfq*
+ stats is rather costly, especially for some of the stats enabled by
+ CONFIG_DEBUG_BLK_CGROUP.
+
+@@ -536,7 +565,7 @@ Parameters to set
+
+ For each group, there is only the following parameter to set.
+
+-weight (namely blkio.bfq.weight or io.bfq-weight): the weight of the
++weight (namely blkio.bfqX.weight or io.bfqX.weight): the weight of the
+ group inside its parent. Available values: 1..10000 (default 100). The
+ linear mapping between ioprio and weights, described at the beginning
+ of the tunable section, is still valid, but all weights higher than
+@@ -559,3 +588,55 @@ applications. Unset this tunable if you need/want to control weights.
+ Slightly extended version:
+ http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite-
+ results.pdf
++
++----------------------------------------------------------------------
++
++DETAILS ON THE DEV VERSIONS IN THIS TREE
++
++The dev version of BFQ is available for both the legacy and the
++multi-queue block layers, as two additional I/O schedulers, named,
++respectively, bfq-sq-iosched and bfq-mq-iosched (the latter is
++available if also the changes introducing bfq-mq-iosched have been
++applied). In particular, this tree contains the dev version of bfq for
++Linux mainline 4.19.0, and has been obtained from the dev version for
++Linux 4.18.0. Rebasing from 4.18 to 4.19 involved two manual
++interventions.
++
++First, some conflicts had to be resolved, as follows:
++
++---------------------------------------------------------------
++
++diff --cc Makefile
++index 7727c1bf6fa5,69fa5c0310d8..c7cbdf0ad594
++--- a/Makefile
+++++ b/Makefile
++@@@ -1,9 -1,9 +1,9 @@@
++ # SPDX-License-Identifier: GPL-2.0
++ VERSION = 4
++- PATCHLEVEL = 18
+++ PATCHLEVEL = 19
++ SUBLEVEL = 0
++ -EXTRAVERSION =
++ +EXTRAVERSION = -bfq-mq
++- NAME = Merciless Moray
+++ NAME = "People's Front"
++
++ # *DOCUMENTATION*
++ # To see a list of typical targets execute "make help"
++diff --cc include/linux/blkdev.h
++index 897c63322bd7,6980014357d4..8c4568ea6884
++--- a/include/linux/blkdev.h
+++++ b/include/linux/blkdev.h
++@@@ -56,7 -54,7 +54,7 @@@ struct blk_stat_callback
++ * Maximum number of blkcg policies allowed to be registered concurrently.
++ * Defined here to simplify include dependency.
++ */
++--#define BLKCG_MAX_POLS 5
++++#define BLKCG_MAX_POLS 7
++
++ typedef void (rq_end_io_fn)(struct request *, blk_status_t);
++
++---------------------------------------------------------------
++
++Second, the following port commit had to be made:
++port commit "block: use ktime_get_ns() instead of sched_clock() for cfq and bfq"
+diff --git a/arch/x86/configs/x86_64_defconfig b/arch/x86/configs/x86_64_defconfig
+index e32fc1f274d8..94cb28eb20ba 100644
+--- a/arch/x86/configs/x86_64_defconfig
++++ b/arch/x86/configs/x86_64_defconfig
+@@ -12,6 +12,11 @@ CONFIG_NO_HZ=y
+ CONFIG_HIGH_RES_TIMERS=y
+ CONFIG_LOG_BUF_SHIFT=18
+ CONFIG_CGROUPS=y
++CONFIG_BLK_CGROUP=y
++CONFIG_IOSCHED_BFQ_SQ=y
++CONFIG_BFQ_SQ_GROUP_IOSCHED=y
++CONFIG_MQ_IOSCHED_BFQ=y
++CONFIG_MQ_BFQ_GROUP_IOSCHED=y
+ CONFIG_CGROUP_FREEZER=y
+ CONFIG_CPUSETS=y
+ CONFIG_CGROUP_CPUACCT=y
+diff --git a/block/Kconfig.iosched b/block/Kconfig.iosched
+index a4a8914bf7a4..299a6861fb90 100644
+--- a/block/Kconfig.iosched
++++ b/block/Kconfig.iosched
+@@ -40,6 +40,26 @@ config CFQ_GROUP_IOSCHED
+ ---help---
+ Enable group IO scheduling in CFQ.
+
++config IOSCHED_BFQ_SQ
++ tristate "BFQ-SQ I/O scheduler"
++ default n
++ ---help---
++ The BFQ-SQ I/O scheduler (for legacy blk: SQ stands for
++ SingleQueue) distributes bandwidth among all processes
++ according to their weights, regardless of the device
++ parameters and with any workload. It also guarantees a low
++ latency to interactive and soft real-time applications.
++ Details in Documentation/block/bfq-iosched.txt
++
++config BFQ_SQ_GROUP_IOSCHED
++ bool "BFQ-SQ hierarchical scheduling support"
++ depends on IOSCHED_BFQ_SQ && BLK_CGROUP
++ default n
++ ---help---
++
++ Enable hierarchical scheduling in BFQ-SQ, using the blkio
++ (cgroups-v1) or io (cgroups-v2) controller.
++
+ choice
+
+ prompt "Default I/O scheduler"
+@@ -54,6 +74,16 @@ choice
+ config DEFAULT_CFQ
+ bool "CFQ" if IOSCHED_CFQ=y
+
++ config DEFAULT_BFQ_SQ
++ bool "BFQ-SQ" if IOSCHED_BFQ_SQ=y
++ help
++ Selects BFQ-SQ as the default I/O scheduler which will be
++ used by default for all block devices.
++ The BFQ-SQ I/O scheduler aims at distributing the bandwidth
++ as desired, independently of the disk parameters and with
++ any workload. It also tries to guarantee low latency to
++ interactive and soft real-time applications.
++
+ config DEFAULT_NOOP
+ bool "No-op"
+
+@@ -63,8 +93,28 @@ config DEFAULT_IOSCHED
+ string
+ default "deadline" if DEFAULT_DEADLINE
+ default "cfq" if DEFAULT_CFQ
++ default "bfq-sq" if DEFAULT_BFQ_SQ
+ default "noop" if DEFAULT_NOOP
+
++config MQ_IOSCHED_BFQ
++ tristate "BFQ-MQ I/O Scheduler"
++ default y
++ ---help---
++ BFQ I/O scheduler for BLK-MQ. BFQ-MQ distributes bandwidth
++ among all processes according to their weights, regardless of
++ the device parameters and with any workload. It also
++ guarantees a low latency to interactive and soft real-time
++ applications. Details in Documentation/block/bfq-iosched.txt
++
++config MQ_BFQ_GROUP_IOSCHED
++ bool "BFQ-MQ hierarchical scheduling support"
++ depends on MQ_IOSCHED_BFQ && BLK_CGROUP
++ default n
++ ---help---
++
++ Enable hierarchical scheduling in BFQ-MQ, using the blkio
++ (cgroups-v1) or io (cgroups-v2) controller.
++
+ config MQ_IOSCHED_DEADLINE
+ tristate "MQ deadline I/O scheduler"
+ default y
+diff --git a/block/Makefile b/block/Makefile
+index 572b33f32c07..1dd6ffdc2fee 100644
+--- a/block/Makefile
++++ b/block/Makefile
+@@ -25,6 +25,8 @@ obj-$(CONFIG_MQ_IOSCHED_DEADLINE) += mq-deadline.o
+ obj-$(CONFIG_MQ_IOSCHED_KYBER) += kyber-iosched.o
+ bfq-y := bfq-iosched.o bfq-wf2q.o bfq-cgroup.o
+ obj-$(CONFIG_IOSCHED_BFQ) += bfq.o
++obj-$(CONFIG_IOSCHED_BFQ_SQ) += bfq-sq-iosched.o
++obj-$(CONFIG_MQ_IOSCHED_BFQ) += bfq-mq-iosched.o
+
+ obj-$(CONFIG_BLOCK_COMPAT) += compat_ioctl.o
+ obj-$(CONFIG_BLK_CMDLINE_PARSER) += cmdline-parser.o
+diff --git a/block/bfq-cgroup-included.c b/block/bfq-cgroup-included.c
+new file mode 100644
+index 000000000000..15459e50cd6a
+--- /dev/null
++++ b/block/bfq-cgroup-included.c
+@@ -0,0 +1,1359 @@
++/*
++ * BFQ: CGROUPS support.
++ *
++ * Based on ideas and code from CFQ:
++ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
++ *
++ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
++ * Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2016 Paolo Valente <paolo.valente@linaro.org>
++ *
++ * Licensed under the GPL-2 as detailed in the accompanying COPYING.BFQ
++ * file.
++ */
++
++#if defined(BFQ_GROUP_IOSCHED_ENABLED) && defined(CONFIG_DEBUG_BLK_CGROUP)
++
++/* bfqg stats flags */
++enum bfqg_stats_flags {
++ BFQG_stats_waiting = 0,
++ BFQG_stats_idling,
++ BFQG_stats_empty,
++};
++
++#define BFQG_FLAG_FNS(name) \
++static void bfqg_stats_mark_##name(struct bfqg_stats *stats) \
++{ \
++ stats->flags |= (1 << BFQG_stats_##name); \
++} \
++static void bfqg_stats_clear_##name(struct bfqg_stats *stats) \
++{ \
++ stats->flags &= ~(1 << BFQG_stats_##name); \
++} \
++static int bfqg_stats_##name(struct bfqg_stats *stats) \
++{ \
++ return (stats->flags & (1 << BFQG_stats_##name)) != 0; \
++} \
++
++BFQG_FLAG_FNS(waiting)
++BFQG_FLAG_FNS(idling)
++BFQG_FLAG_FNS(empty)
++#undef BFQG_FLAG_FNS
++
++#ifdef BFQ_MQ
++/* This should be called with the scheduler lock held. */
++#else
++/* This should be called with the queue_lock held. */
++#endif
++static void bfqg_stats_update_group_wait_time(struct bfqg_stats *stats)
++{
++ u64 now;
++
++ if (!bfqg_stats_waiting(stats))
++ return;
++
++ now = ktime_get_ns();
++ if (now > stats->start_group_wait_time)
++ blkg_stat_add(&stats->group_wait_time,
++ now - stats->start_group_wait_time);
++ bfqg_stats_clear_waiting(stats);
++}
++
++#ifdef BFQ_MQ
++/* This should be called with the scheduler lock held. */
++#else
++/* This should be called with the queue_lock held. */
++#endif
++static void bfqg_stats_set_start_group_wait_time(struct bfq_group *bfqg,
++ struct bfq_group *curr_bfqg)
++{
++ struct bfqg_stats *stats = &bfqg->stats;
++
++ if (bfqg_stats_waiting(stats))
++ return;
++ if (bfqg == curr_bfqg)
++ return;
++ stats->start_group_wait_time = ktime_get_ns();
++ bfqg_stats_mark_waiting(stats);
++}
++
++#ifdef BFQ_MQ
++/* This should be called with the scheduler lock held. */
++#else
++/* This should be called with the queue_lock held. */
++#endif
++static void bfqg_stats_end_empty_time(struct bfqg_stats *stats)
++{
++ u64 now;
++
++ if (!bfqg_stats_empty(stats))
++ return;
++
++ now = ktime_get_ns();
++ if (now > stats->start_empty_time)
++ blkg_stat_add(&stats->empty_time,
++ now - stats->start_empty_time);
++ bfqg_stats_clear_empty(stats);
++}
++
++static void bfqg_stats_update_dequeue(struct bfq_group *bfqg)
++{
++ blkg_stat_add(&bfqg->stats.dequeue, 1);
++}
++
++static void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg)
++{
++ struct bfqg_stats *stats = &bfqg->stats;
++
++ if (blkg_rwstat_total(&stats->queued))
++ return;
++
++ /*
++ * group is already marked empty. This can happen if bfqq got new
++ * request in parent group and moved to this group while being added
++ * to service tree. Just ignore the event and move on.
++ */
++ if (bfqg_stats_empty(stats))
++ return;
++
++ stats->start_empty_time = ktime_get_ns();
++ bfqg_stats_mark_empty(stats);
++}
++
++static void bfqg_stats_update_idle_time(struct bfq_group *bfqg)
++{
++ struct bfqg_stats *stats = &bfqg->stats;
++
++ if (bfqg_stats_idling(stats)) {
++ u64 now = ktime_get_ns();
++
++ if (now > stats->start_idle_time)
++ blkg_stat_add(&stats->idle_time,
++ now - stats->start_idle_time);
++ bfqg_stats_clear_idling(stats);
++ }
++}
++
++static void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg)
++{
++ struct bfqg_stats *stats = &bfqg->stats;
++
++ stats->start_idle_time = ktime_get_ns();
++ bfqg_stats_mark_idling(stats);
++}
++
++static void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg)
++{
++ struct bfqg_stats *stats = &bfqg->stats;
++
++ blkg_stat_add(&stats->avg_queue_size_sum,
++ blkg_rwstat_total(&stats->queued));
++ blkg_stat_add(&stats->avg_queue_size_samples, 1);
++ bfqg_stats_update_group_wait_time(stats);
++}
++
++static void bfqg_stats_update_io_add(struct bfq_group *bfqg,
++ struct bfq_queue *bfqq,
++ unsigned int op)
++{
++ blkg_rwstat_add(&bfqg->stats.queued, op, 1);
++ bfqg_stats_end_empty_time(&bfqg->stats);
++ if (!(bfqq == ((struct bfq_data *)bfqg->bfqd)->in_service_queue))
++ bfqg_stats_set_start_group_wait_time(bfqg, bfqq_group(bfqq));
++}
++
++static void bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op)
++{
++ blkg_rwstat_add(&bfqg->stats.queued, op, -1);
++}
++
++static void bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op)
++{
++ blkg_rwstat_add(&bfqg->stats.merged, op, 1);
++}
++
++static void bfqg_stats_update_completion(struct bfq_group *bfqg,
++ u64 start_time_ns,
++ u64 io_start_time_ns,
++ unsigned int op)
++{
++ struct bfqg_stats *stats = &bfqg->stats;
++ u64 now = ktime_get_ns();
++
++ if (now > io_start_time_ns)
++ blkg_rwstat_add(&stats->service_time, op,
++ now - io_start_time_ns);
++ if (io_start_time_ns > start_time_ns)
++ blkg_rwstat_add(&stats->wait_time, op,
++ io_start_time_ns - start_time_ns);
++}
++
++#else /* BFQ_GROUP_IOSCHED_ENABLED && CONFIG_DEBUG_BLK_CGROUP */
++
++static inline void bfqg_stats_update_io_add(struct bfq_group *bfqg,
++ struct bfq_queue *bfqq, unsigned int op) { }
++static inline void
++bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op) { }
++static inline void
++bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op) { }
++static inline void bfqg_stats_update_completion(struct bfq_group *bfqg,
++ u64 start_time_ns,
++ u64 io_start_time_ns,
++ unsigned int op) { }
++static inline void
++bfqg_stats_set_start_group_wait_time(struct bfq_group *bfqg,
++ struct bfq_group *curr_bfqg) { }
++static inline void bfqg_stats_end_empty_time(struct bfqg_stats *stats) { }
++static inline void bfqg_stats_update_dequeue(struct bfq_group *bfqg) { }
++static inline void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg) { }
++static inline void bfqg_stats_update_idle_time(struct bfq_group *bfqg) { }
++static inline void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg) { }
++static inline void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg) { }
++
++#endif /* BFQ_GROUP_IOSCHED_ENABLED && CONFIG_DEBUG_BLK_CGROUP */
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++static struct blkcg_policy blkcg_policy_bfq;
++
++/*
++ * blk-cgroup policy-related handlers
++ * The following functions help in converting between blk-cgroup
++ * internal structures and BFQ-specific structures.
++ */
++
++static struct bfq_group *pd_to_bfqg(struct blkg_policy_data *pd)
++{
++ return pd ? container_of(pd, struct bfq_group, pd) : NULL;
++}
++
++static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg)
++{
++ return pd_to_blkg(&bfqg->pd);
++}
++
++static struct bfq_group *blkg_to_bfqg(struct blkcg_gq *blkg)
++{
++ struct blkg_policy_data *pd = blkg_to_pd(blkg, &blkcg_policy_bfq);
++
++ return pd_to_bfqg(pd);
++}
++
++/*
++ * bfq_group handlers
++ * The following functions help in navigating the bfq_group hierarchy
++ * by allowing to find the parent of a bfq_group or the bfq_group
++ * associated to a bfq_queue.
++ */
++
++static struct bfq_group *bfqg_parent(struct bfq_group *bfqg)
++{
++ struct blkcg_gq *pblkg = bfqg_to_blkg(bfqg)->parent;
++
++ return pblkg ? blkg_to_bfqg(pblkg) : NULL;
++}
++
++static struct bfq_group *bfqq_group(struct bfq_queue *bfqq)
++{
++ struct bfq_entity *group_entity = bfqq->entity.parent;
++
++ return group_entity ? container_of(group_entity, struct bfq_group,
++ entity) :
++ bfqq->bfqd->root_group;
++}
++
++/*
++ * The following two functions handle get and put of a bfq_group by
++ * wrapping the related blk-cgroup hooks.
++ */
++
++static void bfqg_get(struct bfq_group *bfqg)
++{
++#ifdef BFQ_MQ
++ bfqg->ref++;
++#else
++ blkg_get(bfqg_to_blkg(bfqg));
++#endif
++}
++
++static void bfqg_put(struct bfq_group *bfqg)
++{
++#ifdef BFQ_MQ
++ bfqg->ref--;
++
++ BUG_ON(bfqg->ref < 0);
++ if (bfqg->ref == 0)
++ kfree(bfqg);
++#else
++ blkg_put(bfqg_to_blkg(bfqg));
++#endif
++}
++
++#ifdef BFQ_MQ
++static void bfqg_and_blkg_get(struct bfq_group *bfqg)
++{
++ /* see comments in bfq_bic_update_cgroup for why refcounting bfqg */
++ bfqg_get(bfqg);
++
++ blkg_get(bfqg_to_blkg(bfqg));
++}
++
++static void bfqg_and_blkg_put(struct bfq_group *bfqg)
++{
++ blkg_put(bfqg_to_blkg(bfqg));
++
++ bfqg_put(bfqg);
++}
++#endif
++
++/* @stats = 0 */
++static void bfqg_stats_reset(struct bfqg_stats *stats)
++{
++#ifdef CONFIG_DEBUG_BLK_CGROUP
++ /* queued stats shouldn't be cleared */
++ blkg_rwstat_reset(&stats->merged);
++ blkg_rwstat_reset(&stats->service_time);
++ blkg_rwstat_reset(&stats->wait_time);
++ blkg_stat_reset(&stats->time);
++ blkg_stat_reset(&stats->avg_queue_size_sum);
++ blkg_stat_reset(&stats->avg_queue_size_samples);
++ blkg_stat_reset(&stats->dequeue);
++ blkg_stat_reset(&stats->group_wait_time);
++ blkg_stat_reset(&stats->idle_time);
++ blkg_stat_reset(&stats->empty_time);
++#endif
++}
++
++/* @to += @from */
++static void bfqg_stats_add_aux(struct bfqg_stats *to, struct bfqg_stats *from)
++{
++ if (!to || !from)
++ return;
++
++#ifdef CONFIG_DEBUG_BLK_CGROUP
++ /* queued stats shouldn't be cleared */
++ blkg_rwstat_add_aux(&to->merged, &from->merged);
++ blkg_rwstat_add_aux(&to->service_time, &from->service_time);
++ blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
++ blkg_stat_add_aux(&from->time, &from->time);
++ blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
++ blkg_stat_add_aux(&to->avg_queue_size_samples,
++ &from->avg_queue_size_samples);
++ blkg_stat_add_aux(&to->dequeue, &from->dequeue);
++ blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
++ blkg_stat_add_aux(&to->idle_time, &from->idle_time);
++ blkg_stat_add_aux(&to->empty_time, &from->empty_time);
++#endif
++}
++
++/*
++ * Transfer @bfqg's stats to its parent's dead_stats so that the ancestors'
++ * recursive stats can still account for the amount used by this bfqg after
++ * it's gone.
++ */
++static void bfqg_stats_xfer_dead(struct bfq_group *bfqg)
++{
++ struct bfq_group *parent;
++
++ if (!bfqg) /* root_group */
++ return;
++
++ parent = bfqg_parent(bfqg);
++
++ lockdep_assert_held(bfqg_to_blkg(bfqg)->q->queue_lock);
++
++ if (unlikely(!parent))
++ return;
++
++ bfqg_stats_add_aux(&parent->stats, &bfqg->stats);
++ bfqg_stats_reset(&bfqg->stats);
++}
++
++static void bfq_init_entity(struct bfq_entity *entity,
++ struct bfq_group *bfqg)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++
++ entity->weight = entity->new_weight;
++ entity->orig_weight = entity->new_weight;
++ if (bfqq) {
++ bfqq->ioprio = bfqq->new_ioprio;
++ bfqq->ioprio_class = bfqq->new_ioprio_class;
++#ifdef BFQ_MQ
++ /*
++ * Make sure that bfqg and its associated blkg do not
++ * disappear before entity.
++ */
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "getting bfqg %p and blkg\n",
++ bfqg);
++
++ bfqg_and_blkg_get(bfqg);
++#else
++ bfqg_get(bfqg);
++#endif
++ }
++ entity->parent = bfqg->my_entity; /* NULL for root group */
++ entity->sched_data = &bfqg->sched_data;
++}
++
++static void bfqg_stats_exit(struct bfqg_stats *stats)
++{
++#ifdef CONFIG_DEBUG_BLK_CGROUP
++ blkg_rwstat_exit(&stats->merged);
++ blkg_rwstat_exit(&stats->service_time);
++ blkg_rwstat_exit(&stats->wait_time);
++ blkg_rwstat_exit(&stats->queued);
++ blkg_stat_exit(&stats->time);
++ blkg_stat_exit(&stats->avg_queue_size_sum);
++ blkg_stat_exit(&stats->avg_queue_size_samples);
++ blkg_stat_exit(&stats->dequeue);
++ blkg_stat_exit(&stats->group_wait_time);
++ blkg_stat_exit(&stats->idle_time);
++ blkg_stat_exit(&stats->empty_time);
++#endif
++}
++
++static int bfqg_stats_init(struct bfqg_stats *stats, gfp_t gfp)
++{
++#ifdef CONFIG_DEBUG_BLK_CGROUP
++ if (blkg_rwstat_init(&stats->merged, gfp) ||
++ blkg_rwstat_init(&stats->service_time, gfp) ||
++ blkg_rwstat_init(&stats->wait_time, gfp) ||
++ blkg_rwstat_init(&stats->queued, gfp) ||
++ blkg_stat_init(&stats->time, gfp) ||
++ blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
++ blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
++ blkg_stat_init(&stats->dequeue, gfp) ||
++ blkg_stat_init(&stats->group_wait_time, gfp) ||
++ blkg_stat_init(&stats->idle_time, gfp) ||
++ blkg_stat_init(&stats->empty_time, gfp)) {
++ bfqg_stats_exit(stats);
++ return -ENOMEM;
++ }
++#endif
++
++ return 0;
++}
++
++static struct bfq_group_data *cpd_to_bfqgd(struct blkcg_policy_data *cpd)
++{
++ return cpd ? container_of(cpd, struct bfq_group_data, pd) : NULL;
++}
++
++static struct bfq_group_data *blkcg_to_bfqgd(struct blkcg *blkcg)
++{
++ return cpd_to_bfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_bfq));
++}
++
++static struct blkcg_policy_data *bfq_cpd_alloc(gfp_t gfp)
++{
++ struct bfq_group_data *bgd;
++
++ bgd = kzalloc(sizeof(*bgd), gfp);
++ if (!bgd)
++ return NULL;
++ return &bgd->pd;
++}
++
++static void bfq_cpd_init(struct blkcg_policy_data *cpd)
++{
++ struct bfq_group_data *d = cpd_to_bfqgd(cpd);
++
++ d->weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
++ CGROUP_WEIGHT_DFL : BFQ_WEIGHT_LEGACY_DFL;
++}
++
++static void bfq_cpd_free(struct blkcg_policy_data *cpd)
++{
++ kfree(cpd_to_bfqgd(cpd));
++}
++
++static struct blkg_policy_data *bfq_pd_alloc(gfp_t gfp, int node)
++{
++ struct bfq_group *bfqg;
++
++ bfqg = kzalloc_node(sizeof(*bfqg), gfp, node);
++ if (!bfqg)
++ return NULL;
++
++ if (bfqg_stats_init(&bfqg->stats, gfp)) {
++ kfree(bfqg);
++ return NULL;
++ }
++#ifdef BFQ_MQ
++ /* see comments in bfq_bic_update_cgroup for why refcounting */
++ bfqg_get(bfqg);
++#endif
++ return &bfqg->pd;
++}
++
++static void bfq_pd_init(struct blkg_policy_data *pd)
++{
++ struct blkcg_gq *blkg;
++ struct bfq_group *bfqg;
++ struct bfq_data *bfqd;
++ struct bfq_entity *entity;
++ struct bfq_group_data *d;
++
++ blkg = pd_to_blkg(pd);
++ BUG_ON(!blkg);
++ bfqg = blkg_to_bfqg(blkg);
++ bfqd = blkg->q->elevator->elevator_data;
++ BUG_ON(bfqg == bfqd->root_group);
++ entity = &bfqg->entity;
++ d = blkcg_to_bfqgd(blkg->blkcg);
++
++ entity->orig_weight = entity->weight = entity->new_weight = d->weight;
++ entity->my_sched_data = &bfqg->sched_data;
++ bfqg->my_entity = entity; /*
++ * the root_group's will be set to NULL
++ * in bfq_init_queue()
++ */
++ bfqg->bfqd = bfqd;
++ bfqg->active_entities = 0;
++ bfqg->rq_pos_tree = RB_ROOT;
++}
++
++static void bfq_pd_free(struct blkg_policy_data *pd)
++{
++ struct bfq_group *bfqg = pd_to_bfqg(pd);
++
++ bfqg_stats_exit(&bfqg->stats);
++#ifdef BFQ_MQ
++ bfqg_put(bfqg);
++#else
++ kfree(bfqg);
++#endif
++}
++
++static void bfq_pd_reset_stats(struct blkg_policy_data *pd)
++{
++ struct bfq_group *bfqg = pd_to_bfqg(pd);
++
++ bfqg_stats_reset(&bfqg->stats);
++}
++
++static void bfq_group_set_parent(struct bfq_group *bfqg,
++ struct bfq_group *parent)
++{
++ struct bfq_entity *entity;
++
++ BUG_ON(!parent);
++ BUG_ON(!bfqg);
++ BUG_ON(bfqg == parent);
++
++ entity = &bfqg->entity;
++ entity->parent = parent->my_entity;
++ entity->sched_data = &parent->sched_data;
++}
++
++static struct bfq_group *bfq_lookup_bfqg(struct bfq_data *bfqd,
++ struct blkcg *blkcg)
++{
++ struct blkcg_gq *blkg;
++
++ blkg = blkg_lookup(blkcg, bfqd->queue);
++ if (likely(blkg))
++ return blkg_to_bfqg(blkg);
++ return NULL;
++}
++
++static struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd,
++ struct blkcg *blkcg)
++{
++ struct bfq_group *bfqg, *parent;
++ struct bfq_entity *entity;
++
++ bfqg = bfq_lookup_bfqg(bfqd, blkcg);
++
++ if (unlikely(!bfqg))
++ return NULL;
++
++ /*
++ * Update chain of bfq_groups as we might be handling a leaf group
++ * which, along with some of its relatives, has not been hooked yet
++ * to the private hierarchy of BFQ.
++ */
++ entity = &bfqg->entity;
++ for_each_entity(entity) {
++ bfqg = container_of(entity, struct bfq_group, entity);
++ BUG_ON(!bfqg);
++ if (bfqg != bfqd->root_group) {
++ parent = bfqg_parent(bfqg);
++ if (!parent)
++ parent = bfqd->root_group;
++ BUG_ON(!parent);
++ bfq_group_set_parent(bfqg, parent);
++ }
++ }
++
++ return bfqg;
++}
++
++static void bfq_pos_tree_add_move(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq);
++
++static void bfq_bfqq_expire(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ bool compensate,
++ enum bfqq_expiration reason);
++
++/**
++ * bfq_bfqq_move - migrate @bfqq to @bfqg.
++ * @bfqd: queue descriptor.
++ * @bfqq: the queue to move.
++ * @bfqg: the group to move to.
++ *
++ * Move @bfqq to @bfqg, deactivating it from its old group and reactivating
++ * it on the new one. Avoid putting the entity on the old group idle tree.
++ *
++#ifdef BFQ_MQ
++ * Must be called under the scheduler lock, to make sure that the blkg
++ * owning @bfqg does not disappear (see comments in
++ * bfq_bic_update_cgroup on guaranteeing the consistency of blkg
++ * objects).
++#else
++ * Must be called under the queue lock; the cgroup owning @bfqg must
++ * not disappear (by now this just means that we are called under
++ * rcu_read_lock()).
++#endif
++ */
++static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ struct bfq_group *bfqg)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++
++ BUG_ON(!bfq_bfqq_busy(bfqq) && !RB_EMPTY_ROOT(&bfqq->sort_list));
++ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list) && !entity->on_st);
++ BUG_ON(bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list)
++ && entity->on_st &&
++ bfqq != bfqd->in_service_queue);
++ BUG_ON(!bfq_bfqq_busy(bfqq) && bfqq == bfqd->in_service_queue);
++
++ /* If bfqq is empty, then bfq_bfqq_expire also invokes
++ * bfq_del_bfqq_busy, thereby removing bfqq and its entity
++ * from data structures related to current group. Otherwise we
++ * need to remove bfqq explicitly with bfq_deactivate_bfqq, as
++ * we do below.
++ */
++ if (bfqq == bfqd->in_service_queue)
++ bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
++ false, BFQ_BFQQ_PREEMPTED);
++
++ BUG_ON(entity->on_st && !bfq_bfqq_busy(bfqq)
++ && &bfq_entity_service_tree(entity)->idle !=
++ entity->tree);
++
++ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_busy(bfqq));
++
++ if (bfq_bfqq_busy(bfqq))
++ bfq_deactivate_bfqq(bfqd, bfqq, false, false);
++ else if (entity->on_st) {
++ BUG_ON(&bfq_entity_service_tree(entity)->idle !=
++ entity->tree);
++ bfq_put_idle_entity(bfq_entity_service_tree(entity), entity);
++ }
++#ifdef BFQ_MQ
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "putting blkg and bfqg %p\n", bfqg);
++
++ bfqg_and_blkg_put(bfqq_group(bfqq));
++#else
++ bfqg_put(bfqq_group(bfqq));
++#endif
++
++ entity->parent = bfqg->my_entity;
++ entity->sched_data = &bfqg->sched_data;
++#ifdef BFQ_MQ
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "getting blkg and bfqg %p\n", bfqg);
++
++ /* pin down bfqg and its associated blkg */
++ bfqg_and_blkg_get(bfqg);
++#else
++ bfqg_get(bfqg);
++#endif
++
++ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_busy(bfqq));
++ if (bfq_bfqq_busy(bfqq)) {
++ bfq_pos_tree_add_move(bfqd, bfqq);
++ bfq_activate_bfqq(bfqd, bfqq);
++ }
++
++ if (!bfqd->in_service_queue && !bfqd->rq_in_driver)
++ bfq_schedule_dispatch(bfqd);
++ BUG_ON(entity->on_st && !bfq_bfqq_busy(bfqq)
++ && &bfq_entity_service_tree(entity)->idle !=
++ entity->tree);
++}
++
++/**
++ * __bfq_bic_change_cgroup - move @bic to @cgroup.
++ * @bfqd: the queue descriptor.
++ * @bic: the bic to move.
++ * @blkcg: the blk-cgroup to move to.
++ *
++#ifdef BFQ_MQ
++ * Move bic to blkcg, assuming that bfqd->lock is held; which makes
++ * sure that the reference to cgroup is valid across the call (see
++ * comments in bfq_bic_update_cgroup on this issue)
++#else
++ * Move bic to blkcg, assuming that bfqd->queue is locked; the caller
++ * has to make sure that the reference to cgroup is valid across the call.
++#endif
++ *
++ * NOTE: an alternative approach might have been to store the current
++ * cgroup in bfqq and getting a reference to it, reducing the lookup
++ * time here, at the price of slightly more complex code.
++ */
++static struct bfq_group *__bfq_bic_change_cgroup(struct bfq_data *bfqd,
++ struct bfq_io_cq *bic,
++ struct blkcg *blkcg)
++{
++ struct bfq_queue *async_bfqq = bic_to_bfqq(bic, 0);
++ struct bfq_queue *sync_bfqq = bic_to_bfqq(bic, 1);
++ struct bfq_group *bfqg;
++ struct bfq_entity *entity;
++
++ bfqg = bfq_find_set_group(bfqd, blkcg);
++
++ if (unlikely(!bfqg))
++ bfqg = bfqd->root_group;
++
++ if (async_bfqq) {
++ entity = &async_bfqq->entity;
++
++ if (entity->sched_data != &bfqg->sched_data) {
++ bic_set_bfqq(bic, NULL, 0);
++ bfq_log_bfqq(bfqd, async_bfqq,
++ "%p %d",
++ async_bfqq,
++ async_bfqq->ref);
++ bfq_put_queue(async_bfqq);
++ }
++ }
++
++ if (sync_bfqq) {
++ entity = &sync_bfqq->entity;
++ if (entity->sched_data != &bfqg->sched_data)
++ bfq_bfqq_move(bfqd, sync_bfqq, bfqg);
++ }
++
++ return bfqg;
++}
++
++static void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio)
++{
++ struct bfq_data *bfqd = bic_to_bfqd(bic);
++ struct bfq_group *bfqg = NULL;
++ uint64_t serial_nr;
++
++ rcu_read_lock();
++ serial_nr = bio_blkcg(bio)->css.serial_nr;
++
++ /*
++ * Check whether blkcg has changed. The condition may trigger
++ * spuriously on a newly created cic but there's no harm.
++ */
++ if (unlikely(!bfqd) || likely(bic->blkcg_serial_nr == serial_nr))
++ goto out;
++
++ bfqg = __bfq_bic_change_cgroup(bfqd, bic, bio_blkcg(bio));
++#ifdef BFQ_MQ
++ /*
++ * Update blkg_path for bfq_log_* functions. We cache this
++ * path, and update it here, for the following
++ * reasons. Operations on blkg objects in blk-cgroup are
++ * protected with the request_queue lock, and not with the
++ * lock that protects the instances of this scheduler
++ * (bfqd->lock). This exposes BFQ to the following sort of
++ * race.
++ *
++ * The blkg_lookup performed in bfq_get_queue, protected
++ * through rcu, may happen to return the address of a copy of
++ * the original blkg. If this is the case, then the
++ * bfqg_and_blkg_get performed in bfq_get_queue, to pin down
++ * the blkg, is useless: it does not prevent blk-cgroup code
++ * from destroying both the original blkg and all objects
++ * directly or indirectly referred by the copy of the
++ * blkg.
++ *
++ * On the bright side, destroy operations on a blkg invoke, as
++ * a first step, hooks of the scheduler associated with the
++ * blkg. And these hooks are executed with bfqd->lock held for
++ * BFQ. As a consequence, for any blkg associated with the
++ * request queue this instance of the scheduler is attached
++ * to, we are guaranteed that such a blkg is not destroyed, and
++ * that all the pointers it contains are consistent, while we
++ * are holding bfqd->lock. A blkg_lookup performed with
++ * bfqd->lock held then returns a fully consistent blkg, which
++ * remains consistent until this lock is held.
++ *
++ * Thanks to the last fact, and to the fact that: (1) bfqg has
++ * been obtained through a blkg_lookup in the above
++ * assignment, and (2) bfqd->lock is being held, here we can
++ * safely use the policy data for the involved blkg (i.e., the
++ * field bfqg->pd) to get to the blkg associated with bfqg,
++ * and then we can safely use any field of blkg. After we
++ * release bfqd->lock, even just getting blkg through this
++ * bfqg may cause dangling references to be traversed, as
++ * bfqg->pd may not exist any more.
++ *
++ * In view of the above facts, here we cache, in the bfqg, any
++ * blkg data we may need for this bic, and for its associated
++ * bfq_queue. As of now, we need to cache only the path of the
++ * blkg, which is used in the bfq_log_* functions.
++ *
++ * Finally, note that bfqg itself needs to be protected from
++ * destruction on the blkg_free of the original blkg (which
++ * invokes bfq_pd_free). We use an additional private
++ * refcounter for bfqg, to let it disappear only after no
++ * bfq_queue refers to it any longer.
++ */
++ blkg_path(bfqg_to_blkg(bfqg), bfqg->blkg_path, sizeof(bfqg->blkg_path));
++#endif
++ bic->blkcg_serial_nr = serial_nr;
++out:
++ rcu_read_unlock();
++}
++
++/**
++ * bfq_flush_idle_tree - deactivate any entity on the idle tree of @st.
++ * @st: the service tree being flushed.
++ */
++static void bfq_flush_idle_tree(struct bfq_service_tree *st)
++{
++ struct bfq_entity *entity = st->first_idle;
++
++ for (; entity ; entity = st->first_idle)
++ __bfq_deactivate_entity(entity, false);
++}
++
++/**
++ * bfq_reparent_leaf_entity - move leaf entity to the root_group.
++ * @bfqd: the device data structure with the root group.
++ * @entity: the entity to move.
++ */
++static void bfq_reparent_leaf_entity(struct bfq_data *bfqd,
++ struct bfq_entity *entity)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++
++ BUG_ON(!bfqq);
++ bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
++}
++
++/**
++ * bfq_reparent_active_entities - move to the root group all active
++ * entities.
++ * @bfqd: the device data structure with the root group.
++ * @bfqg: the group to move from.
++ * @st: the service tree with the entities.
++ */
++static void bfq_reparent_active_entities(struct bfq_data *bfqd,
++ struct bfq_group *bfqg,
++ struct bfq_service_tree *st)
++{
++ struct rb_root *active = &st->active;
++ struct bfq_entity *entity = NULL;
++
++ if (!RB_EMPTY_ROOT(&st->active))
++ entity = bfq_entity_of(rb_first(active));
++
++ for (; entity ; entity = bfq_entity_of(rb_first(active)))
++ bfq_reparent_leaf_entity(bfqd, entity);
++
++ if (bfqg->sched_data.in_service_entity)
++ bfq_reparent_leaf_entity(bfqd,
++ bfqg->sched_data.in_service_entity);
++}
++
++/**
++ * bfq_pd_offline - deactivate the entity associated with @pd,
++ * and reparent its children entities.
++ * @pd: descriptor of the policy going offline.
++ *
++ * blkio already grabs the queue_lock for us, so no need to use
++ * RCU-based magic
++ */
++static void bfq_pd_offline(struct blkg_policy_data *pd)
++{
++ struct bfq_service_tree *st;
++ struct bfq_group *bfqg;
++ struct bfq_data *bfqd;
++ struct bfq_entity *entity;
++#ifdef BFQ_MQ
++ unsigned long flags;
++#endif
++ int i;
++
++ BUG_ON(!pd);
++ bfqg = pd_to_bfqg(pd);
++ BUG_ON(!bfqg);
++ bfqd = bfqg->bfqd;
++ BUG_ON(bfqd && !bfqd->root_group);
++
++ entity = bfqg->my_entity;
++
++#ifdef BFQ_MQ
++ spin_lock_irqsave(&bfqd->lock, flags);
++#endif
++
++ if (!entity) /* root group */
++ goto put_async_queues;
++
++ /*
++ * Empty all service_trees belonging to this group before
++ * deactivating the group itself.
++ */
++ for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) {
++ BUG_ON(!bfqg->sched_data.service_tree);
++ st = bfqg->sched_data.service_tree + i;
++ /*
++ * The idle tree may still contain bfq_queues belonging
++ * to exited task because they never migrated to a different
++ * cgroup from the one being destroyed now.
++ */
++ bfq_flush_idle_tree(st);
++
++ /*
++ * It may happen that some queues are still active
++ * (busy) upon group destruction (if the corresponding
++ * processes have been forced to terminate). We move
++ * all the leaf entities corresponding to these queues
++ * to the root_group.
++ * Also, it may happen that the group has an entity
++ * in service, which is disconnected from the active
++ * tree: it must be moved, too.
++ * There is no need to put the sync queues, as the
++ * scheduler has taken no reference.
++ */
++ bfq_reparent_active_entities(bfqd, bfqg, st);
++ BUG_ON(!RB_EMPTY_ROOT(&st->active));
++ BUG_ON(!RB_EMPTY_ROOT(&st->idle));
++ }
++ BUG_ON(bfqg->sched_data.next_in_service);
++ BUG_ON(bfqg->sched_data.in_service_entity);
++
++ __bfq_deactivate_entity(entity, false);
++
++put_async_queues:
++ bfq_put_async_queues(bfqd, bfqg);
++
++#ifdef BFQ_MQ
++ spin_unlock_irqrestore(&bfqd->lock, flags);
++#endif
++ /*
++ * @blkg is going offline and will be ignored by
++ * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
++ * that they don't get lost. If IOs complete after this point, the
++ * stats for them will be lost. Oh well...
++ */
++ bfqg_stats_xfer_dead(bfqg);
++}
++
++static void bfq_end_wr_async(struct bfq_data *bfqd)
++{
++ struct blkcg_gq *blkg;
++
++ list_for_each_entry(blkg, &bfqd->queue->blkg_list, q_node) {
++ struct bfq_group *bfqg = blkg_to_bfqg(blkg);
++ BUG_ON(!bfqg);
++
++ bfq_end_wr_async_queues(bfqd, bfqg);
++ }
++ bfq_end_wr_async_queues(bfqd, bfqd->root_group);
++}
++
++static int bfq_io_show_weight(struct seq_file *sf, void *v)
++{
++ struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
++ struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg);
++ unsigned int val = 0;
++
++ if (bfqgd)
++ val = bfqgd->weight;
++
++ seq_printf(sf, "%u\n", val);
++
++ return 0;
++}
++
++static int bfq_io_set_weight_legacy(struct cgroup_subsys_state *css,
++ struct cftype *cftype,
++ u64 val)
++{
++ struct blkcg *blkcg = css_to_blkcg(css);
++ struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg);
++ struct blkcg_gq *blkg;
++ int ret = -ERANGE;
++
++ if (val < BFQ_MIN_WEIGHT || val > BFQ_MAX_WEIGHT)
++ return ret;
++
++ ret = 0;
++ spin_lock_irq(&blkcg->lock);
++ bfqgd->weight = (unsigned short)val;
++ hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
++ struct bfq_group *bfqg = blkg_to_bfqg(blkg);
++
++ if (!bfqg)
++ continue;
++ /*
++ * Setting the prio_changed flag of the entity
++ * to 1 with new_weight == weight would re-set
++ * the value of the weight to its ioprio mapping.
++ * Set the flag only if necessary.
++ */
++ if ((unsigned short)val != bfqg->entity.new_weight) {
++ bfqg->entity.new_weight = (unsigned short)val;
++ /*
++ * Make sure that the above new value has been
++ * stored in bfqg->entity.new_weight before
++ * setting the prio_changed flag. In fact,
++ * this flag may be read asynchronously (in
++ * critical sections protected by a different
++ * lock than that held here), and finding this
++ * flag set may cause the execution of the code
++ * for updating parameters whose value may
++ * depend also on bfqg->entity.new_weight (in
++ * __bfq_entity_update_weight_prio).
++ * This barrier makes sure that the new value
++ * of bfqg->entity.new_weight is correctly
++ * seen in that code.
++ */
++ smp_wmb();
++ bfqg->entity.prio_changed = 1;
++ }
++ }
++ spin_unlock_irq(&blkcg->lock);
++
++ return ret;
++}
++
++static ssize_t bfq_io_set_weight(struct kernfs_open_file *of,
++ char *buf, size_t nbytes,
++ loff_t off)
++{
++ u64 weight;
++ /* First unsigned long found in the file is used */
++ int ret = kstrtoull(strim(buf), 0, &weight);
++
++ if (ret)
++ return ret;
++
++ ret = bfq_io_set_weight_legacy(of_css(of), NULL, weight);
++ return ret ?: nbytes;
++}
++
++#ifdef CONFIG_DEBUG_BLK_CGROUP
++static int bfqg_print_stat(struct seq_file *sf, void *v)
++{
++ blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
++ &blkcg_policy_bfq, seq_cft(sf)->private, false);
++ return 0;
++}
++
++static int bfqg_print_rwstat(struct seq_file *sf, void *v)
++{
++ blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
++ &blkcg_policy_bfq, seq_cft(sf)->private, true);
++ return 0;
++}
++
++static u64 bfqg_prfill_stat_recursive(struct seq_file *sf,
++ struct blkg_policy_data *pd, int off)
++{
++ u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
++ &blkcg_policy_bfq, off);
++ return __blkg_prfill_u64(sf, pd, sum);
++}
++
++static u64 bfqg_prfill_rwstat_recursive(struct seq_file *sf,
++ struct blkg_policy_data *pd, int off)
++{
++ struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
++ &blkcg_policy_bfq,
++ off);
++ return __blkg_prfill_rwstat(sf, pd, &sum);
++}
++
++static int bfqg_print_stat_recursive(struct seq_file *sf, void *v)
++{
++ blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
++ bfqg_prfill_stat_recursive, &blkcg_policy_bfq,
++ seq_cft(sf)->private, false);
++ return 0;
++}
++
++static int bfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
++{
++ blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
++ bfqg_prfill_rwstat_recursive, &blkcg_policy_bfq,
++ seq_cft(sf)->private, true);
++ return 0;
++}
++
++static u64 bfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
++ int off)
++{
++ u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
++
++ return __blkg_prfill_u64(sf, pd, sum >> 9);
++}
++
++static int bfqg_print_stat_sectors(struct seq_file *sf, void *v)
++{
++ blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
++ bfqg_prfill_sectors, &blkcg_policy_bfq, 0, false);
++ return 0;
++}
++
++static u64 bfqg_prfill_sectors_recursive(struct seq_file *sf,
++ struct blkg_policy_data *pd, int off)
++{
++ struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
++ offsetof(struct blkcg_gq, stat_bytes));
++ u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
++ atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
++
++ return __blkg_prfill_u64(sf, pd, sum >> 9);
++}
++
++static int bfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
++{
++ blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
++ bfqg_prfill_sectors_recursive, &blkcg_policy_bfq, 0,
++ false);
++ return 0;
++}
++
++
++static u64 bfqg_prfill_avg_queue_size(struct seq_file *sf,
++ struct blkg_policy_data *pd, int off)
++{
++ struct bfq_group *bfqg = pd_to_bfqg(pd);
++ u64 samples = blkg_stat_read(&bfqg->stats.avg_queue_size_samples);
++ u64 v = 0;
++
++ if (samples) {
++ v = blkg_stat_read(&bfqg->stats.avg_queue_size_sum);
++ v = div64_u64(v, samples);
++ }
++ __blkg_prfill_u64(sf, pd, v);
++ return 0;
++}
++
++/* print avg_queue_size */
++static int bfqg_print_avg_queue_size(struct seq_file *sf, void *v)
++{
++ blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
++ bfqg_prfill_avg_queue_size, &blkcg_policy_bfq,
++ 0, false);
++ return 0;
++}
++#endif /* CONFIG_DEBUG_BLK_CGROUP */
++
++static struct bfq_group *
++bfq_create_group_hierarchy(struct bfq_data *bfqd, int node)
++{
++ int ret;
++
++ ret = blkcg_activate_policy(bfqd->queue, &blkcg_policy_bfq);
++ if (ret)
++ return NULL;
++
++ return blkg_to_bfqg(bfqd->queue->root_blkg);
++}
++
++#ifdef BFQ_MQ
++#define BFQ_CGROUP_FNAME(param) "bfq-mq."#param
++#else
++#define BFQ_CGROUP_FNAME(param) "bfq-sq."#param
++#endif
++
++static struct cftype bfq_blkcg_legacy_files[] = {
++ {
++ .name = BFQ_CGROUP_FNAME(weight),
++ .flags = CFTYPE_NOT_ON_ROOT,
++ .seq_show = bfq_io_show_weight,
++ .write_u64 = bfq_io_set_weight_legacy,
++ },
++
++ /* statistics, covers only the tasks in the bfqg */
++ {
++ .name = BFQ_CGROUP_FNAME(io_service_bytes),
++ .private = (unsigned long)&blkcg_policy_bfq,
++ .seq_show = blkg_print_stat_bytes,
++ },
++ {
++ .name = BFQ_CGROUP_FNAME(io_serviced),
++ .private = (unsigned long)&blkcg_policy_bfq,
++ .seq_show = blkg_print_stat_ios,
++ },
++#ifdef CONFIG_DEBUG_BLK_CGROUP
++ {
++ .name = BFQ_CGROUP_FNAME(time),
++ .private = offsetof(struct bfq_group, stats.time),
++ .seq_show = bfqg_print_stat,
++ },
++ {
++ .name = BFQ_CGROUP_FNAME(sectors),
++ .seq_show = bfqg_print_stat_sectors,
++ },
++ {
++ .name = BFQ_CGROUP_FNAME(io_service_time),
++ .private = offsetof(struct bfq_group, stats.service_time),
++ .seq_show = bfqg_print_rwstat,
++ },
++ {
++ .name = BFQ_CGROUP_FNAME(io_wait_time),
++ .private = offsetof(struct bfq_group, stats.wait_time),
++ .seq_show = bfqg_print_rwstat,
++ },
++ {
++ .name = BFQ_CGROUP_FNAME(io_merged),
++ .private = offsetof(struct bfq_group, stats.merged),
++ .seq_show = bfqg_print_rwstat,
++ },
++ {
++ .name = BFQ_CGROUP_FNAME(io_queued),
++ .private = offsetof(struct bfq_group, stats.queued),
++ .seq_show = bfqg_print_rwstat,
++ },
++#endif /* CONFIG_DEBUG_BLK_CGROUP */
++
++ /* the same statictics which cover the bfqg and its descendants */
++ {
++ .name = BFQ_CGROUP_FNAME(io_service_bytes_recursive),
++ .private = (unsigned long)&blkcg_policy_bfq,
++ .seq_show = blkg_print_stat_bytes_recursive,
++ },
++ {
++ .name = BFQ_CGROUP_FNAME(io_serviced_recursive),
++ .private = (unsigned long)&blkcg_policy_bfq,
++ .seq_show = blkg_print_stat_ios_recursive,
++ },
++#ifdef CONFIG_DEBUG_BLK_CGROUP
++ {
++ .name = BFQ_CGROUP_FNAME(time_recursive),
++ .private = offsetof(struct bfq_group, stats.time),
++ .seq_show = bfqg_print_stat_recursive,
++ },
++ {
++ .name = BFQ_CGROUP_FNAME(sectors_recursive),
++ .seq_show = bfqg_print_stat_sectors_recursive,
++ },
++ {
++ .name = BFQ_CGROUP_FNAME(io_service_time_recursive),
++ .private = offsetof(struct bfq_group, stats.service_time),
++ .seq_show = bfqg_print_rwstat_recursive,
++ },
++ {
++ .name = BFQ_CGROUP_FNAME(io_wait_time_recursive),
++ .private = offsetof(struct bfq_group, stats.wait_time),
++ .seq_show = bfqg_print_rwstat_recursive,
++ },
++ {
++ .name = BFQ_CGROUP_FNAME(io_merged_recursive),
++ .private = offsetof(struct bfq_group, stats.merged),
++ .seq_show = bfqg_print_rwstat_recursive,
++ },
++ {
++ .name = BFQ_CGROUP_FNAME(io_queued_recursive),
++ .private = offsetof(struct bfq_group, stats.queued),
++ .seq_show = bfqg_print_rwstat_recursive,
++ },
++ {
++ .name = BFQ_CGROUP_FNAME(avg_queue_size),
++ .seq_show = bfqg_print_avg_queue_size,
++ },
++ {
++ .name = BFQ_CGROUP_FNAME(group_wait_time),
++ .private = offsetof(struct bfq_group, stats.group_wait_time),
++ .seq_show = bfqg_print_stat,
++ },
++ {
++ .name = BFQ_CGROUP_FNAME(idle_time),
++ .private = offsetof(struct bfq_group, stats.idle_time),
++ .seq_show = bfqg_print_stat,
++ },
++ {
++ .name = BFQ_CGROUP_FNAME(empty_time),
++ .private = offsetof(struct bfq_group, stats.empty_time),
++ .seq_show = bfqg_print_stat,
++ },
++ {
++ .name = BFQ_CGROUP_FNAME(dequeue),
++ .private = offsetof(struct bfq_group, stats.dequeue),
++ .seq_show = bfqg_print_stat,
++ },
++#endif /* CONFIG_DEBUG_BLK_CGROUP */
++ { } /* terminate */
++};
++
++static struct cftype bfq_blkg_files[] = {
++ {
++ .name = BFQ_CGROUP_FNAME(weight),
++ .flags = CFTYPE_NOT_ON_ROOT,
++ .seq_show = bfq_io_show_weight,
++ .write = bfq_io_set_weight,
++ },
++ {} /* terminate */
++};
++
++#undef BFQ_CGROUP_FNAME
++
++#else /* BFQ_GROUP_IOSCHED_ENABLED */
++
++static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ struct bfq_group *bfqg) {}
++
++static void bfq_init_entity(struct bfq_entity *entity,
++ struct bfq_group *bfqg)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++
++ entity->weight = entity->new_weight;
++ entity->orig_weight = entity->new_weight;
++ if (bfqq) {
++ bfqq->ioprio = bfqq->new_ioprio;
++ bfqq->ioprio_class = bfqq->new_ioprio_class;
++ }
++ entity->sched_data = &bfqg->sched_data;
++}
++
++static void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio) {}
++
++static void bfq_end_wr_async(struct bfq_data *bfqd)
++{
++ bfq_end_wr_async_queues(bfqd, bfqd->root_group);
++}
++
++static struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd,
++ struct blkcg *blkcg)
++{
++ return bfqd->root_group;
++}
++
++static struct bfq_group *bfqq_group(struct bfq_queue *bfqq)
++{
++ return bfqq->bfqd->root_group;
++}
++
++static struct bfq_group *
++bfq_create_group_hierarchy(struct bfq_data *bfqd, int node)
++{
++ struct bfq_group *bfqg;
++ int i;
++
++ bfqg = kmalloc_node(sizeof(*bfqg), GFP_KERNEL | __GFP_ZERO, node);
++ if (!bfqg)
++ return NULL;
++
++ for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
++ bfqg->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
++
++ return bfqg;
++}
++#endif
+diff --git a/block/bfq-ioc.c b/block/bfq-ioc.c
+new file mode 100644
+index 000000000000..fb7bb8f08b75
+--- /dev/null
++++ b/block/bfq-ioc.c
+@@ -0,0 +1,36 @@
++/*
++ * BFQ: I/O context handling.
++ *
++ * Based on ideas and code from CFQ:
++ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
++ *
++ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
++ * Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
++ */
++
++/**
++ * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
++ * @icq: the iocontext queue.
++ */
++static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
++{
++ /* bic->icq is the first member, %NULL will convert to %NULL */
++ return container_of(icq, struct bfq_io_cq, icq);
++}
++
++/**
++ * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
++ * @bfqd: the lookup key.
++ * @ioc: the io_context of the process doing I/O.
++ *
++ * Queue lock must be held.
++ */
++static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
++ struct io_context *ioc)
++{
++ if (ioc)
++ return icq_to_bic(ioc_lookup_icq(ioc, bfqd->queue));
++ return NULL;
++}
+diff --git a/block/bfq-mq-iosched.c b/block/bfq-mq-iosched.c
+new file mode 100644
+index 000000000000..47a49d9e6512
+--- /dev/null
++++ b/block/bfq-mq-iosched.c
+@@ -0,0 +1,6548 @@
++/*
++ * Budget Fair Queueing (BFQ) I/O scheduler.
++ *
++ * Based on ideas and code from CFQ:
++ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
++ *
++ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
++ * Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
++ *
++ * Licensed under the GPL-2 as detailed in the accompanying COPYING.BFQ
++ * file.
++ *
++ * BFQ is a proportional-share I/O scheduler, with some extra
++ * low-latency capabilities. BFQ also supports full hierarchical
++ * scheduling through cgroups. Next paragraphs provide an introduction
++ * on BFQ inner workings. Details on BFQ benefits and usage can be
++ * found in Documentation/block/bfq-iosched.txt.
++ *
++ * BFQ is a proportional-share storage-I/O scheduling algorithm based
++ * on the slice-by-slice service scheme of CFQ. But BFQ assigns
++ * budgets, measured in number of sectors, to processes instead of
++ * time slices. The device is not granted to the in-service process
++ * for a given time slice, but until it has exhausted its assigned
++ * budget. This change from the time to the service domain enables BFQ
++ * to distribute the device throughput among processes as desired,
++ * without any distortion due to throughput fluctuations, or to device
++ * internal queueing. BFQ uses an ad hoc internal scheduler, called
++ * B-WF2Q+, to schedule processes according to their budgets. More
++ * precisely, BFQ schedules queues associated with processes. Thanks to
++ * the accurate policy of B-WF2Q+, BFQ can afford to assign high
++ * budgets to I/O-bound processes issuing sequential requests (to
++ * boost the throughput), and yet guarantee a low latency to
++ * interactive and soft real-time applications.
++ *
++ * In particular, BFQ schedules I/O so as to achieve the latter goal--
++ * low latency for interactive and soft real-time applications--if the
++ * low_latency parameter is set (default configuration). To this
++ * purpose, BFQ constantly tries to detect whether the I/O requests in
++ * a bfq_queue come from an interactive or a soft real-time
++ * application. For brevity, in these cases, the queue is said to be
++ * interactive or soft real-time. In both cases, BFQ privileges the
++ * service of the queue, over that of non-interactive and
++ * non-soft-real-time queues. This privileging is performed, mainly,
++ * by raising the weight of the queue. So, for brevity, we call just
++ * weight-raising periods the time periods during which a queue is
++ * privileged, because deemed interactive or soft real-time.
++ *
++ * The detection of soft real-time queues/applications is described in
++ * detail in the comments on the function
++ * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
++ * interactive queue works as follows: a queue is deemed interactive
++ * if it is constantly non empty only for a limited time interval,
++ * after which it does become empty. The queue may be deemed
++ * interactive again (for a limited time), if it restarts being
++ * constantly non empty, provided that this happens only after the
++ * queue has remained empty for a given minimum idle time.
++ *
++ * By default, BFQ computes automatically the above maximum time
++ * interval, i.e., the time interval after which a constantly
++ * non-empty queue stops being deemed interactive. Since a queue is
++ * weight-raised while it is deemed interactive, this maximum time
++ * interval happens to coincide with the (maximum) duration of the
++ * weight-raising for interactive queues.
++ *
++ * NOTE: if the main or only goal, with a given device, is to achieve
++ * the maximum-possible throughput at all times, then do switch off
++ * all low-latency heuristics for that device, by setting low_latency
++ * to 0.
++ *
++ * BFQ is described in [1], where also a reference to the initial,
++ * more theoretical paper on BFQ can be found. The interested reader
++ * can find in the latter paper full details on the main algorithm, as
++ * well as formulas of the guarantees and formal proofs of all the
++ * properties. With respect to the version of BFQ presented in these
++ * papers, this implementation adds a few more heuristics, such as the
++ * one that guarantees a low latency to soft real-time applications,
++ * and a hierarchical extension based on H-WF2Q+.
++ *
++ * B-WF2Q+ is based on WF2Q+, that is described in [2], together with
++ * H-WF2Q+, while the augmented tree used to implement B-WF2Q+ with O(log N)
++ * complexity derives from the one introduced with EEVDF in [3].
++ *
++ * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
++ * Scheduler", Proceedings of the First Workshop on Mobile System
++ * Technologies (MST-2015), May 2015.
++ * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
++ *
++ * http://algogroup.unimo.it/people/paolo/disk_sched/bf1-v1-suite-results.pdf
++ *
++ * [2] Jon C.R. Bennett and H. Zhang, ``Hierarchical Packet Fair Queueing
++ * Algorithms,'' IEEE/ACM Transactions on Networking, 5(5):675-689,
++ * Oct 1997.
++ *
++ * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
++ *
++ * [3] I. Stoica and H. Abdel-Wahab, ``Earliest Eligible Virtual Deadline
++ * First: A Flexible and Accurate Mechanism for Proportional Share
++ * Resource Allocation,'' technical report.
++ *
++ * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
++ */
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/blkdev.h>
++#include <linux/cgroup.h>
++#include <linux/elevator.h>
++#include <linux/jiffies.h>
++#include <linux/rbtree.h>
++#include <linux/ioprio.h>
++#include <linux/sbitmap.h>
++#include <linux/delay.h>
++
++#include "blk.h"
++#include "blk-mq.h"
++#include "blk-mq-tag.h"
++#include "blk-mq-sched.h"
++#include "bfq-mq.h"
++#include "blk-wbt.h"
++
++/* Expiration time of sync (0) and async (1) requests, in ns. */
++static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
++
++/* Maximum backwards seek, in KiB. */
++static const int bfq_back_max = (16 * 1024);
++
++/* Penalty of a backwards seek, in number of sectors. */
++static const int bfq_back_penalty = 2;
++
++/* Idling period duration, in ns. */
++static u32 bfq_slice_idle = (NSEC_PER_SEC / 125);
++
++/* Minimum number of assigned budgets for which stats are safe to compute. */
++static const int bfq_stats_min_budgets = 194;
++
++/* Default maximum budget values, in sectors and number of requests. */
++static const int bfq_default_max_budget = (16 * 1024);
++
++/*
++ * When a sync request is dispatched, the queue that contains that
++ * request, and all the ancestor entities of that queue, are charged
++ * with the number of sectors of the request. In constrast, if the
++ * request is async, then the queue and its ancestor entities are
++ * charged with the number of sectors of the request, multiplied by
++ * the factor below. This throttles the bandwidth for async I/O,
++ * w.r.t. to sync I/O, and it is done to counter the tendency of async
++ * writes to steal I/O throughput to reads.
++ *
++ * The current value of this parameter is the result of a tuning with
++ * several hardware and software configurations. We tried to find the
++ * lowest value for which writes do not cause noticeable problems to
++ * reads. In fact, the lower this parameter, the stabler I/O control,
++ * in the following respect. The lower this parameter is, the less
++ * the bandwidth enjoyed by a group decreases
++ * - when the group does writes, w.r.t. to when it does reads;
++ * - when other groups do reads, w.r.t. to when they do writes.
++ */
++static const int bfq_async_charge_factor = 3;
++
++/* Default timeout values, in jiffies, approximating CFQ defaults. */
++static const int bfq_timeout = (HZ / 8);
++
++/*
++ * Time limit for merging (see comments in bfq_setup_cooperator). Set
++ * to the slowest value that, in our tests, proved to be effective in
++ * removing false positives, while not causing true positives to miss
++ * queue merging.
++ *
++ * As can be deduced from the low time limit below, queue merging, if
++ * successful, happens at the very beggining of the I/O of the involved
++ * cooperating processes, as a consequence of the arrival of the very
++ * first requests from each cooperator. After that, there is very
++ * little chance to find cooperators.
++ */
++static const unsigned long bfq_merge_time_limit = HZ/10;
++
++#define MAX_LENGTH_REASON_NAME 25
++
++static const char reason_name[][MAX_LENGTH_REASON_NAME] = {"TOO_IDLE",
++"BUDGET_TIMEOUT", "BUDGET_EXHAUSTED", "NO_MORE_REQUESTS",
++"PREEMPTED"};
++
++static struct kmem_cache *bfq_pool;
++
++/* Below this threshold (in ns), we consider thinktime immediate. */
++#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
++
++/* hw_tag detection: parallel requests threshold and min samples needed. */
++#define BFQ_HW_QUEUE_THRESHOLD 3
++#define BFQ_HW_QUEUE_SAMPLES 32
++
++#define BFQQ_SEEK_THR (sector_t)(8 * 100)
++#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
++#define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
++ (get_sdist(last_pos, rq) > \
++ BFQQ_SEEK_THR && \
++ (!blk_queue_nonrot(bfqd->queue) || \
++ blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
++#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
++#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 19)
++
++/* Min number of samples required to perform peak-rate update */
++#define BFQ_RATE_MIN_SAMPLES 32
++/* Min observation time interval required to perform a peak-rate update (ns) */
++#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
++/* Target observation time interval for a peak-rate update (ns) */
++#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
++
++/*
++ * Shift used for peak-rate fixed precision calculations.
++ * With
++ * - the current shift: 16 positions
++ * - the current type used to store rate: u32
++ * - the current unit of measure for rate: [sectors/usec], or, more precisely,
++ * [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
++ * the range of rates that can be stored is
++ * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
++ * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
++ * [15, 65G] sectors/sec
++ * Which, assuming a sector size of 512B, corresponds to a range of
++ * [7.5K, 33T] B/sec
++ */
++#define BFQ_RATE_SHIFT 16
++
++/*
++ * When configured for computing the duration of the weight-raising
++ * for interactive queues automatically (see the comments at the
++ * beginning of this file), BFQ does it using the following formula:
++ * duration = (ref_rate / r) * ref_wr_duration,
++ * where r is the peak rate of the device, and ref_rate and
++ * ref_wr_duration are two reference parameters. In particular,
++ * ref_rate is the peak rate of the reference storage device (see
++ * below), and ref_wr_duration is about the maximum time needed, with
++ * BFQ and while reading two files in parallel, to load typical large
++ * applications on the reference device (see the comments on
++ * max_service_from_wr below, for more details on how ref_wr_duration
++ * is obtained). In practice, the slower/faster the device at hand
++ * is, the more/less it takes to load applications with respect to the
++ * reference device. Accordingly, the longer/shorter BFQ grants
++ * weight raising to interactive applications.
++ *
++ * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
++ * depending on whether the device is rotational or non-rotational.
++ *
++ * In the following definitions, ref_rate[0] and ref_wr_duration[0]
++ * are the reference values for a rotational device, whereas
++ * ref_rate[1] and ref_wr_duration[1] are the reference values for a
++ * non-rotational device. The reference rates are not the actual peak
++ * rates of the devices used as a reference, but slightly lower
++ * values. The reason for using slightly lower values is that the
++ * peak-rate estimator tends to yield slightly lower values than the
++ * actual peak rate (it can yield the actual peak rate only if there
++ * is only one process doing I/O, and the process does sequential
++ * I/O).
++ *
++ * The reference peak rates are measured in sectors/usec, left-shifted
++ * by BFQ_RATE_SHIFT.
++ */
++static int ref_rate[2] = {14000, 33000};
++/*
++ * To improve readability, a conversion function is used to initialize
++ * the following array, which entails that the array can be
++ * initialized only in a function.
++ */
++static int ref_wr_duration[2];
++
++/*
++ * BFQ uses the above-detailed, time-based weight-raising mechanism to
++ * privilege interactive tasks. This mechanism is vulnerable to the
++ * following false positives: I/O-bound applications that will go on
++ * doing I/O for much longer than the duration of weight
++ * raising. These applications have basically no benefit from being
++ * weight-raised at the beginning of their I/O. On the opposite end,
++ * while being weight-raised, these applications
++ * a) unjustly steal throughput to applications that may actually need
++ * low latency;
++ * b) make BFQ uselessly perform device idling; device idling results
++ * in loss of device throughput with most flash-based storage, and may
++ * increase latencies when used purposelessly.
++ *
++ * BFQ tries to reduce these problems, by adopting the following
++ * countermeasure. To introduce this countermeasure, we need first to
++ * finish explaining how the duration of weight-raising for
++ * interactive tasks is computed.
++ *
++ * For a bfq_queue deemed as interactive, the duration of weight
++ * raising is dynamically adjusted, as a function of the estimated
++ * peak rate of the device, so as to be equal to the time needed to
++ * execute the 'largest' interactive task we benchmarked so far. By
++ * largest task, we mean the task for which each involved process has
++ * to do more I/O than for any of the other tasks we benchmarked. This
++ * reference interactive task is the start-up of LibreOffice Writer,
++ * and in this task each process/bfq_queue needs to have at most ~110K
++ * sectors transferred.
++ *
++ * This last piece of information enables BFQ to reduce the actual
++ * duration of weight-raising for at least one class of I/O-bound
++ * applications: those doing sequential or quasi-sequential I/O. An
++ * example is file copy. In fact, once started, the main I/O-bound
++ * processes of these applications usually consume the above 110K
++ * sectors in much less time than the processes of an application that
++ * is starting, because these I/O-bound processes will greedily devote
++ * almost all their CPU cycles only to their target,
++ * throughput-friendly I/O operations. This is even more true if BFQ
++ * happens to be underestimating the device peak rate, and thus
++ * overestimating the duration of weight raising. But, according to
++ * our measurements, once transferred 110K sectors, these processes
++ * have no right to be weight-raised any longer.
++ *
++ * Basing on the last consideration, BFQ ends weight-raising for a
++ * bfq_queue if the latter happens to have received an amount of
++ * service at least equal to the following constant. The constant is
++ * set to slightly more than 110K, to have a minimum safety margin.
++ *
++ * This early ending of weight-raising reduces the amount of time
++ * during which interactive false positives cause the two problems
++ * described at the beginning of these comments.
++ */
++static const unsigned long max_service_from_wr = 120000;
++
++#define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \
++ { RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 })
++
++#define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
++#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
++
++/**
++ * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
++ * @icq: the iocontext queue.
++ */
++static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
++{
++ /* bic->icq is the first member, %NULL will convert to %NULL */
++ return container_of(icq, struct bfq_io_cq, icq);
++}
++
++/**
++ * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
++ * @bfqd: the lookup key.
++ * @ioc: the io_context of the process doing I/O.
++ * @q: the request queue.
++ */
++static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
++ struct io_context *ioc,
++ struct request_queue *q)
++{
++ if (ioc) {
++ unsigned long flags;
++ struct bfq_io_cq *icq;
++
++ spin_lock_irqsave(q->queue_lock, flags);
++ icq = icq_to_bic(ioc_lookup_icq(ioc, q));
++ spin_unlock_irqrestore(q->queue_lock, flags);
++
++ return icq;
++ }
++
++ return NULL;
++}
++
++/*
++ * Scheduler run of queue, if there are requests pending and no one in the
++ * driver that will restart queueing.
++ */
++static void bfq_schedule_dispatch(struct bfq_data *bfqd)
++{
++ if (bfqd->queued != 0) {
++ bfq_log(bfqd, "");
++ blk_mq_run_hw_queues(bfqd->queue, true);
++ }
++}
++
++#define BFQ_MQ
++#include "bfq-sched.c"
++#include "bfq-cgroup-included.c"
++
++#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
++#define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
++
++#define bfq_sample_valid(samples) ((samples) > 80)
++
++/*
++ * Lifted from AS - choose which of rq1 and rq2 that is best served now.
++ * We choose the request that is closesr to the head right now. Distance
++ * behind the head is penalized and only allowed to a certain extent.
++ */
++static struct request *bfq_choose_req(struct bfq_data *bfqd,
++ struct request *rq1,
++ struct request *rq2,
++ sector_t last)
++{
++ sector_t s1, s2, d1 = 0, d2 = 0;
++ unsigned long back_max;
++#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
++#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
++ unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
++
++ if (!rq1 || rq1 == rq2)
++ return rq2;
++ if (!rq2)
++ return rq1;
++
++ if (rq_is_sync(rq1) && !rq_is_sync(rq2))
++ return rq1;
++ else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
++ return rq2;
++ if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
++ return rq1;
++ else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
++ return rq2;
++
++ s1 = blk_rq_pos(rq1);
++ s2 = blk_rq_pos(rq2);
++
++ /*
++ * By definition, 1KiB is 2 sectors.
++ */
++ back_max = bfqd->bfq_back_max * 2;
++
++ /*
++ * Strict one way elevator _except_ in the case where we allow
++ * short backward seeks which are biased as twice the cost of a
++ * similar forward seek.
++ */
++ if (s1 >= last)
++ d1 = s1 - last;
++ else if (s1 + back_max >= last)
++ d1 = (last - s1) * bfqd->bfq_back_penalty;
++ else
++ wrap |= BFQ_RQ1_WRAP;
++
++ if (s2 >= last)
++ d2 = s2 - last;
++ else if (s2 + back_max >= last)
++ d2 = (last - s2) * bfqd->bfq_back_penalty;
++ else
++ wrap |= BFQ_RQ2_WRAP;
++
++ /* Found required data */
++
++ /*
++ * By doing switch() on the bit mask "wrap" we avoid having to
++ * check two variables for all permutations: --> faster!
++ */
++ switch (wrap) {
++ case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
++ if (d1 < d2)
++ return rq1;
++ else if (d2 < d1)
++ return rq2;
++
++ if (s1 >= s2)
++ return rq1;
++ else
++ return rq2;
++
++ case BFQ_RQ2_WRAP:
++ return rq1;
++ case BFQ_RQ1_WRAP:
++ return rq2;
++ case (BFQ_RQ1_WRAP|BFQ_RQ2_WRAP): /* both rqs wrapped */
++ default:
++ /*
++ * Since both rqs are wrapped,
++ * start with the one that's further behind head
++ * (--> only *one* back seek required),
++ * since back seek takes more time than forward.
++ */
++ if (s1 <= s2)
++ return rq1;
++ else
++ return rq2;
++ }
++}
++
++/*
++ * Async I/O can easily starve sync I/O (both sync reads and sync
++ * writes), by consuming all tags. Similarly, storms of sync writes,
++ * such as those that sync(2) may trigger, can starve sync reads.
++ * Limit depths of async I/O and sync writes so as to counter both
++ * problems.
++ */
++static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
++{
++ struct bfq_data *bfqd = data->q->elevator->elevator_data;
++
++ if (op_is_sync(op) && !op_is_write(op))
++ return;
++
++ data->shallow_depth =
++ bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
++
++ bfq_log(bfqd, "wr_busy %d sync %d depth %u",
++ bfqd->wr_busy_queues, op_is_sync(op),
++ data->shallow_depth);
++}
++
++static struct bfq_queue *
++bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
++ sector_t sector, struct rb_node **ret_parent,
++ struct rb_node ***rb_link)
++{
++ struct rb_node **p, *parent;
++ struct bfq_queue *bfqq = NULL;
++
++ parent = NULL;
++ p = &root->rb_node;
++ while (*p) {
++ struct rb_node **n;
++
++ parent = *p;
++ bfqq = rb_entry(parent, struct bfq_queue, pos_node);
++
++ /*
++ * Sort strictly based on sector. Smallest to the left,
++ * largest to the right.
++ */
++ if (sector > blk_rq_pos(bfqq->next_rq))
++ n = &(*p)->rb_right;
++ else if (sector < blk_rq_pos(bfqq->next_rq))
++ n = &(*p)->rb_left;
++ else
++ break;
++ p = n;
++ bfqq = NULL;
++ }
++
++ *ret_parent = parent;
++ if (rb_link)
++ *rb_link = p;
++
++ bfq_log(bfqd, "%llu: returning %d",
++ (unsigned long long) sector,
++ bfqq ? bfqq->pid : 0);
++
++ return bfqq;
++}
++
++static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
++{
++ return bfqq->service_from_backlogged > 0 &&
++ time_is_before_jiffies(bfqq->first_IO_time +
++ bfq_merge_time_limit);
++}
++
++static void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ struct rb_node **p, *parent;
++ struct bfq_queue *__bfqq;
++
++ if (bfqq->pos_root) {
++ rb_erase(&bfqq->pos_node, bfqq->pos_root);
++ bfqq->pos_root = NULL;
++ }
++
++ /*
++ * bfqq cannot be merged any longer (see comments in
++ * bfq_setup_cooperator): no point in adding bfqq into the
++ * position tree.
++ */
++ if (bfq_too_late_for_merging(bfqq))
++ return;
++
++ if (bfq_class_idle(bfqq))
++ return;
++ if (!bfqq->next_rq)
++ return;
++
++ bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
++ __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
++ blk_rq_pos(bfqq->next_rq), &parent, &p);
++ if (!__bfqq) {
++ rb_link_node(&bfqq->pos_node, parent, p);
++ rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
++ } else
++ bfqq->pos_root = NULL;
++}
++
++/*
++ * The following function returns true if every queue must receive the
++ * same share of the throughput (this condition is used when deciding
++ * whether idling may be disabled, see the comments in the function
++ * bfq_better_to_idle()).
++ *
++ * Such a scenario occurs when:
++ * 1) all active queues have the same weight,
++ * 2) all active queues belong to the same I/O-priority class,
++ * 3) all active groups at the same level in the groups tree have the same
++ * weight,
++ * 4) all active groups at the same level in the groups tree have the same
++ * number of children.
++ *
++ * Unfortunately, keeping the necessary state for evaluating exactly
++ * the last two symmetry sub-conditions above would be quite complex
++ * and time consuming. Therefore this function evaluates, instead,
++ * only the following stronger three sub-conditions, for which it is
++ * much easier to maintain the needed state:
++ * 1) all active queues have the same weight,
++ * 2) all active queues belong to the same I/O-priority class,
++ * 3) there are no active groups.
++ * In particular, the last condition is always true if hierarchical
++ * support or the cgroups interface are not enabled, thus no state
++ * needs to be maintained in this case.
++ */
++static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
++{
++ /*
++ * For queue weights to differ, queue_weights_tree must contain
++ * at least two nodes.
++ */
++ bool varied_queue_weights = !RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
++ (bfqd->queue_weights_tree.rb_node->rb_left ||
++ bfqd->queue_weights_tree.rb_node->rb_right);
++
++ bool multiple_classes_busy =
++ (bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
++ (bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
++ (bfqd->busy_queues[1] && bfqd->busy_queues[2]);
++
++ bfq_log(bfqd, "varied_queue_weights %d mul_classes %d",
++ varied_queue_weights, multiple_classes_busy);
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ bfq_log(bfqd, "num_groups_with_pending_reqs %u",
++ bfqd->num_groups_with_pending_reqs);
++#endif
++
++ return !(varied_queue_weights || multiple_classes_busy
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ || bfqd->num_groups_with_pending_reqs > 0
++#endif
++ );
++}
++
++/*
++ * If the weight-counter tree passed as input contains no counter for
++ * the weight of the input queue, then add that counter; otherwise just
++ * increment the existing counter.
++ *
++ * Note that weight-counter trees contain few nodes in mostly symmetric
++ * scenarios. For example, if all queues have the same weight, then the
++ * weight-counter tree for the queues may contain at most one node.
++ * This holds even if low_latency is on, because weight-raised queues
++ * are not inserted in the tree.
++ * In most scenarios, the rate at which nodes are created/destroyed
++ * should be low too.
++ */
++static void bfq_weights_tree_add(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ struct rb_root *root)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++ struct rb_node **new = &(root->rb_node), *parent = NULL;
++
++ /*
++ * Do not insert if the queue is already associated with a
++ * counter, which happens if:
++ * 1) a request arrival has caused the queue to become both
++ * non-weight-raised, and hence change its weight, and
++ * backlogged; in this respect, each of the two events
++ * causes an invocation of this function,
++ * 2) this is the invocation of this function caused by the
++ * second event. This second invocation is actually useless,
++ * and we handle this fact by exiting immediately. More
++ * efficient or clearer solutions might possibly be adopted.
++ */
++ if (bfqq->weight_counter)
++ return;
++
++ while (*new) {
++ struct bfq_weight_counter *__counter = container_of(*new,
++ struct bfq_weight_counter,
++ weights_node);
++ parent = *new;
++
++ if (entity->weight == __counter->weight) {
++ bfqq->weight_counter = __counter;
++ goto inc_counter;
++ }
++ if (entity->weight < __counter->weight)
++ new = &((*new)->rb_left);
++ else
++ new = &((*new)->rb_right);
++ }
++
++ bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
++ GFP_ATOMIC);
++
++ /*
++ * In the unlucky event of an allocation failure, we just
++ * exit. This will cause the weight of queue to not be
++ * considered in bfq_symmetric_scenario, which, in its turn,
++ * causes the scenario to be deemed wrongly symmetric in case
++ * bfqq's weight would have been the only weight making the
++ * scenario asymmetric. On the bright side, no unbalance will
++ * however occur when bfqq becomes inactive again (the
++ * invocation of this function is triggered by an activation
++ * of queue). In fact, bfq_weights_tree_remove does nothing
++ * if !bfqq->weight_counter.
++ */
++ if (unlikely(!bfqq->weight_counter))
++ return;
++
++ bfqq->weight_counter->weight = entity->weight;
++ rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
++ rb_insert_color(&bfqq->weight_counter->weights_node, root);
++
++inc_counter:
++ bfqq->weight_counter->num_active++;
++ bfqq->ref++;
++
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "refs %d weight %d symmetric %d",
++ bfqq->ref,
++ entity->weight,
++ bfq_symmetric_scenario(bfqd));
++}
++
++/*
++ * Decrement the weight counter associated with the queue, and, if the
++ * counter reaches 0, remove the counter from the tree.
++ * See the comments to the function bfq_weights_tree_add() for considerations
++ * about overhead.
++ */
++static void __bfq_weights_tree_remove(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ struct rb_root *root)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++
++ if (!bfqq->weight_counter)
++ return;
++
++ BUG_ON(RB_EMPTY_ROOT(root));
++ BUG_ON(bfqq->weight_counter->weight != entity->weight);
++
++ BUG_ON(!bfqq->weight_counter->num_active);
++ bfqq->weight_counter->num_active--;
++
++ if (bfqq->weight_counter->num_active > 0)
++ goto reset_entity_pointer;
++
++ rb_erase(&bfqq->weight_counter->weights_node, root);
++ kfree(bfqq->weight_counter);
++
++reset_entity_pointer:
++ bfqq->weight_counter = NULL;
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "refs %d weight %d symmetric %d",
++ bfqq->ref,
++ entity->weight,
++ bfq_symmetric_scenario(bfqd));
++ bfq_put_queue(bfqq);
++}
++
++/*
++ * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
++ * of active groups for each queue's inactive parent entity.
++ */
++static void bfq_weights_tree_remove(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ struct bfq_entity *entity = bfqq->entity.parent;
++
++ for_each_entity(entity) {
++ struct bfq_sched_data *sd = entity->my_sched_data;
++
++ BUG_ON(entity->sched_data == NULL); /*
++ * It would mean
++ * that this is
++ * the root group.
++ */
++
++ if (sd->next_in_service || sd->in_service_entity) {
++ BUG_ON(!entity->in_groups_with_pending_reqs);
++ /*
++ * entity is still active, because either
++ * next_in_service or in_service_entity is not
++ * NULL (see the comments on the definition of
++ * next_in_service for details on why
++ * in_service_entity must be checked too).
++ *
++ * As a consequence, its parent entities are
++ * active as well, and thus this loop must
++ * stop here.
++ */
++ break;
++ }
++
++ BUG_ON(!bfqd->num_groups_with_pending_reqs &&
++ entity->in_groups_with_pending_reqs);
++ /*
++ * The decrement of num_groups_with_pending_reqs is
++ * not performed immediately upon the deactivation of
++ * entity, but it is delayed to when it also happens
++ * that the first leaf descendant bfqq of entity gets
++ * all its pending requests completed. The following
++ * instructions perform this delayed decrement, if
++ * needed. See the comments on
++ * num_groups_with_pending_reqs for details.
++ */
++ if (entity->in_groups_with_pending_reqs) {
++ entity->in_groups_with_pending_reqs = false;
++ bfqd->num_groups_with_pending_reqs--;
++ }
++ bfq_log_bfqq(bfqd, bfqq, "num_groups_with_pending_reqs %u",
++ bfqd->num_groups_with_pending_reqs);
++ }
++
++ /*
++ * Next function is invoked last, because it causes bfqq to be
++ * freed if the following holds: bfqq is not in service and
++ * has no dispatched request. DO NOT use bfqq after the next
++ * function invocation.
++ */
++ __bfq_weights_tree_remove(bfqd, bfqq,
++ &bfqd->queue_weights_tree);
++}
++
++/*
++ * Return expired entry, or NULL to just start from scratch in rbtree.
++ */
++static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
++ struct request *last)
++{
++ struct request *rq;
++
++ if (bfq_bfqq_fifo_expire(bfqq))
++ return NULL;
++
++ bfq_mark_bfqq_fifo_expire(bfqq);
++
++ rq = rq_entry_fifo(bfqq->fifo.next);
++
++ if (rq == last || ktime_get_ns() < rq->fifo_time)
++ return NULL;
++
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "returned %p", rq);
++ BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
++ return rq;
++}
++
++static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ struct request *last)
++{
++ struct rb_node *rbnext = rb_next(&last->rb_node);
++ struct rb_node *rbprev = rb_prev(&last->rb_node);
++ struct request *next, *prev = NULL;
++
++ BUG_ON(list_empty(&bfqq->fifo));
++
++ /* Follow expired path, else get first next available. */
++ next = bfq_check_fifo(bfqq, last);
++ if (next) {
++ BUG_ON(next == last);
++ return next;
++ }
++
++ BUG_ON(RB_EMPTY_NODE(&last->rb_node));
++
++ if (rbprev)
++ prev = rb_entry_rq(rbprev);
++
++ if (rbnext)
++ next = rb_entry_rq(rbnext);
++ else {
++ rbnext = rb_first(&bfqq->sort_list);
++ if (rbnext && rbnext != &last->rb_node)
++ next = rb_entry_rq(rbnext);
++ }
++
++ return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
++}
++
++/* see the definition of bfq_async_charge_factor for details */
++static unsigned long bfq_serv_to_charge(struct request *rq,
++ struct bfq_queue *bfqq)
++{
++ if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
++ !bfq_symmetric_scenario(bfqq->bfqd))
++ return blk_rq_sectors(rq);
++
++ return blk_rq_sectors(rq) * bfq_async_charge_factor;
++}
++
++/**
++ * bfq_updated_next_req - update the queue after a new next_rq selection.
++ * @bfqd: the device data the queue belongs to.
++ * @bfqq: the queue to update.
++ *
++ * If the first request of a queue changes we make sure that the queue
++ * has enough budget to serve at least its first request (if the
++ * request has grown). We do this because if the queue has not enough
++ * budget for its first request, it has to go through two dispatch
++ * rounds to actually get it dispatched.
++ */
++static void bfq_updated_next_req(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
++ struct request *next_rq = bfqq->next_rq;
++ unsigned long new_budget;
++
++ if (!next_rq)
++ return;
++
++ if (bfqq == bfqd->in_service_queue)
++ /*
++ * In order not to break guarantees, budgets cannot be
++ * changed after an entity has been selected.
++ */
++ return;
++
++ BUG_ON(entity->tree != &st->active);
++ BUG_ON(entity == entity->sched_data->in_service_entity);
++
++ new_budget = max_t(unsigned long,
++ max_t(unsigned long, bfqq->max_budget,
++ bfq_serv_to_charge(next_rq, bfqq)),
++ entity->service);
++ if (entity->budget != new_budget) {
++ entity->budget = new_budget;
++ bfq_log_bfqq(bfqd, bfqq, "new budget %lu",
++ new_budget);
++ bfq_requeue_bfqq(bfqd, bfqq, false);
++ }
++}
++
++static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
++{
++ u64 dur;
++
++ if (bfqd->bfq_wr_max_time > 0)
++ return bfqd->bfq_wr_max_time;
++
++ dur = bfqd->rate_dur_prod;
++ do_div(dur, bfqd->peak_rate);
++
++ /*
++ * Limit duration between 3 and 25 seconds. The upper limit
++ * has been conservatively set after the following worst case:
++ * on a QEMU/KVM virtual machine
++ * - running in a slow PC
++ * - with a virtual disk stacked on a slow low-end 5400rpm HDD
++ * - serving a heavy I/O workload, such as the sequential reading
++ * of several files
++ * mplayer took 23 seconds to start, if constantly weight-raised.
++ *
++ * As for higher values than that accomodating the above bad
++ * scenario, tests show that higher values would often yield
++ * the opposite of the desired result, i.e., would worsen
++ * responsiveness by allowing non-interactive applications to
++ * preserve weight raising for too long.
++ *
++ * On the other end, lower values than 3 seconds make it
++ * difficult for most interactive tasks to complete their jobs
++ * before weight-raising finishes.
++ */
++ return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
++}
++
++/* switch back from soft real-time to interactive weight raising */
++static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
++ struct bfq_data *bfqd)
++{
++ bfqq->wr_coeff = bfqd->bfq_wr_coeff;
++ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
++ bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
++}
++
++static void
++bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
++ struct bfq_io_cq *bic, bool bfq_already_existing)
++{
++ unsigned int old_wr_coeff;
++ bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
++
++ if (bic->saved_has_short_ttime)
++ bfq_mark_bfqq_has_short_ttime(bfqq);
++ else
++ bfq_clear_bfqq_has_short_ttime(bfqq);
++
++ if (bic->saved_IO_bound)
++ bfq_mark_bfqq_IO_bound(bfqq);
++ else
++ bfq_clear_bfqq_IO_bound(bfqq);
++
++ if (unlikely(busy))
++ old_wr_coeff = bfqq->wr_coeff;
++
++ bfqq->ttime = bic->saved_ttime;
++ bfqq->wr_coeff = bic->saved_wr_coeff;
++ bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
++ BUG_ON(time_is_after_jiffies(bfqq->wr_start_at_switch_to_srt));
++ bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
++ bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
++ BUG_ON(time_is_after_jiffies(bfqq->last_wr_start_finish));
++
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "bic %p wr_coeff %d start_finish %lu max_time %lu",
++ bic, bfqq->wr_coeff, bfqq->last_wr_start_finish,
++ bfqq->wr_cur_max_time);
++
++ if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
++ time_is_before_jiffies(bfqq->last_wr_start_finish +
++ bfqq->wr_cur_max_time))) {
++ if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
++ !bfq_bfqq_in_large_burst(bfqq) &&
++ time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
++ bfq_wr_duration(bfqd))) {
++ switch_back_to_interactive_wr(bfqq, bfqd);
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "switching back to interactive");
++ } else {
++ bfqq->wr_coeff = 1;
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "switching off wr (%lu + %lu < %lu)",
++ bfqq->last_wr_start_finish, bfqq->wr_cur_max_time,
++ jiffies);
++ }
++ }
++
++ /* make sure weight will be updated, however we got here */
++ bfqq->entity.prio_changed = 1;
++
++ if (likely(!busy))
++ return;
++
++ if (old_wr_coeff == 1 && bfqq->wr_coeff > 1) {
++ bfqd->wr_busy_queues++;
++ BUG_ON(bfqd->wr_busy_queues > bfq_tot_busy_queues(bfqd));
++ } else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1) {
++ bfqd->wr_busy_queues--;
++ BUG_ON(bfqd->wr_busy_queues < 0);
++ }
++}
++
++static int bfqq_process_refs(struct bfq_queue *bfqq)
++{
++ int process_refs, io_refs;
++
++ lockdep_assert_held(&bfqq->bfqd->lock);
++
++ io_refs = bfqq->allocated;
++ process_refs = bfqq->ref - io_refs - bfqq->entity.on_st -
++ (bfqq->weight_counter != NULL);
++ BUG_ON(process_refs < 0);
++ return process_refs;
++}
++
++/* Empty burst list and add just bfqq (see comments to bfq_handle_burst) */
++static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ struct bfq_queue *item;
++ struct hlist_node *n;
++
++ hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
++ hlist_del_init(&item->burst_list_node);
++ hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
++ bfqd->burst_size = 1;
++ bfqd->burst_parent_entity = bfqq->entity.parent;
++}
++
++/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
++static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ /* Increment burst size to take into account also bfqq */
++ bfqd->burst_size++;
++
++ bfq_log_bfqq(bfqd, bfqq, "%d", bfqd->burst_size);
++
++ BUG_ON(bfqd->burst_size > bfqd->bfq_large_burst_thresh);
++
++ if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
++ struct bfq_queue *pos, *bfqq_item;
++ struct hlist_node *n;
++
++ /*
++ * Enough queues have been activated shortly after each
++ * other to consider this burst as large.
++ */
++ bfqd->large_burst = true;
++ bfq_log_bfqq(bfqd, bfqq, "large burst started");
++
++ /*
++ * We can now mark all queues in the burst list as
++ * belonging to a large burst.
++ */
++ hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
++ burst_list_node) {
++ bfq_mark_bfqq_in_large_burst(bfqq_item);
++ bfq_log_bfqq(bfqd, bfqq_item, "marked in large burst");
++ }
++ bfq_mark_bfqq_in_large_burst(bfqq);
++ bfq_log_bfqq(bfqd, bfqq, "marked in large burst");
++
++ /*
++ * From now on, and until the current burst finishes, any
++ * new queue being activated shortly after the last queue
++ * was inserted in the burst can be immediately marked as
++ * belonging to a large burst. So the burst list is not
++ * needed any more. Remove it.
++ */
++ hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
++ burst_list_node)
++ hlist_del_init(&pos->burst_list_node);
++ } else /*
++ * Burst not yet large: add bfqq to the burst list. Do
++ * not increment the ref counter for bfqq, because bfqq
++ * is removed from the burst list before freeing bfqq
++ * in put_queue.
++ */
++ hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
++}
++
++/*
++ * If many queues belonging to the same group happen to be created
++ * shortly after each other, then the processes associated with these
++ * queues have typically a common goal. In particular, bursts of queue
++ * creations are usually caused by services or applications that spawn
++ * many parallel threads/processes. Examples are systemd during boot,
++ * or git grep. To help these processes get their job done as soon as
++ * possible, it is usually better to not grant either weight-raising
++ * or device idling to their queues.
++ *
++ * In this comment we describe, firstly, the reasons why this fact
++ * holds, and, secondly, the next function, which implements the main
++ * steps needed to properly mark these queues so that they can then be
++ * treated in a different way.
++ *
++ * The above services or applications benefit mostly from a high
++ * throughput: the quicker the requests of the activated queues are
++ * cumulatively served, the sooner the target job of these queues gets
++ * completed. As a consequence, weight-raising any of these queues,
++ * which also implies idling the device for it, is almost always
++ * counterproductive. In most cases it just lowers throughput.
++ *
++ * On the other hand, a burst of queue creations may be caused also by
++ * the start of an application that does not consist of a lot of
++ * parallel I/O-bound threads. In fact, with a complex application,
++ * several short processes may need to be executed to start-up the
++ * application. In this respect, to start an application as quickly as
++ * possible, the best thing to do is in any case to privilege the I/O
++ * related to the application with respect to all other
++ * I/O. Therefore, the best strategy to start as quickly as possible
++ * an application that causes a burst of queue creations is to
++ * weight-raise all the queues created during the burst. This is the
++ * exact opposite of the best strategy for the other type of bursts.
++ *
++ * In the end, to take the best action for each of the two cases, the
++ * two types of bursts need to be distinguished. Fortunately, this
++ * seems relatively easy, by looking at the sizes of the bursts. In
++ * particular, we found a threshold such that only bursts with a
++ * larger size than that threshold are apparently caused by
++ * services or commands such as systemd or git grep. For brevity,
++ * hereafter we call just 'large' these bursts. BFQ *does not*
++ * weight-raise queues whose creation occurs in a large burst. In
++ * addition, for each of these queues BFQ performs or does not perform
++ * idling depending on which choice boosts the throughput more. The
++ * exact choice depends on the device and request pattern at
++ * hand.
++ *
++ * Unfortunately, false positives may occur while an interactive task
++ * is starting (e.g., an application is being started). The
++ * consequence is that the queues associated with the task do not
++ * enjoy weight raising as expected. Fortunately these false positives
++ * are very rare. They typically occur if some service happens to
++ * start doing I/O exactly when the interactive task starts.
++ *
++ * Turning back to the next function, it implements all the steps
++ * needed to detect the occurrence of a large burst and to properly
++ * mark all the queues belonging to it (so that they can then be
++ * treated in a different way). This goal is achieved by maintaining a
++ * "burst list" that holds, temporarily, the queues that belong to the
++ * burst in progress. The list is then used to mark these queues as
++ * belonging to a large burst if the burst does become large. The main
++ * steps are the following.
++ *
++ * . when the very first queue is created, the queue is inserted into the
++ * list (as it could be the first queue in a possible burst)
++ *
++ * . if the current burst has not yet become large, and a queue Q that does
++ * not yet belong to the burst is activated shortly after the last time
++ * at which a new queue entered the burst list, then the function appends
++ * Q to the burst list
++ *
++ * . if, as a consequence of the previous step, the burst size reaches
++ * the large-burst threshold, then
++ *
++ * . all the queues in the burst list are marked as belonging to a
++ * large burst
++ *
++ * . the burst list is deleted; in fact, the burst list already served
++ * its purpose (keeping temporarily track of the queues in a burst,
++ * so as to be able to mark them as belonging to a large burst in the
++ * previous sub-step), and now is not needed any more
++ *
++ * . the device enters a large-burst mode
++ *
++ * . if a queue Q that does not belong to the burst is created while
++ * the device is in large-burst mode and shortly after the last time
++ * at which a queue either entered the burst list or was marked as
++ * belonging to the current large burst, then Q is immediately marked
++ * as belonging to a large burst.
++ *
++ * . if a queue Q that does not belong to the burst is created a while
++ * later, i.e., not shortly after, than the last time at which a queue
++ * either entered the burst list or was marked as belonging to the
++ * current large burst, then the current burst is deemed as finished and:
++ *
++ * . the large-burst mode is reset if set
++ *
++ * . the burst list is emptied
++ *
++ * . Q is inserted in the burst list, as Q may be the first queue
++ * in a possible new burst (then the burst list contains just Q
++ * after this step).
++ */
++static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ /*
++ * If bfqq is already in the burst list or is part of a large
++ * burst, or finally has just been split, then there is
++ * nothing else to do.
++ */
++ if (!hlist_unhashed(&bfqq->burst_list_node) ||
++ bfq_bfqq_in_large_burst(bfqq) ||
++ time_is_after_eq_jiffies(bfqq->split_time +
++ msecs_to_jiffies(10)))
++ return;
++
++ /*
++ * If bfqq's creation happens late enough, or bfqq belongs to
++ * a different group than the burst group, then the current
++ * burst is finished, and related data structures must be
++ * reset.
++ *
++ * In this respect, consider the special case where bfqq is
++ * the very first queue created after BFQ is selected for this
++ * device. In this case, last_ins_in_burst and
++ * burst_parent_entity are not yet significant when we get
++ * here. But it is easy to verify that, whether or not the
++ * following condition is true, bfqq will end up being
++ * inserted into the burst list. In particular the list will
++ * happen to contain only bfqq. And this is exactly what has
++ * to happen, as bfqq may be the first queue of the first
++ * burst.
++ */
++ if (time_is_before_jiffies(bfqd->last_ins_in_burst +
++ bfqd->bfq_burst_interval) ||
++ bfqq->entity.parent != bfqd->burst_parent_entity) {
++ bfqd->large_burst = false;
++ bfq_reset_burst_list(bfqd, bfqq);
++ bfq_log_bfqq(bfqd, bfqq,
++ "late activation or different group");
++ goto end;
++ }
++
++ /*
++ * If we get here, then bfqq is being activated shortly after the
++ * last queue. So, if the current burst is also large, we can mark
++ * bfqq as belonging to this large burst immediately.
++ */
++ if (bfqd->large_burst) {
++ bfq_log_bfqq(bfqd, bfqq, "marked in burst");
++ bfq_mark_bfqq_in_large_burst(bfqq);
++ goto end;
++ }
++
++ /*
++ * If we get here, then a large-burst state has not yet been
++ * reached, but bfqq is being activated shortly after the last
++ * queue. Then we add bfqq to the burst.
++ */
++ bfq_add_to_burst(bfqd, bfqq);
++end:
++ /*
++ * At this point, bfqq either has been added to the current
++ * burst or has caused the current burst to terminate and a
++ * possible new burst to start. In particular, in the second
++ * case, bfqq has become the first queue in the possible new
++ * burst. In both cases last_ins_in_burst needs to be moved
++ * forward.
++ */
++ bfqd->last_ins_in_burst = jiffies;
++
++}
++
++static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++
++ if (entity->budget < entity->service) {
++ pr_crit("budget %d service %d\n",
++ entity->budget, entity->service);
++ BUG();
++ }
++ return entity->budget - entity->service;
++}
++
++/*
++ * If enough samples have been computed, return the current max budget
++ * stored in bfqd, which is dynamically updated according to the
++ * estimated disk peak rate; otherwise return the default max budget
++ */
++static int bfq_max_budget(struct bfq_data *bfqd)
++{
++ if (bfqd->budgets_assigned < bfq_stats_min_budgets)
++ return bfq_default_max_budget;
++ else
++ return bfqd->bfq_max_budget;
++}
++
++/*
++ * Return min budget, which is a fraction of the current or default
++ * max budget (trying with 1/32)
++ */
++static int bfq_min_budget(struct bfq_data *bfqd)
++{
++ if (bfqd->budgets_assigned < bfq_stats_min_budgets)
++ return bfq_default_max_budget / 32;
++ else
++ return bfqd->bfq_max_budget / 32;
++}
++
++static void bfq_bfqq_expire(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ bool compensate,
++ enum bfqq_expiration reason);
++
++/*
++ * The next function, invoked after the input queue bfqq switches from
++ * idle to busy, updates the budget of bfqq. The function also tells
++ * whether the in-service queue should be expired, by returning
++ * true. The purpose of expiring the in-service queue is to give bfqq
++ * the chance to possibly preempt the in-service queue, and the reason
++ * for preempting the in-service queue is to achieve one of the two
++ * goals below.
++ *
++ * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
++ * expired because it has remained idle. In particular, bfqq may have
++ * expired for one of the following two reasons:
++ *
++ * - BFQ_BFQQ_NO_MORE_REQUEST bfqq did not enjoy any device idling and
++ * did not make it to issue a new request before its last request
++ * was served;
++ *
++ * - BFQ_BFQQ_TOO_IDLE bfqq did enjoy device idling, but did not issue
++ * a new request before the expiration of the idling-time.
++ *
++ * Even if bfqq has expired for one of the above reasons, the process
++ * associated with the queue may be however issuing requests greedily,
++ * and thus be sensitive to the bandwidth it receives (bfqq may have
++ * remained idle for other reasons: CPU high load, bfqq not enjoying
++ * idling, I/O throttling somewhere in the path from the process to
++ * the I/O scheduler, ...). But if, after every expiration for one of
++ * the above two reasons, bfqq has to wait for the service of at least
++ * one full budget of another queue before being served again, then
++ * bfqq is likely to get a much lower bandwidth or resource time than
++ * its reserved ones. To address this issue, two countermeasures need
++ * to be taken.
++ *
++ * First, the budget and the timestamps of bfqq need to be updated in
++ * a special way on bfqq reactivation: they need to be updated as if
++ * bfqq did not remain idle and did not expire. In fact, if they are
++ * computed as if bfqq expired and remained idle until reactivation,
++ * then the process associated with bfqq is treated as if, instead of
++ * being greedy, it stopped issuing requests when bfqq remained idle,
++ * and restarts issuing requests only on this reactivation. In other
++ * words, the scheduler does not help the process recover the "service
++ * hole" between bfqq expiration and reactivation. As a consequence,
++ * the process receives a lower bandwidth than its reserved one. In
++ * contrast, to recover this hole, the budget must be updated as if
++ * bfqq was not expired at all before this reactivation, i.e., it must
++ * be set to the value of the remaining budget when bfqq was
++ * expired. Along the same line, timestamps need to be assigned the
++ * value they had the last time bfqq was selected for service, i.e.,
++ * before last expiration. Thus timestamps need to be back-shifted
++ * with respect to their normal computation (see [1] for more details
++ * on this tricky aspect).
++ *
++ * Secondly, to allow the process to recover the hole, the in-service
++ * queue must be expired too, to give bfqq the chance to preempt it
++ * immediately. In fact, if bfqq has to wait for a full budget of the
++ * in-service queue to be completed, then it may become impossible to
++ * let the process recover the hole, even if the back-shifted
++ * timestamps of bfqq are lower than those of the in-service queue. If
++ * this happens for most or all of the holes, then the process may not
++ * receive its reserved bandwidth. In this respect, it is worth noting
++ * that, being the service of outstanding requests unpreemptible, a
++ * little fraction of the holes may however be unrecoverable, thereby
++ * causing a little loss of bandwidth.
++ *
++ * The last important point is detecting whether bfqq does need this
++ * bandwidth recovery. In this respect, the next function deems the
++ * process associated with bfqq greedy, and thus allows it to recover
++ * the hole, if: 1) the process is waiting for the arrival of a new
++ * request (which implies that bfqq expired for one of the above two
++ * reasons), and 2) such a request has arrived soon. The first
++ * condition is controlled through the flag non_blocking_wait_rq,
++ * while the second through the flag arrived_in_time. If both
++ * conditions hold, then the function computes the budget in the
++ * above-described special way, and signals that the in-service queue
++ * should be expired. Timestamp back-shifting is done later in
++ * __bfq_activate_entity.
++ *
++ * 2. Reduce latency. Even if timestamps are not backshifted to let
++ * the process associated with bfqq recover a service hole, bfqq may
++ * however happen to have, after being (re)activated, a lower finish
++ * timestamp than the in-service queue. That is, the next budget of
++ * bfqq may have to be completed before the one of the in-service
++ * queue. If this is the case, then preempting the in-service queue
++ * allows this goal to be achieved, apart from the unpreemptible,
++ * outstanding requests mentioned above.
++ *
++ * Unfortunately, regardless of which of the above two goals one wants
++ * to achieve, service trees need first to be updated to know whether
++ * the in-service queue must be preempted. To have service trees
++ * correctly updated, the in-service queue must be expired and
++ * rescheduled, and bfqq must be scheduled too. This is one of the
++ * most costly operations (in future versions, the scheduling
++ * mechanism may be re-designed in such a way to make it possible to
++ * know whether preemption is needed without needing to update service
++ * trees). In addition, queue preemptions almost always cause random
++ * I/O, and thus loss of throughput. Because of these facts, the next
++ * function adopts the following simple scheme to avoid both costly
++ * operations and too frequent preemptions: it requests the expiration
++ * of the in-service queue (unconditionally) only for queues that need
++ * to recover a hole, or that either are weight-raised or deserve to
++ * be weight-raised.
++ */
++static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ bool arrived_in_time,
++ bool wr_or_deserves_wr)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++
++ /*
++ * In the next compound condition, we check also whether there
++ * is some budget left, because otherwise there is no point in
++ * trying to go on serving bfqq with this same budget: bfqq
++ * would be expired immediately after being selected for
++ * service. This would only cause useless overhead.
++ */
++ if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
++ bfq_bfqq_budget_left(bfqq) > 0) {
++ /*
++ * We do not clear the flag non_blocking_wait_rq here, as
++ * the latter is used in bfq_activate_bfqq to signal
++ * that timestamps need to be back-shifted (and is
++ * cleared right after).
++ */
++
++ /*
++ * In next assignment we rely on that either
++ * entity->service or entity->budget are not updated
++ * on expiration if bfqq is empty (see
++ * __bfq_bfqq_recalc_budget). Thus both quantities
++ * remain unchanged after such an expiration, and the
++ * following statement therefore assigns to
++ * entity->budget the remaining budget on such an
++ * expiration.
++ */
++ BUG_ON(bfqq->max_budget < 0);
++ entity->budget = min_t(unsigned long,
++ bfq_bfqq_budget_left(bfqq),
++ bfqq->max_budget);
++
++ BUG_ON(entity->budget < 0);
++
++ /*
++ * At this point, we have used entity->service to get
++ * the budget left (needed for updating
++ * entity->budget). Thus we finally can, and have to,
++ * reset entity->service. The latter must be reset
++ * because bfqq would otherwise be charged again for
++ * the service it has received during its previous
++ * service slot(s).
++ */
++ entity->service = 0;
++
++ return true;
++ }
++
++ /*
++ * We can finally complete expiration, by setting service to 0.
++ */
++ entity->service = 0;
++ BUG_ON(bfqq->max_budget < 0);
++ entity->budget = max_t(unsigned long, bfqq->max_budget,
++ bfq_serv_to_charge(bfqq->next_rq, bfqq));
++ BUG_ON(entity->budget < 0);
++
++ bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
++ return wr_or_deserves_wr;
++}
++
++/*
++ * Return the farthest past time instant according to jiffies
++ * macros.
++ */
++static unsigned long bfq_smallest_from_now(void)
++{
++ return jiffies - MAX_JIFFY_OFFSET;
++}
++
++static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ unsigned int old_wr_coeff,
++ bool wr_or_deserves_wr,
++ bool interactive,
++ bool in_burst,
++ bool soft_rt)
++{
++ if (old_wr_coeff == 1 && wr_or_deserves_wr) {
++ /* start a weight-raising period */
++ if (interactive) {
++ bfqq->service_from_wr = 0;
++ bfqq->wr_coeff = bfqd->bfq_wr_coeff;
++ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
++ } else {
++ /*
++ * No interactive weight raising in progress
++ * here: assign minus infinity to
++ * wr_start_at_switch_to_srt, to make sure
++ * that, at the end of the soft-real-time
++ * weight raising periods that is starting
++ * now, no interactive weight-raising period
++ * may be wrongly considered as still in
++ * progress (and thus actually started by
++ * mistake).
++ */
++ bfqq->wr_start_at_switch_to_srt =
++ bfq_smallest_from_now();
++ bfqq->wr_coeff = bfqd->bfq_wr_coeff *
++ BFQ_SOFTRT_WEIGHT_FACTOR;
++ bfqq->wr_cur_max_time =
++ bfqd->bfq_wr_rt_max_time;
++ }
++ /*
++ * If needed, further reduce budget to make sure it is
++ * close to bfqq's backlog, so as to reduce the
++ * scheduling-error component due to a too large
++ * budget. Do not care about throughput consequences,
++ * but only about latency. Finally, do not assign a
++ * too small budget either, to avoid increasing
++ * latency by causing too frequent expirations.
++ */
++ bfqq->entity.budget = min_t(unsigned long,
++ bfqq->entity.budget,
++ 2 * bfq_min_budget(bfqd));
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "wrais starting at %lu, rais_max_time %u",
++ jiffies,
++ jiffies_to_msecs(bfqq->wr_cur_max_time));
++ } else if (old_wr_coeff > 1) {
++ if (interactive) { /* update wr coeff and duration */
++ bfqq->wr_coeff = bfqd->bfq_wr_coeff;
++ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
++ } else if (in_burst) {
++ bfqq->wr_coeff = 1;
++ bfq_log_bfqq(bfqd, bfqq,
++ "wrais ending at %lu, rais_max_time %u",
++ jiffies,
++ jiffies_to_msecs(bfqq->
++ wr_cur_max_time));
++ } else if (soft_rt) {
++ /*
++ * The application is now or still meeting the
++ * requirements for being deemed soft rt. We
++ * can then correctly and safely (re)charge
++ * the weight-raising duration for the
++ * application with the weight-raising
++ * duration for soft rt applications.
++ *
++ * In particular, doing this recharge now, i.e.,
++ * before the weight-raising period for the
++ * application finishes, reduces the probability
++ * of the following negative scenario:
++ * 1) the weight of a soft rt application is
++ * raised at startup (as for any newly
++ * created application),
++ * 2) since the application is not interactive,
++ * at a certain time weight-raising is
++ * stopped for the application,
++ * 3) at that time the application happens to
++ * still have pending requests, and hence
++ * is destined to not have a chance to be
++ * deemed soft rt before these requests are
++ * completed (see the comments to the
++ * function bfq_bfqq_softrt_next_start()
++ * for details on soft rt detection),
++ * 4) these pending requests experience a high
++ * latency because the application is not
++ * weight-raised while they are pending.
++ */
++ if (bfqq->wr_cur_max_time !=
++ bfqd->bfq_wr_rt_max_time) {
++ bfqq->wr_start_at_switch_to_srt =
++ bfqq->last_wr_start_finish;
++ BUG_ON(time_is_after_jiffies(bfqq->last_wr_start_finish));
++
++ bfqq->wr_cur_max_time =
++ bfqd->bfq_wr_rt_max_time;
++ bfqq->wr_coeff = bfqd->bfq_wr_coeff *
++ BFQ_SOFTRT_WEIGHT_FACTOR;
++ bfq_log_bfqq(bfqd, bfqq,
++ "switching to soft_rt wr");
++ } else
++ bfq_log_bfqq(bfqd, bfqq,
++ "moving forward soft_rt wr duration");
++ bfqq->last_wr_start_finish = jiffies;
++ }
++ }
++}
++
++static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ return bfqq->dispatched == 0 &&
++ time_is_before_jiffies(
++ bfqq->budget_timeout +
++ bfqd->bfq_wr_min_idle_time);
++}
++
++static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ int old_wr_coeff,
++ struct request *rq,
++ bool *interactive)
++{
++ bool soft_rt, in_burst, wr_or_deserves_wr,
++ bfqq_wants_to_preempt,
++ idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
++ /*
++ * See the comments on
++ * bfq_bfqq_update_budg_for_activation for
++ * details on the usage of the next variable.
++ */
++ arrived_in_time = ktime_get_ns() <=
++ bfqq->ttime.last_end_request +
++ bfqd->bfq_slice_idle * 3;
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "bfq_add_request non-busy: "
++ "jiffies %lu, in_time %d, idle_long %d busyw %d "
++ "wr_coeff %u",
++ jiffies, arrived_in_time,
++ idle_for_long_time,
++ bfq_bfqq_non_blocking_wait_rq(bfqq),
++ old_wr_coeff);
++
++ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
++
++ BUG_ON(bfqq == bfqd->in_service_queue);
++
++ /*
++ * bfqq deserves to be weight-raised if:
++ * - it is sync,
++ * - it does not belong to a large burst,
++ * - it has been idle for enough time or is soft real-time,
++ * - is linked to a bfq_io_cq (it is not shared in any sense)
++ */
++ in_burst = bfq_bfqq_in_large_burst(bfqq);
++ soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
++ !in_burst &&
++ time_is_before_jiffies(bfqq->soft_rt_next_start) &&
++ bfqq->dispatched == 0;
++ *interactive =
++ !in_burst &&
++ idle_for_long_time;
++ wr_or_deserves_wr = bfqd->low_latency &&
++ (bfqq->wr_coeff > 1 ||
++ (bfq_bfqq_sync(bfqq) &&
++ bfqq->bic && (*interactive || soft_rt)));
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "bfq_add_request: "
++ "in_burst %d, "
++ "soft_rt %d (next %lu), inter %d, bic %p",
++ bfq_bfqq_in_large_burst(bfqq), soft_rt,
++ bfqq->soft_rt_next_start,
++ *interactive,
++ bfqq->bic);
++
++ /*
++ * Using the last flag, update budget and check whether bfqq
++ * may want to preempt the in-service queue.
++ */
++ bfqq_wants_to_preempt =
++ bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
++ arrived_in_time,
++ wr_or_deserves_wr);
++
++ /*
++ * If bfqq happened to be activated in a burst, but has been
++ * idle for much more than an interactive queue, then we
++ * assume that, in the overall I/O initiated in the burst, the
++ * I/O associated with bfqq is finished. So bfqq does not need
++ * to be treated as a queue belonging to a burst
++ * anymore. Accordingly, we reset bfqq's in_large_burst flag
++ * if set, and remove bfqq from the burst list if it's
++ * there. We do not decrement burst_size, because the fact
++ * that bfqq does not need to belong to the burst list any
++ * more does not invalidate the fact that bfqq was created in
++ * a burst.
++ */
++ if (likely(!bfq_bfqq_just_created(bfqq)) &&
++ idle_for_long_time &&
++ time_is_before_jiffies(
++ bfqq->budget_timeout +
++ msecs_to_jiffies(10000))) {
++ hlist_del_init(&bfqq->burst_list_node);
++ bfq_clear_bfqq_in_large_burst(bfqq);
++ }
++
++ bfq_clear_bfqq_just_created(bfqq);
++
++ if (!bfq_bfqq_IO_bound(bfqq)) {
++ if (arrived_in_time) {
++ bfqq->requests_within_timer++;
++ if (bfqq->requests_within_timer >=
++ bfqd->bfq_requests_within_timer)
++ bfq_mark_bfqq_IO_bound(bfqq);
++ } else
++ bfqq->requests_within_timer = 0;
++ bfq_log_bfqq(bfqd, bfqq, "requests in time %d",
++ bfqq->requests_within_timer);
++ }
++
++ if (bfqd->low_latency) {
++ if (unlikely(time_is_after_jiffies(bfqq->split_time)))
++ /* wraparound */
++ bfqq->split_time =
++ jiffies - bfqd->bfq_wr_min_idle_time - 1;
++
++ if (time_is_before_jiffies(bfqq->split_time +
++ bfqd->bfq_wr_min_idle_time)) {
++ bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
++ old_wr_coeff,
++ wr_or_deserves_wr,
++ *interactive,
++ in_burst,
++ soft_rt);
++
++ if (old_wr_coeff != bfqq->wr_coeff)
++ bfqq->entity.prio_changed = 1;
++ }
++ }
++
++ bfqq->last_idle_bklogged = jiffies;
++ bfqq->service_from_backlogged = 0;
++ bfq_clear_bfqq_softrt_update(bfqq);
++
++ bfq_add_bfqq_busy(bfqd, bfqq);
++
++ /*
++ * Expire in-service queue only if preemption may be needed
++ * for guarantees. In this respect, the function
++ * next_queue_may_preempt just checks a simple, necessary
++ * condition, and not a sufficient condition based on
++ * timestamps. In fact, for the latter condition to be
++ * evaluated, timestamps would need first to be updated, and
++ * this operation is quite costly (see the comments on the
++ * function bfq_bfqq_update_budg_for_activation).
++ */
++ if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
++ bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
++ next_queue_may_preempt(bfqd)) {
++ struct bfq_queue *in_serv =
++ bfqd->in_service_queue;
++ BUG_ON(in_serv == bfqq);
++
++ bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
++ false, BFQ_BFQQ_PREEMPTED);
++ }
++}
++
++static void bfq_add_request(struct request *rq)
++{
++ struct bfq_queue *bfqq = RQ_BFQQ(rq);
++ struct bfq_data *bfqd = bfqq->bfqd;
++ struct request *next_rq, *prev;
++ unsigned int old_wr_coeff = bfqq->wr_coeff;
++ bool interactive = false;
++
++ bfq_log_bfqq(bfqd, bfqq, "size %u %s",
++ blk_rq_sectors(rq), rq_is_sync(rq) ? "S" : "A");
++
++ if (bfqq->wr_coeff > 1) /* queue is being weight-raised */
++ bfq_log_bfqq(bfqd, bfqq,
++ "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
++ jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
++ jiffies_to_msecs(bfqq->wr_cur_max_time),
++ bfqq->wr_coeff,
++ bfqq->entity.weight, bfqq->entity.orig_weight);
++
++ bfqq->queued[rq_is_sync(rq)]++;
++ bfqd->queued++;
++
++ BUG_ON(!RQ_BFQQ(rq));
++ BUG_ON(RQ_BFQQ(rq) != bfqq);
++ WARN_ON(blk_rq_sectors(rq) == 0);
++
++ elv_rb_add(&bfqq->sort_list, rq);
++
++ /*
++ * Check if this request is a better next-to-serve candidate.
++ */
++ prev = bfqq->next_rq;
++ next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
++ BUG_ON(!next_rq);
++ BUG_ON(!RQ_BFQQ(next_rq));
++ BUG_ON(RQ_BFQQ(next_rq) != bfqq);
++ bfqq->next_rq = next_rq;
++
++ /*
++ * Adjust priority tree position, if next_rq changes.
++ */
++ if (prev != bfqq->next_rq)
++ bfq_pos_tree_add_move(bfqd, bfqq);
++
++ if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
++ bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
++ rq, &interactive);
++ else {
++ if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
++ time_is_before_jiffies(
++ bfqq->last_wr_start_finish +
++ bfqd->bfq_wr_min_inter_arr_async)) {
++ bfqq->wr_coeff = bfqd->bfq_wr_coeff;
++ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
++
++ bfqd->wr_busy_queues++;
++ BUG_ON(bfqd->wr_busy_queues > bfq_tot_busy_queues(bfqd));
++ bfqq->entity.prio_changed = 1;
++ bfq_log_bfqq(bfqd, bfqq,
++ "non-idle wrais starting, "
++ "wr_max_time %u wr_busy %d",
++ jiffies_to_msecs(bfqq->wr_cur_max_time),
++ bfqd->wr_busy_queues);
++ }
++ if (prev != bfqq->next_rq)
++ bfq_updated_next_req(bfqd, bfqq);
++ }
++
++ /*
++ * Assign jiffies to last_wr_start_finish in the following
++ * cases:
++ *
++ * . if bfqq is not going to be weight-raised, because, for
++ * non weight-raised queues, last_wr_start_finish stores the
++ * arrival time of the last request; as of now, this piece
++ * of information is used only for deciding whether to
++ * weight-raise async queues
++ *
++ * . if bfqq is not weight-raised, because, if bfqq is now
++ * switching to weight-raised, then last_wr_start_finish
++ * stores the time when weight-raising starts
++ *
++ * . if bfqq is interactive, because, regardless of whether
++ * bfqq is currently weight-raised, the weight-raising
++ * period must start or restart (this case is considered
++ * separately because it is not detected by the above
++ * conditions, if bfqq is already weight-raised)
++ *
++ * last_wr_start_finish has to be updated also if bfqq is soft
++ * real-time, because the weight-raising period is constantly
++ * restarted on idle-to-busy transitions for these queues, but
++ * this is already done in bfq_bfqq_handle_idle_busy_switch if
++ * needed.
++ */
++ if (bfqd->low_latency &&
++ (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
++ bfqq->last_wr_start_finish = jiffies;
++}
++
++static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
++ struct bio *bio,
++ struct request_queue *q)
++{
++ struct bfq_queue *bfqq = bfqd->bio_bfqq;
++
++ BUG_ON(!bfqd->bio_bfqq_set);
++
++ if (bfqq)
++ return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
++
++ return NULL;
++}
++
++static sector_t get_sdist(sector_t last_pos, struct request *rq)
++{
++ sector_t sdist = 0;
++
++ if (last_pos) {
++ if (last_pos < blk_rq_pos(rq))
++ sdist = blk_rq_pos(rq) - last_pos;
++ else
++ sdist = last_pos - blk_rq_pos(rq);
++ }
++
++ return sdist;
++}
++
++#if 0 /* Still not clear if we can do without next two functions */
++static void bfq_activate_request(struct request_queue *q, struct request *rq)
++{
++ struct bfq_data *bfqd = q->elevator->elevator_data;
++ bfqd->rq_in_driver++;
++}
++
++static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
++{
++ struct bfq_data *bfqd = q->elevator->elevator_data;
++
++ BUG_ON(bfqd->rq_in_driver == 0);
++ bfqd->rq_in_driver--;
++}
++#endif
++
++static void bfq_remove_request(struct request_queue *q,
++ struct request *rq)
++{
++ struct bfq_queue *bfqq = RQ_BFQQ(rq);
++ struct bfq_data *bfqd = bfqq->bfqd;
++ const int sync = rq_is_sync(rq);
++
++ BUG_ON(bfqq->entity.service > bfqq->entity.budget);
++
++ if (bfqq->next_rq == rq) {
++ bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
++ if (bfqq->next_rq && !RQ_BFQQ(bfqq->next_rq)) {
++ pr_crit("no bfqq! for next rq %p bfqq %p\n",
++ bfqq->next_rq, bfqq);
++ }
++
++ BUG_ON(bfqq->next_rq && !RQ_BFQQ(bfqq->next_rq));
++ if (bfqq->next_rq && RQ_BFQQ(bfqq->next_rq) != bfqq) {
++ pr_crit(
++ "wrong bfqq! for next rq %p, rq_bfqq %p bfqq %p\n",
++ bfqq->next_rq, RQ_BFQQ(bfqq->next_rq), bfqq);
++ }
++ BUG_ON(bfqq->next_rq && RQ_BFQQ(bfqq->next_rq) != bfqq);
++
++ bfq_updated_next_req(bfqd, bfqq);
++ }
++
++ if (rq->queuelist.prev != &rq->queuelist)
++ list_del_init(&rq->queuelist);
++ BUG_ON(bfqq->queued[sync] == 0);
++ bfqq->queued[sync]--;
++ bfqd->queued--;
++ elv_rb_del(&bfqq->sort_list, rq);
++
++ elv_rqhash_del(q, rq);
++ if (q->last_merge == rq)
++ q->last_merge = NULL;
++
++ if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
++ bfqq->next_rq = NULL;
++
++ BUG_ON(bfqq->entity.budget < 0);
++
++ if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
++ BUG_ON(bfqq->ref < 2); /* referred by rq and on tree */
++ bfq_del_bfqq_busy(bfqd, bfqq, false);
++ /*
++ * bfqq emptied. In normal operation, when
++ * bfqq is empty, bfqq->entity.service and
++ * bfqq->entity.budget must contain,
++ * respectively, the service received and the
++ * budget used last time bfqq emptied. These
++ * facts do not hold in this case, as at least
++ * this last removal occurred while bfqq is
++ * not in service. To avoid inconsistencies,
++ * reset both bfqq->entity.service and
++ * bfqq->entity.budget, if bfqq has still a
++ * process that may issue I/O requests to it.
++ */
++ bfqq->entity.budget = bfqq->entity.service = 0;
++ }
++
++ /*
++ * Remove queue from request-position tree as it is empty.
++ */
++ if (bfqq->pos_root) {
++ rb_erase(&bfqq->pos_node, bfqq->pos_root);
++ bfqq->pos_root = NULL;
++ }
++ } else {
++ BUG_ON(!bfqq->next_rq);
++ bfq_pos_tree_add_move(bfqd, bfqq);
++ }
++
++ if (rq->cmd_flags & REQ_META) {
++ BUG_ON(bfqq->meta_pending == 0);
++ bfqq->meta_pending--;
++ }
++}
++
++static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
++{
++ struct request_queue *q = hctx->queue;
++ struct bfq_data *bfqd = q->elevator->elevator_data;
++ struct request *free = NULL;
++ /*
++ * bfq_bic_lookup grabs the queue_lock: invoke it now and
++ * store its return value for later use, to avoid nesting
++ * queue_lock inside the bfqd->lock. We assume that the bic
++ * returned by bfq_bic_lookup does not go away before
++ * bfqd->lock is taken.
++ */
++ struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
++ bool ret;
++
++ spin_lock_irq(&bfqd->lock);
++
++ if (bic)
++ bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
++ else
++ bfqd->bio_bfqq = NULL;
++ bfqd->bio_bic = bic;
++ /* Set next flag just for testing purposes */
++ bfqd->bio_bfqq_set = true;
++
++ ret = blk_mq_sched_try_merge(q, bio, &free);
++
++ /*
++ * XXX Not yet freeing without lock held, to avoid an
++ * inconsistency with respect to the lock-protected invocation
++ * of blk_mq_sched_try_insert_merge in bfq_bio_merge. Waiting
++ * for clarifications from Jens.
++ */
++ if (free)
++ blk_mq_free_request(free);
++ bfqd->bio_bfqq_set = false;
++ spin_unlock_irq(&bfqd->lock);
++
++ return ret;
++}
++
++static int bfq_request_merge(struct request_queue *q, struct request **req,
++ struct bio *bio)
++{
++ struct bfq_data *bfqd = q->elevator->elevator_data;
++ struct request *__rq;
++
++ __rq = bfq_find_rq_fmerge(bfqd, bio, q);
++ if (__rq && elv_bio_merge_ok(__rq, bio)) {
++ *req = __rq;
++ bfq_log(bfqd, "req %p", __rq);
++
++ return ELEVATOR_FRONT_MERGE;
++ }
++
++ return ELEVATOR_NO_MERGE;
++}
++
++static struct bfq_queue *bfq_init_rq(struct request *rq);
++
++static void bfq_request_merged(struct request_queue *q, struct request *req,
++ enum elv_merge type)
++{
++ BUG_ON(req->rq_flags & RQF_DISP_LIST);
++
++ if (type == ELEVATOR_FRONT_MERGE &&
++ rb_prev(&req->rb_node) &&
++ blk_rq_pos(req) <
++ blk_rq_pos(container_of(rb_prev(&req->rb_node),
++ struct request, rb_node))) {
++ struct bfq_queue *bfqq = bfq_init_rq(req);
++ struct bfq_data *bfqd = bfqq->bfqd;
++ struct request *prev, *next_rq;
++
++ /* Reposition request in its sort_list */
++ elv_rb_del(&bfqq->sort_list, req);
++ BUG_ON(!RQ_BFQQ(req));
++ BUG_ON(RQ_BFQQ(req) != bfqq);
++ elv_rb_add(&bfqq->sort_list, req);
++
++ /* Choose next request to be served for bfqq */
++ prev = bfqq->next_rq;
++ next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
++ bfqd->last_position);
++ BUG_ON(!next_rq);
++
++ bfqq->next_rq = next_rq;
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "req %p prev %p next_rq %p bfqq %p",
++ req, prev, next_rq, bfqq);
++
++ /*
++ * If next_rq changes, update both the queue's budget to
++ * fit the new request and the queue's position in its
++ * rq_pos_tree.
++ */
++ if (prev != bfqq->next_rq) {
++ bfq_updated_next_req(bfqd, bfqq);
++ bfq_pos_tree_add_move(bfqd, bfqq);
++ }
++ }
++}
++
++/*
++ * This function is called to notify the scheduler that the requests
++ * rq and 'next' have been merged, with 'next' going away. BFQ
++ * exploits this hook to address the following issue: if 'next' has a
++ * fifo_time lower that rq, then the fifo_time of rq must be set to
++ * the value of 'next', to not forget the greater age of 'next'.
++ *
++ * NOTE: in this function we assume that rq is in a bfq_queue, basing
++ * on that rq is picked from the hash table q->elevator->hash, which,
++ * in its turn, is filled only with I/O requests present in
++ * bfq_queues, while BFQ is in use for the request queue q. In fact,
++ * the function that fills this hash table (elv_rqhash_add) is called
++ * only by bfq_insert_request.
++ */
++static void bfq_requests_merged(struct request_queue *q, struct request *rq,
++ struct request *next)
++{
++ struct bfq_queue *bfqq = bfq_init_rq(rq),
++ *next_bfqq = bfq_init_rq(next);
++
++ BUG_ON(!RQ_BFQQ(rq));
++ BUG_ON(!RQ_BFQQ(next)); /* this does not imply next is in a bfqq */
++ BUG_ON(rq->rq_flags & RQF_DISP_LIST);
++ BUG_ON(next->rq_flags & RQF_DISP_LIST);
++
++ lockdep_assert_held(&bfqq->bfqd->lock);
++
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "rq %p next %p bfqq %p next_bfqq %p",
++ rq, next, bfqq, next_bfqq);
++
++ /*
++ * If next and rq belong to the same bfq_queue and next is older
++ * than rq, then reposition rq in the fifo (by substituting next
++ * with rq). Otherwise, if next and rq belong to different
++ * bfq_queues, never reposition rq: in fact, we would have to
++ * reposition it with respect to next's position in its own fifo,
++ * which would most certainly be too expensive with respect to
++ * the benefits.
++ */
++ if (bfqq == next_bfqq &&
++ !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
++ next->fifo_time < rq->fifo_time) {
++ list_del_init(&rq->queuelist);
++ list_replace_init(&next->queuelist, &rq->queuelist);
++ rq->fifo_time = next->fifo_time;
++ }
++
++ if (bfqq->next_rq == next)
++ bfqq->next_rq = rq;
++
++ bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
++}
++
++/* Must be called with bfqq != NULL */
++static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
++{
++ BUG_ON(!bfqq);
++
++ if (bfq_bfqq_busy(bfqq)) {
++ bfqq->bfqd->wr_busy_queues--;
++ BUG_ON(bfqq->bfqd->wr_busy_queues < 0);
++ }
++ bfqq->wr_coeff = 1;
++ bfqq->wr_cur_max_time = 0;
++ bfqq->last_wr_start_finish = jiffies;
++ /*
++ * Trigger a weight change on the next invocation of
++ * __bfq_entity_update_weight_prio.
++ */
++ bfqq->entity.prio_changed = 1;
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "wrais ending at %lu, rais_max_time %u",
++ bfqq->last_wr_start_finish,
++ jiffies_to_msecs(bfqq->wr_cur_max_time));
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "wr_busy %d",
++ bfqq->bfqd->wr_busy_queues);
++}
++
++static void bfq_end_wr_async_queues(struct bfq_data *bfqd,
++ struct bfq_group *bfqg)
++{
++ int i, j;
++
++ for (i = 0; i < 2; i++)
++ for (j = 0; j < IOPRIO_BE_NR; j++)
++ if (bfqg->async_bfqq[i][j])
++ bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
++ if (bfqg->async_idle_bfqq)
++ bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
++}
++
++static void bfq_end_wr(struct bfq_data *bfqd)
++{
++ struct bfq_queue *bfqq;
++
++ spin_lock_irq(&bfqd->lock);
++
++ list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
++ bfq_bfqq_end_wr(bfqq);
++ list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
++ bfq_bfqq_end_wr(bfqq);
++ bfq_end_wr_async(bfqd);
++
++ spin_unlock_irq(&bfqd->lock);
++}
++
++static sector_t bfq_io_struct_pos(void *io_struct, bool request)
++{
++ if (request)
++ return blk_rq_pos(io_struct);
++ else
++ return ((struct bio *)io_struct)->bi_iter.bi_sector;
++}
++
++static int bfq_rq_close_to_sector(void *io_struct, bool request,
++ sector_t sector)
++{
++ return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
++ BFQQ_CLOSE_THR;
++}
++
++static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ sector_t sector)
++{
++ struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
++ struct rb_node *parent, *node;
++ struct bfq_queue *__bfqq;
++
++ if (RB_EMPTY_ROOT(root))
++ return NULL;
++
++ /*
++ * First, if we find a request starting at the end of the last
++ * request, choose it.
++ */
++ __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
++ if (__bfqq)
++ return __bfqq;
++
++ /*
++ * If the exact sector wasn't found, the parent of the NULL leaf
++ * will contain the closest sector (rq_pos_tree sorted by
++ * next_request position).
++ */
++ __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
++ if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
++ return __bfqq;
++
++ if (blk_rq_pos(__bfqq->next_rq) < sector)
++ node = rb_next(&__bfqq->pos_node);
++ else
++ node = rb_prev(&__bfqq->pos_node);
++ if (!node)
++ return NULL;
++
++ __bfqq = rb_entry(node, struct bfq_queue, pos_node);
++ if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
++ return __bfqq;
++
++ return NULL;
++}
++
++static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
++ struct bfq_queue *cur_bfqq,
++ sector_t sector)
++{
++ struct bfq_queue *bfqq;
++
++ /*
++ * We shall notice if some of the queues are cooperating,
++ * e.g., working closely on the same area of the device. In
++ * that case, we can group them together and: 1) don't waste
++ * time idling, and 2) serve the union of their requests in
++ * the best possible order for throughput.
++ */
++ bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
++ if (!bfqq || bfqq == cur_bfqq)
++ return NULL;
++
++ return bfqq;
++}
++
++static struct bfq_queue *
++bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
++{
++ int process_refs, new_process_refs;
++ struct bfq_queue *__bfqq;
++
++ /*
++ * If there are no process references on the new_bfqq, then it is
++ * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
++ * may have dropped their last reference (not just their last process
++ * reference).
++ */
++ if (!bfqq_process_refs(new_bfqq))
++ return NULL;
++
++ /* Avoid a circular list and skip interim queue merges. */
++ while ((__bfqq = new_bfqq->new_bfqq)) {
++ if (__bfqq == bfqq)
++ return NULL;
++ new_bfqq = __bfqq;
++ }
++
++ process_refs = bfqq_process_refs(bfqq);
++ new_process_refs = bfqq_process_refs(new_bfqq);
++ /*
++ * If the process for the bfqq has gone away, there is no
++ * sense in merging the queues.
++ */
++ if (process_refs == 0 || new_process_refs == 0)
++ return NULL;
++
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
++ new_bfqq->pid);
++
++ /*
++ * Merging is just a redirection: the requests of the process
++ * owning one of the two queues are redirected to the other queue.
++ * The latter queue, in its turn, is set as shared if this is the
++ * first time that the requests of some process are redirected to
++ * it.
++ *
++ * We redirect bfqq to new_bfqq and not the opposite, because
++ * we are in the context of the process owning bfqq, thus we
++ * have the io_cq of this process. So we can immediately
++ * configure this io_cq to redirect the requests of the
++ * process to new_bfqq. In contrast, the io_cq of new_bfqq is
++ * not available any more (new_bfqq->bic == NULL).
++ *
++ * Anyway, even in case new_bfqq coincides with the in-service
++ * queue, redirecting requests the in-service queue is the
++ * best option, as we feed the in-service queue with new
++ * requests close to the last request served and, by doing so,
++ * are likely to increase the throughput.
++ */
++ bfqq->new_bfqq = new_bfqq;
++ new_bfqq->ref += process_refs;
++ return new_bfqq;
++}
++
++static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
++ struct bfq_queue *new_bfqq)
++{
++ if (bfq_too_late_for_merging(new_bfqq)) {
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "too late for bfq%d to be merged",
++ new_bfqq->pid);
++ return false;
++ }
++
++ if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
++ (bfqq->ioprio_class != new_bfqq->ioprio_class))
++ return false;
++
++ /*
++ * If either of the queues has already been detected as seeky,
++ * then merging it with the other queue is unlikely to lead to
++ * sequential I/O.
++ */
++ if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
++ return false;
++
++ /*
++ * Interleaved I/O is known to be done by (some) applications
++ * only for reads, so it does not make sense to merge async
++ * queues.
++ */
++ if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
++ return false;
++
++ return true;
++}
++
++/*
++ * Attempt to schedule a merge of bfqq with the currently in-service
++ * queue or with a close queue among the scheduled queues. Return
++ * NULL if no merge was scheduled, a pointer to the shared bfq_queue
++ * structure otherwise.
++ *
++ * The OOM queue is not allowed to participate to cooperation: in fact, since
++ * the requests temporarily redirected to the OOM queue could be redirected
++ * again to dedicated queues at any time, the state needed to correctly
++ * handle merging with the OOM queue would be quite complex and expensive
++ * to maintain. Besides, in such a critical condition as an out of memory,
++ * the benefits of queue merging may be little relevant, or even negligible.
++ *
++ * WARNING: queue merging may impair fairness among non-weight raised
++ * queues, for at least two reasons: 1) the original weight of a
++ * merged queue may change during the merged state, 2) even being the
++ * weight the same, a merged queue may be bloated with many more
++ * requests than the ones produced by its originally-associated
++ * process.
++ */
++static struct bfq_queue *
++bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ void *io_struct, bool request)
++{
++ struct bfq_queue *in_service_bfqq, *new_bfqq;
++
++ /*
++ * Prevent bfqq from being merged if it has been created too
++ * long ago. The idea is that true cooperating processes, and
++ * thus their associated bfq_queues, are supposed to be
++ * created shortly after each other. This is the case, e.g.,
++ * for KVM/QEMU and dump I/O threads. Basing on this
++ * assumption, the following filtering greatly reduces the
++ * probability that two non-cooperating processes, which just
++ * happen to do close I/O for some short time interval, have
++ * their queues merged by mistake.
++ */
++ if (bfq_too_late_for_merging(bfqq)) {
++ bfq_log_bfqq(bfqd, bfqq,
++ "would have looked for coop, but too late");
++ return NULL;
++ }
++
++ if (bfqq->new_bfqq)
++ return bfqq->new_bfqq;
++
++ if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
++ return NULL;
++
++ /* If there is only one backlogged queue, don't search. */
++ if (bfq_tot_busy_queues(bfqd) == 1)
++ return NULL;
++
++ in_service_bfqq = bfqd->in_service_queue;
++
++ if (in_service_bfqq && in_service_bfqq != bfqq &&
++ likely(in_service_bfqq != &bfqd->oom_bfqq) &&
++ bfq_rq_close_to_sector(io_struct, request, bfqd->in_serv_last_pos) &&
++ bfqq->entity.parent == in_service_bfqq->entity.parent &&
++ bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
++ new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
++ if (new_bfqq)
++ return new_bfqq;
++ }
++ /*
++ * Check whether there is a cooperator among currently scheduled
++ * queues. The only thing we need is that the bio/request is not
++ * NULL, as we need it to establish whether a cooperator exists.
++ */
++ new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
++ bfq_io_struct_pos(io_struct, request));
++
++ BUG_ON(new_bfqq && bfqq->entity.parent != new_bfqq->entity.parent);
++
++ if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
++ bfq_may_be_close_cooperator(bfqq, new_bfqq))
++ return bfq_setup_merge(bfqq, new_bfqq);
++
++ return NULL;
++}
++
++static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
++{
++ struct bfq_io_cq *bic = bfqq->bic;
++
++ /*
++ * If !bfqq->bic, the queue is already shared or its requests
++ * have already been redirected to a shared queue; both idle window
++ * and weight raising state have already been saved. Do nothing.
++ */
++ if (!bic)
++ return;
++
++ bic->saved_ttime = bfqq->ttime;
++ bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
++ bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
++ bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
++ bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
++ if (unlikely(bfq_bfqq_just_created(bfqq) &&
++ !bfq_bfqq_in_large_burst(bfqq) &&
++ bfqq->bfqd->low_latency)) {
++ /*
++ * bfqq being merged ritgh after being created: bfqq
++ * would have deserved interactive weight raising, but
++ * did not make it to be set in a weight-raised state,
++ * because of this early merge. Store directly the
++ * weight-raising state that would have been assigned
++ * to bfqq, so that to avoid that bfqq unjustly fails
++ * to enjoy weight raising if split soon.
++ */
++ bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
++ bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
++ bic->saved_last_wr_start_finish = jiffies;
++ } else {
++ bic->saved_wr_coeff = bfqq->wr_coeff;
++ bic->saved_wr_start_at_switch_to_srt =
++ bfqq->wr_start_at_switch_to_srt;
++ bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
++ bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
++ }
++ BUG_ON(time_is_after_jiffies(bfqq->last_wr_start_finish));
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "bic %p wr_coeff %d start_finish %lu max_time %lu",
++ bic, bfqq->wr_coeff, bfqq->last_wr_start_finish,
++ bfqq->wr_cur_max_time);
++}
++
++static void
++bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
++ struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
++{
++ bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
++ (unsigned long) new_bfqq->pid);
++ BUG_ON(bfqq->bic && bfqq->bic == new_bfqq->bic);
++ /* Save weight raising and idle window of the merged queues */
++ bfq_bfqq_save_state(bfqq);
++ bfq_bfqq_save_state(new_bfqq);
++
++ if (bfq_bfqq_IO_bound(bfqq))
++ bfq_mark_bfqq_IO_bound(new_bfqq);
++ bfq_clear_bfqq_IO_bound(bfqq);
++
++ /*
++ * If bfqq is weight-raised, then let new_bfqq inherit
++ * weight-raising. To reduce false positives, neglect the case
++ * where bfqq has just been created, but has not yet made it
++ * to be weight-raised (which may happen because EQM may merge
++ * bfqq even before bfq_add_request is executed for the first
++ * time for bfqq). Handling this case would however be very
++ * easy, thanks to the flag just_created.
++ */
++ if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
++ new_bfqq->wr_coeff = bfqq->wr_coeff;
++ new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
++ new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
++ new_bfqq->wr_start_at_switch_to_srt =
++ bfqq->wr_start_at_switch_to_srt;
++ if (bfq_bfqq_busy(new_bfqq)) {
++ bfqd->wr_busy_queues++;
++ BUG_ON(bfqd->wr_busy_queues >
++ bfq_tot_busy_queues(bfqd));
++ }
++
++ new_bfqq->entity.prio_changed = 1;
++ bfq_log_bfqq(bfqd, new_bfqq,
++ "wr start after merge with %d, rais_max_time %u",
++ bfqq->pid,
++ jiffies_to_msecs(bfqq->wr_cur_max_time));
++ }
++
++ if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
++ bfqq->wr_coeff = 1;
++ bfqq->entity.prio_changed = 1;
++ if (bfq_bfqq_busy(bfqq)) {
++ bfqd->wr_busy_queues--;
++ BUG_ON(bfqd->wr_busy_queues < 0);
++ }
++
++ }
++
++ bfq_log_bfqq(bfqd, new_bfqq, "wr_busy %d",
++ bfqd->wr_busy_queues);
++
++ /*
++ * Merge queues (that is, let bic redirect its requests to new_bfqq)
++ */
++ bic_set_bfqq(bic, new_bfqq, 1);
++ bfq_mark_bfqq_coop(new_bfqq);
++ /*
++ * new_bfqq now belongs to at least two bics (it is a shared queue):
++ * set new_bfqq->bic to NULL. bfqq either:
++ * - does not belong to any bic any more, and hence bfqq->bic must
++ * be set to NULL, or
++ * - is a queue whose owning bics have already been redirected to a
++ * different queue, hence the queue is destined to not belong to
++ * any bic soon and bfqq->bic is already NULL (therefore the next
++ * assignment causes no harm).
++ */
++ new_bfqq->bic = NULL;
++ bfqq->bic = NULL;
++ /* release process reference to bfqq */
++ bfq_put_queue(bfqq);
++}
++
++static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
++ struct bio *bio)
++{
++ struct bfq_data *bfqd = q->elevator->elevator_data;
++ bool is_sync = op_is_sync(bio->bi_opf);
++ struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
++
++ assert_spin_locked(&bfqd->lock);
++ /*
++ * Disallow merge of a sync bio into an async request.
++ */
++ if (is_sync && !rq_is_sync(rq))
++ return false;
++
++ /*
++ * Lookup the bfqq that this bio will be queued with. Allow
++ * merge only if rq is queued there.
++ */
++ BUG_ON(!bfqd->bio_bfqq_set);
++ if (!bfqq)
++ return false;
++
++ /*
++ * We take advantage of this function to perform an early merge
++ * of the queues of possible cooperating processes.
++ */
++ new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
++ BUG_ON(new_bfqq == bfqq);
++ if (new_bfqq) {
++ /*
++ * bic still points to bfqq, then it has not yet been
++ * redirected to some other bfq_queue, and a queue
++ * merge beween bfqq and new_bfqq can be safely
++ * fulfillled, i.e., bic can be redirected to new_bfqq
++ * and bfqq can be put.
++ */
++ bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
++ new_bfqq);
++ /*
++ * If we get here, bio will be queued into new_queue,
++ * so use new_bfqq to decide whether bio and rq can be
++ * merged.
++ */
++ bfqq = new_bfqq;
++
++ /*
++ * Change also bqfd->bio_bfqq, as
++ * bfqd->bio_bic now points to new_bfqq, and
++ * this function may be invoked again (and then may
++ * use again bqfd->bio_bfqq).
++ */
++ bfqd->bio_bfqq = bfqq;
++ }
++ return bfqq == RQ_BFQQ(rq);
++}
++
++/*
++ * Set the maximum time for the in-service queue to consume its
++ * budget. This prevents seeky processes from lowering the throughput.
++ * In practice, a time-slice service scheme is used with seeky
++ * processes.
++ */
++static void bfq_set_budget_timeout(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ unsigned int timeout_coeff;
++
++ if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
++ timeout_coeff = 1;
++ else
++ timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
++
++ bfqd->last_budget_start = ktime_get();
++
++ bfqq->budget_timeout = jiffies +
++ bfqd->bfq_timeout * timeout_coeff;
++
++ bfq_log_bfqq(bfqd, bfqq, "%u",
++ jiffies_to_msecs(bfqd->bfq_timeout * timeout_coeff));
++}
++
++static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ if (bfqq) {
++ bfq_clear_bfqq_fifo_expire(bfqq);
++
++ bfqd->budgets_assigned = (bfqd->budgets_assigned*7 + 256) / 8;
++
++ BUG_ON(bfqq == bfqd->in_service_queue);
++ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
++
++ if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
++ bfqq->wr_coeff > 1 &&
++ bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
++ time_is_before_jiffies(bfqq->budget_timeout)) {
++ /*
++ * For soft real-time queues, move the start
++ * of the weight-raising period forward by the
++ * time the queue has not received any
++ * service. Otherwise, a relatively long
++ * service delay is likely to cause the
++ * weight-raising period of the queue to end,
++ * because of the short duration of the
++ * weight-raising period of a soft real-time
++ * queue. It is worth noting that this move
++ * is not so dangerous for the other queues,
++ * because soft real-time queues are not
++ * greedy.
++ *
++ * To not add a further variable, we use the
++ * overloaded field budget_timeout to
++ * determine for how long the queue has not
++ * received service, i.e., how much time has
++ * elapsed since the queue expired. However,
++ * this is a little imprecise, because
++ * budget_timeout is set to jiffies if bfqq
++ * not only expires, but also remains with no
++ * request.
++ */
++ if (time_after(bfqq->budget_timeout,
++ bfqq->last_wr_start_finish))
++ bfqq->last_wr_start_finish +=
++ jiffies - bfqq->budget_timeout;
++ else
++ bfqq->last_wr_start_finish = jiffies;
++
++ if (time_is_after_jiffies(bfqq->last_wr_start_finish)) {
++ pr_crit(
++ "BFQ WARNING:last %lu budget %lu jiffies %lu",
++ bfqq->last_wr_start_finish,
++ bfqq->budget_timeout,
++ jiffies);
++ pr_crit("diff %lu", jiffies -
++ max_t(unsigned long,
++ bfqq->last_wr_start_finish,
++ bfqq->budget_timeout));
++ bfqq->last_wr_start_finish = jiffies;
++ }
++ }
++
++ bfq_set_budget_timeout(bfqd, bfqq);
++ bfq_log_bfqq(bfqd, bfqq,
++ "cur-budget = %d prio_class %d",
++ bfqq->entity.budget, bfqq->ioprio_class);
++ } else
++ bfq_log(bfqd, "NULL");
++
++ bfqd->in_service_queue = bfqq;
++}
++
++/*
++ * Get and set a new queue for service.
++ */
++static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
++{
++ struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
++
++ __bfq_set_in_service_queue(bfqd, bfqq);
++ return bfqq;
++}
++
++static void bfq_arm_slice_timer(struct bfq_data *bfqd)
++{
++ struct bfq_queue *bfqq = bfqd->in_service_queue;
++ u32 sl;
++
++ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
++
++ bfq_mark_bfqq_wait_request(bfqq);
++
++ /*
++ * We don't want to idle for seeks, but we do want to allow
++ * fair distribution of slice time for a process doing back-to-back
++ * seeks. So allow a little bit of time for him to submit a new rq.
++ *
++ * To prevent processes with (partly) seeky workloads from
++ * being too ill-treated, grant them a small fraction of the
++ * assigned budget before reducing the waiting time to
++ * BFQ_MIN_TT. This happened to help reduce latency.
++ */
++ sl = bfqd->bfq_slice_idle;
++ /*
++ * Unless the queue is being weight-raised or the scenario is
++ * asymmetric, grant only minimum idle time if the queue
++ * is seeky. A long idling is preserved for a weight-raised
++ * queue, or, more in general, in an asymemtric scenario,
++ * because a long idling is needed for guaranteeing to a queue
++ * its reserved share of the throughput (in particular, it is
++ * needed if the queue has a higher weight than some other
++ * queue).
++ */
++ if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
++ bfq_symmetric_scenario(bfqd))
++ sl = min_t(u32, sl, BFQ_MIN_TT);
++
++ bfqd->last_idling_start = ktime_get();
++ hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
++ HRTIMER_MODE_REL);
++ bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
++ bfq_log(bfqd, "arm idle: %ld/%ld ms",
++ sl / NSEC_PER_MSEC, bfqd->bfq_slice_idle / NSEC_PER_MSEC);
++}
++
++/*
++ * In autotuning mode, max_budget is dynamically recomputed as the
++ * amount of sectors transferred in timeout at the estimated peak
++ * rate. This enables BFQ to utilize a full timeslice with a full
++ * budget, even if the in-service queue is served at peak rate. And
++ * this maximises throughput with sequential workloads.
++ */
++static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
++{
++ return (u64)bfqd->peak_rate * USEC_PER_MSEC *
++ jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
++}
++
++/*
++ * Update parameters related to throughput and responsiveness, as a
++ * function of the estimated peak rate. See comments on
++ * bfq_calc_max_budget(), and on the ref_wr_duration array.
++ */
++static void update_thr_responsiveness_params(struct bfq_data *bfqd)
++{
++ if (bfqd->bfq_user_max_budget == 0) {
++ bfqd->bfq_max_budget =
++ bfq_calc_max_budget(bfqd);
++ BUG_ON(bfqd->bfq_max_budget < 0);
++ bfq_log(bfqd, "new max_budget = %d",
++ bfqd->bfq_max_budget);
++ }
++}
++
++static void bfq_reset_rate_computation(struct bfq_data *bfqd, struct request *rq)
++{
++ if (rq != NULL) { /* new rq dispatch now, reset accordingly */
++ bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns() ;
++ bfqd->peak_rate_samples = 1;
++ bfqd->sequential_samples = 0;
++ bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
++ blk_rq_sectors(rq);
++ } else /* no new rq dispatched, just reset the number of samples */
++ bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
++
++ bfq_log(bfqd,
++ "at end, sample %u/%u tot_sects %llu",
++ bfqd->peak_rate_samples, bfqd->sequential_samples,
++ bfqd->tot_sectors_dispatched);
++}
++
++static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
++{
++ u32 rate, weight, divisor;
++
++ /*
++ * For the convergence property to hold (see comments on
++ * bfq_update_peak_rate()) and for the assessment to be
++ * reliable, a minimum number of samples must be present, and
++ * a minimum amount of time must have elapsed. If not so, do
++ * not compute new rate. Just reset parameters, to get ready
++ * for a new evaluation attempt.
++ */
++ if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
++ bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL) {
++ bfq_log(bfqd,
++ "only resetting, delta_first %lluus samples %d",
++ bfqd->delta_from_first>>10, bfqd->peak_rate_samples);
++ goto reset_computation;
++ }
++
++ /*
++ * If a new request completion has occurred after last
++ * dispatch, then, to approximate the rate at which requests
++ * have been served by the device, it is more precise to
++ * extend the observation interval to the last completion.
++ */
++ bfqd->delta_from_first =
++ max_t(u64, bfqd->delta_from_first,
++ bfqd->last_completion - bfqd->first_dispatch);
++
++ BUG_ON(bfqd->delta_from_first == 0);
++ /*
++ * Rate computed in sects/usec, and not sects/nsec, for
++ * precision issues.
++ */
++ rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
++ div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
++
++ bfq_log(bfqd,
++"tot_sects %llu delta_first %lluus rate %llu sects/s (%d)",
++ bfqd->tot_sectors_dispatched, bfqd->delta_from_first>>10,
++ ((USEC_PER_SEC*(u64)rate)>>BFQ_RATE_SHIFT),
++ rate > 20<<BFQ_RATE_SHIFT);
++
++ /*
++ * Peak rate not updated if:
++ * - the percentage of sequential dispatches is below 3/4 of the
++ * total, and rate is below the current estimated peak rate
++ * - rate is unreasonably high (> 20M sectors/sec)
++ */
++ if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
++ rate <= bfqd->peak_rate) ||
++ rate > 20<<BFQ_RATE_SHIFT) {
++ bfq_log(bfqd,
++ "goto reset, samples %u/%u rate/peak %llu/%llu",
++ bfqd->peak_rate_samples, bfqd->sequential_samples,
++ ((USEC_PER_SEC*(u64)rate)>>BFQ_RATE_SHIFT),
++ ((USEC_PER_SEC*(u64)bfqd->peak_rate)>>BFQ_RATE_SHIFT));
++ goto reset_computation;
++ } else {
++ bfq_log(bfqd,
++ "do update, samples %u/%u rate/peak %llu/%llu",
++ bfqd->peak_rate_samples, bfqd->sequential_samples,
++ ((USEC_PER_SEC*(u64)rate)>>BFQ_RATE_SHIFT),
++ ((USEC_PER_SEC*(u64)bfqd->peak_rate)>>BFQ_RATE_SHIFT));
++ }
++
++ /*
++ * We have to update the peak rate, at last! To this purpose,
++ * we use a low-pass filter. We compute the smoothing constant
++ * of the filter as a function of the 'weight' of the new
++ * measured rate.
++ *
++ * As can be seen in next formulas, we define this weight as a
++ * quantity proportional to how sequential the workload is,
++ * and to how long the observation time interval is.
++ *
++ * The weight runs from 0 to 8. The maximum value of the
++ * weight, 8, yields the minimum value for the smoothing
++ * constant. At this minimum value for the smoothing constant,
++ * the measured rate contributes for half of the next value of
++ * the estimated peak rate.
++ *
++ * So, the first step is to compute the weight as a function
++ * of how sequential the workload is. Note that the weight
++ * cannot reach 9, because bfqd->sequential_samples cannot
++ * become equal to bfqd->peak_rate_samples, which, in its
++ * turn, holds true because bfqd->sequential_samples is not
++ * incremented for the first sample.
++ */
++ weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
++
++ /*
++ * Second step: further refine the weight as a function of the
++ * duration of the observation interval.
++ */
++ weight = min_t(u32, 8,
++ div_u64(weight * bfqd->delta_from_first,
++ BFQ_RATE_REF_INTERVAL));
++
++ /*
++ * Divisor ranging from 10, for minimum weight, to 2, for
++ * maximum weight.
++ */
++ divisor = 10 - weight;
++ BUG_ON(divisor == 0);
++
++ /*
++ * Finally, update peak rate:
++ *
++ * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
++ */
++ bfqd->peak_rate *= divisor-1;
++ bfqd->peak_rate /= divisor;
++ rate /= divisor; /* smoothing constant alpha = 1/divisor */
++
++ bfq_log(bfqd,
++ "divisor %d tmp_peak_rate %llu tmp_rate %u",
++ divisor,
++ ((USEC_PER_SEC*(u64)bfqd->peak_rate)>>BFQ_RATE_SHIFT),
++ (u32)((USEC_PER_SEC*(u64)rate)>>BFQ_RATE_SHIFT));
++
++ BUG_ON(bfqd->peak_rate == 0);
++ BUG_ON(bfqd->peak_rate > 20<<BFQ_RATE_SHIFT);
++
++ bfqd->peak_rate += rate;
++
++ /*
++ * For a very slow device, bfqd->peak_rate can reach 0 (see
++ * the minimum representable values reported in the comments
++ * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
++ * divisions by zero where bfqd->peak_rate is used as a
++ * divisor.
++ */
++ bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
++
++ update_thr_responsiveness_params(bfqd);
++ BUG_ON(bfqd->peak_rate > 20<<BFQ_RATE_SHIFT);
++
++reset_computation:
++ bfq_reset_rate_computation(bfqd, rq);
++}
++
++/*
++ * Update the read/write peak rate (the main quantity used for
++ * auto-tuning, see update_thr_responsiveness_params()).
++ *
++ * It is not trivial to estimate the peak rate (correctly): because of
++ * the presence of sw and hw queues between the scheduler and the
++ * device components that finally serve I/O requests, it is hard to
++ * say exactly when a given dispatched request is served inside the
++ * device, and for how long. As a consequence, it is hard to know
++ * precisely at what rate a given set of requests is actually served
++ * by the device.
++ *
++ * On the opposite end, the dispatch time of any request is trivially
++ * available, and, from this piece of information, the "dispatch rate"
++ * of requests can be immediately computed. So, the idea in the next
++ * function is to use what is known, namely request dispatch times
++ * (plus, when useful, request completion times), to estimate what is
++ * unknown, namely in-device request service rate.
++ *
++ * The main issue is that, because of the above facts, the rate at
++ * which a certain set of requests is dispatched over a certain time
++ * interval can vary greatly with respect to the rate at which the
++ * same requests are then served. But, since the size of any
++ * intermediate queue is limited, and the service scheme is lossless
++ * (no request is silently dropped), the following obvious convergence
++ * property holds: the number of requests dispatched MUST become
++ * closer and closer to the number of requests completed as the
++ * observation interval grows. This is the key property used in
++ * the next function to estimate the peak service rate as a function
++ * of the observed dispatch rate. The function assumes to be invoked
++ * on every request dispatch.
++ */
++static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
++{
++ u64 now_ns = ktime_get_ns();
++
++ if (bfqd->peak_rate_samples == 0) { /* first dispatch */
++ bfq_log(bfqd,
++ "goto reset, samples %d",
++ bfqd->peak_rate_samples) ;
++ bfq_reset_rate_computation(bfqd, rq);
++ goto update_last_values; /* will add one sample */
++ }
++
++ /*
++ * Device idle for very long: the observation interval lasting
++ * up to this dispatch cannot be a valid observation interval
++ * for computing a new peak rate (similarly to the late-
++ * completion event in bfq_completed_request()). Go to
++ * update_rate_and_reset to have the following three steps
++ * taken:
++ * - close the observation interval at the last (previous)
++ * request dispatch or completion
++ * - compute rate, if possible, for that observation interval
++ * - start a new observation interval with this dispatch
++ */
++ if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
++ bfqd->rq_in_driver == 0) {
++ bfq_log(bfqd,
++"jumping to updating&resetting delta_last %lluus samples %d",
++ (now_ns - bfqd->last_dispatch)>>10,
++ bfqd->peak_rate_samples) ;
++ goto update_rate_and_reset;
++ }
++
++ /* Update sampling information */
++ bfqd->peak_rate_samples++;
++
++ if ((bfqd->rq_in_driver > 0 ||
++ now_ns - bfqd->last_completion < BFQ_MIN_TT)
++ && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
++ bfqd->sequential_samples++;
++
++ bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
++
++ /* Reset max observed rq size every 32 dispatches */
++ if (likely(bfqd->peak_rate_samples % 32))
++ bfqd->last_rq_max_size =
++ max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
++ else
++ bfqd->last_rq_max_size = blk_rq_sectors(rq);
++
++ bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
++
++ bfq_log(bfqd,
++ "added samples %u/%u tot_sects %llu delta_first %lluus",
++ bfqd->peak_rate_samples, bfqd->sequential_samples,
++ bfqd->tot_sectors_dispatched,
++ bfqd->delta_from_first>>10);
++
++ /* Target observation interval not yet reached, go on sampling */
++ if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
++ goto update_last_values;
++
++update_rate_and_reset:
++ bfq_update_rate_reset(bfqd, rq);
++update_last_values:
++ bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
++ if (RQ_BFQQ(rq) == bfqd->in_service_queue)
++ bfqd->in_serv_last_pos = bfqd->last_position;
++ bfqd->last_dispatch = now_ns;
++
++ bfq_log(bfqd,
++ "delta_first %lluus last_pos %llu peak_rate %llu",
++ (now_ns - bfqd->first_dispatch)>>10,
++ (unsigned long long) bfqd->last_position,
++ ((USEC_PER_SEC*(u64)bfqd->peak_rate)>>BFQ_RATE_SHIFT));
++ bfq_log(bfqd,
++ "samples at end %d", bfqd->peak_rate_samples);
++}
++
++/*
++ * Remove request from internal lists.
++ */
++static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
++{
++ struct bfq_queue *bfqq = RQ_BFQQ(rq);
++
++ /*
++ * For consistency, the next instruction should have been
++ * executed after removing the request from the queue and
++ * dispatching it. We execute instead this instruction before
++ * bfq_remove_request() (and hence introduce a temporary
++ * inconsistency), for efficiency. In fact, should this
++ * dispatch occur for a non in-service bfqq, this anticipated
++ * increment prevents two counters related to bfqq->dispatched
++ * from risking to be, first, uselessly decremented, and then
++ * incremented again when the (new) value of bfqq->dispatched
++ * happens to be taken into account.
++ */
++ bfqq->dispatched++;
++ bfq_update_peak_rate(q->elevator->elevator_data, rq);
++
++ bfq_remove_request(q, rq);
++}
++
++static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ BUG_ON(bfqq != bfqd->in_service_queue);
++
++ /*
++ * If this bfqq is shared between multiple processes, check
++ * to make sure that those processes are still issuing I/Os
++ * within the mean seek distance. If not, it may be time to
++ * break the queues apart again.
++ */
++ if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
++ bfq_mark_bfqq_split_coop(bfqq);
++
++ if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
++ if (bfqq->dispatched == 0)
++ /*
++ * Overloading budget_timeout field to store
++ * the time at which the queue remains with no
++ * backlog and no outstanding request; used by
++ * the weight-raising mechanism.
++ */
++ bfqq->budget_timeout = jiffies;
++
++ bfq_del_bfqq_busy(bfqd, bfqq, true);
++ } else {
++ bfq_requeue_bfqq(bfqd, bfqq, true);
++ /*
++ * Resort priority tree of potential close cooperators.
++ */
++ bfq_pos_tree_add_move(bfqd, bfqq);
++ }
++
++ /*
++ * All in-service entities must have been properly deactivated
++ * or requeued before executing the next function, which
++ * resets all in-service entites as no more in service.
++ */
++ __bfq_bfqd_reset_in_service(bfqd);
++}
++
++/**
++ * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
++ * @bfqd: device data.
++ * @bfqq: queue to update.
++ * @reason: reason for expiration.
++ *
++ * Handle the feedback on @bfqq budget at queue expiration.
++ * See the body for detailed comments.
++ */
++static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ enum bfqq_expiration reason)
++{
++ struct request *next_rq;
++ int budget, min_budget;
++
++ BUG_ON(bfqq != bfqd->in_service_queue);
++
++ min_budget = bfq_min_budget(bfqd);
++
++ if (bfqq->wr_coeff == 1)
++ budget = bfqq->max_budget;
++ else /*
++ * Use a constant, low budget for weight-raised queues,
++ * to help achieve a low latency. Keep it slightly higher
++ * than the minimum possible budget, to cause a little
++ * bit fewer expirations.
++ */
++ budget = 2 * min_budget;
++
++ bfq_log_bfqq(bfqd, bfqq, "last budg %d, budg left %d",
++ bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
++ bfq_log_bfqq(bfqd, bfqq, "last max_budg %d, min budg %d",
++ budget, bfq_min_budget(bfqd));
++ bfq_log_bfqq(bfqd, bfqq, "sync %d, seeky %d",
++ bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
++
++ if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
++ switch (reason) {
++ /*
++ * Caveat: in all the following cases we trade latency
++ * for throughput.
++ */
++ case BFQ_BFQQ_TOO_IDLE:
++ /*
++ * This is the only case where we may reduce
++ * the budget: if there is no request of the
++ * process still waiting for completion, then
++ * we assume (tentatively) that the timer has
++ * expired because the batch of requests of
++ * the process could have been served with a
++ * smaller budget. Hence, betting that
++ * process will behave in the same way when it
++ * becomes backlogged again, we reduce its
++ * next budget. As long as we guess right,
++ * this budget cut reduces the latency
++ * experienced by the process.
++ *
++ * However, if there are still outstanding
++ * requests, then the process may have not yet
++ * issued its next request just because it is
++ * still waiting for the completion of some of
++ * the still outstanding ones. So in this
++ * subcase we do not reduce its budget, on the
++ * contrary we increase it to possibly boost
++ * the throughput, as discussed in the
++ * comments to the BUDGET_TIMEOUT case.
++ */
++ if (bfqq->dispatched > 0) /* still outstanding reqs */
++ budget = min(budget * 2, bfqd->bfq_max_budget);
++ else {
++ if (budget > 5 * min_budget)
++ budget -= 4 * min_budget;
++ else
++ budget = min_budget;
++ }
++ break;
++ case BFQ_BFQQ_BUDGET_TIMEOUT:
++ /*
++ * We double the budget here because it gives
++ * the chance to boost the throughput if this
++ * is not a seeky process (and has bumped into
++ * this timeout because of, e.g., ZBR).
++ */
++ budget = min(budget * 2, bfqd->bfq_max_budget);
++ break;
++ case BFQ_BFQQ_BUDGET_EXHAUSTED:
++ /*
++ * The process still has backlog, and did not
++ * let either the budget timeout or the disk
++ * idling timeout expire. Hence it is not
++ * seeky, has a short thinktime and may be
++ * happy with a higher budget too. So
++ * definitely increase the budget of this good
++ * candidate to boost the disk throughput.
++ */
++ budget = min(budget * 4, bfqd->bfq_max_budget);
++ break;
++ case BFQ_BFQQ_NO_MORE_REQUESTS:
++ /*
++ * For queues that expire for this reason, it
++ * is particularly important to keep the
++ * budget close to the actual service they
++ * need. Doing so reduces the timestamp
++ * misalignment problem described in the
++ * comments in the body of
++ * __bfq_activate_entity. In fact, suppose
++ * that a queue systematically expires for
++ * BFQ_BFQQ_NO_MORE_REQUESTS and presents a
++ * new request in time to enjoy timestamp
++ * back-shifting. The larger the budget of the
++ * queue is with respect to the service the
++ * queue actually requests in each service
++ * slot, the more times the queue can be
++ * reactivated with the same virtual finish
++ * time. It follows that, even if this finish
++ * time is pushed to the system virtual time
++ * to reduce the consequent timestamp
++ * misalignment, the queue unjustly enjoys for
++ * many re-activations a lower finish time
++ * than all newly activated queues.
++ *
++ * The service needed by bfqq is measured
++ * quite precisely by bfqq->entity.service.
++ * Since bfqq does not enjoy device idling,
++ * bfqq->entity.service is equal to the number
++ * of sectors that the process associated with
++ * bfqq requested to read/write before waiting
++ * for request completions, or blocking for
++ * other reasons.
++ */
++ budget = max_t(int, bfqq->entity.service, min_budget);
++ break;
++ default:
++ return;
++ }
++ } else if (!bfq_bfqq_sync(bfqq))
++ /*
++ * Async queues get always the maximum possible
++ * budget, as for them we do not care about latency
++ * (in addition, their ability to dispatch is limited
++ * by the charging factor).
++ */
++ budget = bfqd->bfq_max_budget;
++
++ bfqq->max_budget = budget;
++
++ if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
++ !bfqd->bfq_user_max_budget)
++ bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
++
++ /*
++ * If there is still backlog, then assign a new budget, making
++ * sure that it is large enough for the next request. Since
++ * the finish time of bfqq must be kept in sync with the
++ * budget, be sure to call __bfq_bfqq_expire() *after* this
++ * update.
++ *
++ * If there is no backlog, then no need to update the budget;
++ * it will be updated on the arrival of a new request.
++ */
++ next_rq = bfqq->next_rq;
++ if (next_rq) {
++ BUG_ON(reason == BFQ_BFQQ_TOO_IDLE ||
++ reason == BFQ_BFQQ_NO_MORE_REQUESTS);
++ bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
++ bfq_serv_to_charge(next_rq, bfqq));
++ BUG_ON(!bfq_bfqq_busy(bfqq));
++ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
++ }
++
++ bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
++ next_rq ? blk_rq_sectors(next_rq) : 0,
++ bfqq->entity.budget);
++}
++
++/*
++ * Return true if the process associated with bfqq is "slow". The slow
++ * flag is used, in addition to the budget timeout, to reduce the
++ * amount of service provided to seeky processes, and thus reduce
++ * their chances to lower the throughput. More details in the comments
++ * on the function bfq_bfqq_expire().
++ *
++ * An important observation is in order: as discussed in the comments
++ * on the function bfq_update_peak_rate(), with devices with internal
++ * queues, it is hard if ever possible to know when and for how long
++ * an I/O request is processed by the device (apart from the trivial
++ * I/O pattern where a new request is dispatched only after the
++ * previous one has been completed). This makes it hard to evaluate
++ * the real rate at which the I/O requests of each bfq_queue are
++ * served. In fact, for an I/O scheduler like BFQ, serving a
++ * bfq_queue means just dispatching its requests during its service
++ * slot (i.e., until the budget of the queue is exhausted, or the
++ * queue remains idle, or, finally, a timeout fires). But, during the
++ * service slot of a bfq_queue, around 100 ms at most, the device may
++ * be even still processing requests of bfq_queues served in previous
++ * service slots. On the opposite end, the requests of the in-service
++ * bfq_queue may be completed after the service slot of the queue
++ * finishes.
++ *
++ * Anyway, unless more sophisticated solutions are used
++ * (where possible), the sum of the sizes of the requests dispatched
++ * during the service slot of a bfq_queue is probably the only
++ * approximation available for the service received by the bfq_queue
++ * during its service slot. And this sum is the quantity used in this
++ * function to evaluate the I/O speed of a process.
++ */
++static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ bool compensate, enum bfqq_expiration reason,
++ unsigned long *delta_ms)
++{
++ ktime_t delta_ktime;
++ u32 delta_usecs;
++ bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
++
++ if (!bfq_bfqq_sync(bfqq))
++ return false;
++
++ if (compensate)
++ delta_ktime = bfqd->last_idling_start;
++ else
++ delta_ktime = ktime_get();
++ delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
++ delta_usecs = ktime_to_us(delta_ktime);
++
++ /* don't use too short time intervals */
++ if (delta_usecs < 1000) {
++ if (blk_queue_nonrot(bfqd->queue))
++ /*
++ * give same worst-case guarantees as idling
++ * for seeky
++ */
++ *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
++ else /* charge at least one seek */
++ *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
++
++ bfq_log(bfqd, "too short %u", delta_usecs);
++
++ return slow;
++ }
++
++ *delta_ms = delta_usecs / USEC_PER_MSEC;
++
++ /*
++ * Use only long (> 20ms) intervals to filter out excessive
++ * spikes in service rate estimation.
++ */
++ if (delta_usecs > 20000) {
++ /*
++ * Caveat for rotational devices: processes doing I/O
++ * in the slower disk zones tend to be slow(er) even
++ * if not seeky. In this respect, the estimated peak
++ * rate is likely to be an average over the disk
++ * surface. Accordingly, to not be too harsh with
++ * unlucky processes, a process is deemed slow only if
++ * its rate has been lower than half of the estimated
++ * peak rate.
++ */
++ slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
++ bfq_log(bfqd, "relative rate %d/%d",
++ bfqq->entity.service, bfqd->bfq_max_budget);
++ }
++
++ bfq_log_bfqq(bfqd, bfqq, "slow %d", slow);
++
++ return slow;
++}
++
++/*
++ * To be deemed as soft real-time, an application must meet two
++ * requirements. First, the application must not require an average
++ * bandwidth higher than the approximate bandwidth required to playback or
++ * record a compressed high-definition video.
++ * The next function is invoked on the completion of the last request of a
++ * batch, to compute the next-start time instant, soft_rt_next_start, such
++ * that, if the next request of the application does not arrive before
++ * soft_rt_next_start, then the above requirement on the bandwidth is met.
++ *
++ * The second requirement is that the request pattern of the application is
++ * isochronous, i.e., that, after issuing a request or a batch of requests,
++ * the application stops issuing new requests until all its pending requests
++ * have been completed. After that, the application may issue a new batch,
++ * and so on.
++ * For this reason the next function is invoked to compute
++ * soft_rt_next_start only for applications that meet this requirement,
++ * whereas soft_rt_next_start is set to infinity for applications that do
++ * not.
++ *
++ * Unfortunately, even a greedy (i.e., I/O-bound) application may
++ * happen to meet, occasionally or systematically, both the above
++ * bandwidth and isochrony requirements. This may happen at least in
++ * the following circumstances. First, if the CPU load is high. The
++ * application may stop issuing requests while the CPUs are busy
++ * serving other processes, then restart, then stop again for a while,
++ * and so on. The other circumstances are related to the storage
++ * device: the storage device is highly loaded or reaches a low-enough
++ * throughput with the I/O of the application (e.g., because the I/O
++ * is random and/or the device is slow). In all these cases, the
++ * I/O of the application may be simply slowed down enough to meet
++ * the bandwidth and isochrony requirements. To reduce the probability
++ * that greedy applications are deemed as soft real-time in these
++ * corner cases, a further rule is used in the computation of
++ * soft_rt_next_start: the return value of this function is forced to
++ * be higher than the maximum between the following two quantities.
++ *
++ * (a) Current time plus: (1) the maximum time for which the arrival
++ * of a request is waited for when a sync queue becomes idle,
++ * namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
++ * postpone for a moment the reason for adding a few extra
++ * jiffies; we get back to it after next item (b). Lower-bounding
++ * the return value of this function with the current time plus
++ * bfqd->bfq_slice_idle tends to filter out greedy applications,
++ * because the latter issue their next request as soon as possible
++ * after the last one has been completed. In contrast, a soft
++ * real-time application spends some time processing data, after a
++ * batch of its requests has been completed.
++ *
++ * (b) Current value of bfqq->soft_rt_next_start. As pointed out
++ * above, greedy applications may happen to meet both the
++ * bandwidth and isochrony requirements under heavy CPU or
++ * storage-device load. In more detail, in these scenarios, these
++ * applications happen, only for limited time periods, to do I/O
++ * slowly enough to meet all the requirements described so far,
++ * including the filtering in above item (a). These slow-speed
++ * time intervals are usually interspersed between other time
++ * intervals during which these applications do I/O at a very high
++ * speed. Fortunately, exactly because of the high speed of the
++ * I/O in the high-speed intervals, the values returned by this
++ * function happen to be so high, near the end of any such
++ * high-speed interval, to be likely to fall *after* the end of
++ * the low-speed time interval that follows. These high values are
++ * stored in bfqq->soft_rt_next_start after each invocation of
++ * this function. As a consequence, if the last value of
++ * bfqq->soft_rt_next_start is constantly used to lower-bound the
++ * next value that this function may return, then, from the very
++ * beginning of a low-speed interval, bfqq->soft_rt_next_start is
++ * likely to be constantly kept so high that any I/O request
++ * issued during the low-speed interval is considered as arriving
++ * to soon for the application to be deemed as soft
++ * real-time. Then, in the high-speed interval that follows, the
++ * application will not be deemed as soft real-time, just because
++ * it will do I/O at a high speed. And so on.
++ *
++ * Getting back to the filtering in item (a), in the following two
++ * cases this filtering might be easily passed by a greedy
++ * application, if the reference quantity was just
++ * bfqd->bfq_slice_idle:
++ * 1) HZ is so low that the duration of a jiffy is comparable to or
++ * higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
++ * devices with HZ=100. The time granularity may be so coarse
++ * that the approximation, in jiffies, of bfqd->bfq_slice_idle
++ * is rather lower than the exact value.
++ * 2) jiffies, instead of increasing at a constant rate, may stop increasing
++ * for a while, then suddenly 'jump' by several units to recover the lost
++ * increments. This seems to happen, e.g., inside virtual machines.
++ * To address this issue, in the filtering in (a) we do not use as a
++ * reference time interval just bfqd->bfq_slice_idle, but
++ * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
++ * minimum number of jiffies for which the filter seems to be quite
++ * precise also in embedded systems and KVM/QEMU virtual machines.
++ */
++static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ bfq_log_bfqq(bfqd, bfqq,
++"service_blkg %lu soft_rate %u sects/sec interval %u",
++ bfqq->service_from_backlogged,
++ bfqd->bfq_wr_max_softrt_rate,
++ jiffies_to_msecs(HZ * bfqq->service_from_backlogged /
++ bfqd->bfq_wr_max_softrt_rate));
++
++ return max3(bfqq->soft_rt_next_start,
++ bfqq->last_idle_bklogged +
++ HZ * bfqq->service_from_backlogged /
++ bfqd->bfq_wr_max_softrt_rate,
++ jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
++}
++
++static bool bfq_bfqq_injectable(struct bfq_queue *bfqq)
++{
++ return BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
++ blk_queue_nonrot(bfqq->bfqd->queue) &&
++ bfqq->bfqd->hw_tag;
++}
++
++/**
++ * bfq_bfqq_expire - expire a queue.
++ * @bfqd: device owning the queue.
++ * @bfqq: the queue to expire.
++ * @compensate: if true, compensate for the time spent idling.
++ * @reason: the reason causing the expiration.
++ *
++ * If the process associated with bfqq does slow I/O (e.g., because it
++ * issues random requests), we charge bfqq with the time it has been
++ * in service instead of the service it has received (see
++ * bfq_bfqq_charge_time for details on how this goal is achieved). As
++ * a consequence, bfqq will typically get higher timestamps upon
++ * reactivation, and hence it will be rescheduled as if it had
++ * received more service than what it has actually received. In the
++ * end, bfqq receives less service in proportion to how slowly its
++ * associated process consumes its budgets (and hence how seriously it
++ * tends to lower the throughput). In addition, this time-charging
++ * strategy guarantees time fairness among slow processes. In
++ * contrast, if the process associated with bfqq is not slow, we
++ * charge bfqq exactly with the service it has received.
++ *
++ * Charging time to the first type of queues and the exact service to
++ * the other has the effect of using the WF2Q+ policy to schedule the
++ * former on a timeslice basis, without violating service domain
++ * guarantees among the latter.
++ */
++static void bfq_bfqq_expire(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ bool compensate,
++ enum bfqq_expiration reason)
++{
++ bool slow;
++ unsigned long delta = 0;
++ struct bfq_entity *entity = &bfqq->entity;
++ int ref;
++
++ BUG_ON(bfqq != bfqd->in_service_queue);
++
++ /*
++ * Check whether the process is slow (see bfq_bfqq_is_slow).
++ */
++ slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
++
++ /*
++ * As above explained, charge slow (typically seeky) and
++ * timed-out queues with the time and not the service
++ * received, to favor sequential workloads.
++ *
++ * Processes doing I/O in the slower disk zones will tend to
++ * be slow(er) even if not seeky. Therefore, since the
++ * estimated peak rate is actually an average over the disk
++ * surface, these processes may timeout just for bad luck. To
++ * avoid punishing them, do not charge time to processes that
++ * succeeded in consuming at least 2/3 of their budget. This
++ * allows BFQ to preserve enough elasticity to still perform
++ * bandwidth, and not time, distribution with little unlucky
++ * or quasi-sequential processes.
++ */
++ if (bfqq->wr_coeff == 1 &&
++ (slow ||
++ (reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
++ bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
++ bfq_bfqq_charge_time(bfqd, bfqq, delta);
++
++ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
++
++ if (reason == BFQ_BFQQ_TOO_IDLE &&
++ entity->service <= 2 * entity->budget / 10)
++ bfq_clear_bfqq_IO_bound(bfqq);
++
++ if (bfqd->low_latency && bfqq->wr_coeff == 1)
++ bfqq->last_wr_start_finish = jiffies;
++
++ if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
++ RB_EMPTY_ROOT(&bfqq->sort_list)) {
++ /*
++ * If we get here, and there are no outstanding
++ * requests, then the request pattern is isochronous
++ * (see the comments on the function
++ * bfq_bfqq_softrt_next_start()). Thus we can compute
++ * soft_rt_next_start. And we do it, unless bfqq is in
++ * interactive weight raising. We do not do it in the
++ * latter subcase, for the following reason. bfqq may
++ * be conveying the I/O needed to load a soft
++ * real-time application. Such an application will
++ * actually exhibit a soft real-time I/O pattern after
++ * it finally starts doing its job. But, if
++ * soft_rt_next_start is computed here for an
++ * interactive bfqq, and bfqq had received a lot of
++ * service before remaining with no outstanding
++ * request (likely to happen on a fast device), then
++ * soft_rt_next_start would be assigned such a high
++ * value that, for a very long time, bfqq would be
++ * prevented from being possibly considered as soft
++ * real time.
++ *
++ * If, instead, the queue still has outstanding
++ * requests, then we have to wait for the completion
++ * of all the outstanding requests to discover whether
++ * the request pattern is actually isochronous.
++ */
++ BUG_ON(bfq_tot_busy_queues(bfqd) < 1);
++ if (bfqq->dispatched == 0 &&
++ bfqq->wr_coeff != bfqd->bfq_wr_coeff) {
++ bfqq->soft_rt_next_start =
++ bfq_bfqq_softrt_next_start(bfqd, bfqq);
++ bfq_log_bfqq(bfqd, bfqq, "new soft_rt_next %lu",
++ bfqq->soft_rt_next_start);
++ } else if (bfqq->dispatched > 0) {
++ /*
++ * Schedule an update of soft_rt_next_start to when
++ * the task may be discovered to be isochronous.
++ */
++ bfq_mark_bfqq_softrt_update(bfqq);
++ }
++ }
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "expire (%s, slow %d, num_disp %d, short %d, weight %d, serv %d/%d)",
++ reason_name[reason], slow, bfqq->dispatched,
++ bfq_bfqq_has_short_ttime(bfqq), entity->weight,
++ entity->service, entity->budget);
++
++ /*
++ * Increase, decrease or leave budget unchanged according to
++ * reason.
++ */
++ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
++ __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
++ BUG_ON(bfqq->next_rq == NULL &&
++ bfqq->entity.budget < bfqq->entity.service);
++ ref = bfqq->ref;
++ __bfq_bfqq_expire(bfqd, bfqq);
++
++ if (ref == 1) /* bfqq is gone, no more actions on it */
++ return;
++
++ BUG_ON(ref > 1 &&
++ !bfq_bfqq_busy(bfqq) && reason == BFQ_BFQQ_BUDGET_EXHAUSTED &&
++ !bfq_class_idle(bfqq));
++
++ bfqq->injected_service = 0;
++
++ /* mark bfqq as waiting a request only if a bic still points to it */
++ if (!bfq_bfqq_busy(bfqq) &&
++ reason != BFQ_BFQQ_BUDGET_TIMEOUT &&
++ reason != BFQ_BFQQ_BUDGET_EXHAUSTED) {
++ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
++ BUG_ON(bfqq->next_rq);
++ bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
++ /*
++ * Not setting service to 0, because, if the next rq
++ * arrives in time, the queue will go on receiving
++ * service with this same budget (as if it never expired)
++ */
++ } else {
++ entity->service = 0;
++ bfq_log_bfqq(bfqd, bfqq, "resetting service");
++ }
++
++ /*
++ * Reset the received-service counter for every parent entity.
++ * Differently from what happens with bfqq->entity.service,
++ * the resetting of this counter never needs to be postponed
++ * for parent entities. In fact, in case bfqq may have a
++ * chance to go on being served using the last, partially
++ * consumed budget, bfqq->entity.service needs to be kept,
++ * because if bfqq then actually goes on being served using
++ * the same budget, the last value of bfqq->entity.service is
++ * needed to properly decrement bfqq->entity.budget by the
++ * portion already consumed. In contrast, it is not necessary
++ * to keep entity->service for parent entities too, because
++ * the bubble up of the new value of bfqq->entity.budget will
++ * make sure that the budgets of parent entities are correct,
++ * even in case bfqq and thus parent entities go on receiving
++ * service with the same budget.
++ */
++ entity = entity->parent;
++ for_each_entity(entity)
++ entity->service = 0;
++}
++
++/*
++ * Budget timeout is not implemented through a dedicated timer, but
++ * just checked on request arrivals and completions, as well as on
++ * idle timer expirations.
++ */
++static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
++{
++ return time_is_before_eq_jiffies(bfqq->budget_timeout);
++}
++
++/*
++ * If we expire a queue that is actively waiting (i.e., with the
++ * device idled) for the arrival of a new request, then we may incur
++ * the timestamp misalignment problem described in the body of the
++ * function __bfq_activate_entity. Hence we return true only if this
++ * condition does not hold, or if the queue is slow enough to deserve
++ * only to be kicked off for preserving a high throughput.
++ */
++static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
++{
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "wait_request %d left %d timeout %d",
++ bfq_bfqq_wait_request(bfqq),
++ bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
++ bfq_bfqq_budget_timeout(bfqq));
++
++ return (!bfq_bfqq_wait_request(bfqq) ||
++ bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
++ &&
++ bfq_bfqq_budget_timeout(bfqq);
++}
++
++static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ bool rot_without_queueing =
++ !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
++ bfqq_sequential_and_IO_bound,
++ idling_boosts_thr;
++
++ bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
++ bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
++ /*
++ * The next variable takes into account the cases where idling
++ * boosts the throughput.
++ *
++ * The value of the variable is computed considering, first, that
++ * idling is virtually always beneficial for the throughput if:
++ * (a) the device is not NCQ-capable and rotational, or
++ * (b) regardless of the presence of NCQ, the device is rotational and
++ * the request pattern for bfqq is I/O-bound and sequential, or
++ * (c) regardless of whether it is rotational, the device is
++ * not NCQ-capable and the request pattern for bfqq is
++ * I/O-bound and sequential.
++ *
++ * Secondly, and in contrast to the above item (b), idling an
++ * NCQ-capable flash-based device would not boost the
++ * throughput even with sequential I/O; rather it would lower
++ * the throughput in proportion to how fast the device
++ * is. Accordingly, the next variable is true if any of the
++ * above conditions (a), (b) or (c) is true, and, in
++ * particular, happens to be false if bfqd is an NCQ-capable
++ * flash-based device.
++ */
++ idling_boosts_thr = rot_without_queueing ||
++ ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
++ bfqq_sequential_and_IO_bound);
++
++ bfq_log_bfqq(bfqd, bfqq, "idling_boosts_thr %d", idling_boosts_thr);
++
++ /*
++ * The return value of this function is equal to that of
++ * idling_boosts_thr, unless a special case holds. In this
++ * special case, described below, idling may cause problems to
++ * weight-raised queues.
++ *
++ * When the request pool is saturated (e.g., in the presence
++ * of write hogs), if the processes associated with
++ * non-weight-raised queues ask for requests at a lower rate,
++ * then processes associated with weight-raised queues have a
++ * higher probability to get a request from the pool
++ * immediately (or at least soon) when they need one. Thus
++ * they have a higher probability to actually get a fraction
++ * of the device throughput proportional to their high
++ * weight. This is especially true with NCQ-capable drives,
++ * which enqueue several requests in advance, and further
++ * reorder internally-queued requests.
++ *
++ * For this reason, we force to false the return value if
++ * there are weight-raised busy queues. In this case, and if
++ * bfqq is not weight-raised, this guarantees that the device
++ * is not idled for bfqq (if, instead, bfqq is weight-raised,
++ * then idling will be guaranteed by another variable, see
++ * below). Combined with the timestamping rules of BFQ (see
++ * [1] for details), this behavior causes bfqq, and hence any
++ * sync non-weight-raised queue, to get a lower number of
++ * requests served, and thus to ask for a lower number of
++ * requests from the request pool, before the busy
++ * weight-raised queues get served again. This often mitigates
++ * starvation problems in the presence of heavy write
++ * workloads and NCQ, thereby guaranteeing a higher
++ * application and system responsiveness in these hostile
++ * scenarios.
++ */
++ return idling_boosts_thr &&
++ bfqd->wr_busy_queues == 0;
++}
++
++/*
++ * There is a case where idling must be performed not for
++ * throughput concerns, but to preserve service guarantees.
++ *
++ * To introduce this case, we can note that allowing the drive
++ * to enqueue more than one request at a time, and hence
++ * delegating de facto final scheduling decisions to the
++ * drive's internal scheduler, entails loss of control on the
++ * actual request service order. In particular, the critical
++ * situation is when requests from different processes happen
++ * to be present, at the same time, in the internal queue(s)
++ * of the drive. In such a situation, the drive, by deciding
++ * the service order of the internally-queued requests, does
++ * determine also the actual throughput distribution among
++ * these processes. But the drive typically has no notion or
++ * concern about per-process throughput distribution, and
++ * makes its decisions only on a per-request basis. Therefore,
++ * the service distribution enforced by the drive's internal
++ * scheduler is likely to coincide with the desired
++ * device-throughput distribution only in a completely
++ * symmetric scenario where:
++ * (i) each of these processes must get the same throughput as
++ * the others;
++ * (ii) the I/O of each process has the same properties, in
++ * terms of locality (sequential or random), direction
++ * (reads or writes), request sizes, greediness
++ * (from I/O-bound to sporadic), and so on.
++ * In fact, in such a scenario, the drive tends to treat
++ * the requests of each of these processes in about the same
++ * way as the requests of the others, and thus to provide
++ * each of these processes with about the same throughput
++ * (which is exactly the desired throughput distribution). In
++ * contrast, in any asymmetric scenario, device idling is
++ * certainly needed to guarantee that bfqq receives its
++ * assigned fraction of the device throughput (see [1] for
++ * details).
++ * The problem is that idling may significantly reduce
++ * throughput with certain combinations of types of I/O and
++ * devices. An important example is sync random I/O, on flash
++ * storage with command queueing. So, unless bfqq falls in the
++ * above cases where idling also boosts throughput, it would
++ * be important to check conditions (i) and (ii) accurately,
++ * so as to avoid idling when not strictly needed for service
++ * guarantees.
++ *
++ * Unfortunately, it is extremely difficult to thoroughly
++ * check condition (ii). And, in case there are active groups,
++ * it becomes very difficult to check condition (i) too. In
++ * fact, if there are active groups, then, for condition (i)
++ * to become false, it is enough that an active group contains
++ * more active processes or sub-groups than some other active
++ * group. More precisely, for condition (i) to hold because of
++ * such a group, it is not even necessary that the group is
++ * (still) active: it is sufficient that, even if the group
++ * has become inactive, some of its descendant processes still
++ * have some request already dispatched but still waiting for
++ * completion. In fact, requests have still to be guaranteed
++ * their share of the throughput even after being
++ * dispatched. In this respect, it is easy to show that, if a
++ * group frequently becomes inactive while still having
++ * in-flight requests, and if, when this happens, the group is
++ * not considered in the calculation of whether the scenario
++ * is asymmetric, then the group may fail to be guaranteed its
++ * fair share of the throughput (basically because idling may
++ * not be performed for the descendant processes of the group,
++ * but it had to be). We address this issue with the
++ * following bi-modal behavior, implemented in the function
++ * bfq_symmetric_scenario().
++ *
++ * If there are groups with requests waiting for completion
++ * (as commented above, some of these groups may even be
++ * already inactive), then the scenario is tagged as
++ * asymmetric, conservatively, without checking any of the
++ * conditions (i) and (ii). So the device is idled for bfqq.
++ * This behavior matches also the fact that groups are created
++ * exactly if controlling I/O is a primary concern (to
++ * preserve bandwidth and latency guarantees).
++ *
++ * On the opposite end, if there are no groups with requests
++ * waiting for completion, then only condition (i) is actually
++ * controlled, i.e., provided that condition (i) holds, idling
++ * is not performed, regardless of whether condition (ii)
++ * holds. In other words, only if condition (i) does not hold,
++ * then idling is allowed, and the device tends to be
++ * prevented from queueing many requests, possibly of several
++ * processes. Since there are no groups with requests waiting
++ * for completion, then, to control condition (i) it is enough
++ * to check just whether all the queues with requests waiting
++ * for completion also have the same weight.
++ *
++ * Not checking condition (ii) evidently exposes bfqq to the
++ * risk of getting less throughput than its fair share.
++ * However, for queues with the same weight, a further
++ * mechanism, preemption, mitigates or even eliminates this
++ * problem. And it does so without consequences on overall
++ * throughput. This mechanism and its benefits are explained
++ * in the next three paragraphs.
++ *
++ * Even if a queue, say Q, is expired when it remains idle, Q
++ * can still preempt the new in-service queue if the next
++ * request of Q arrives soon (see the comments on
++ * bfq_bfqq_update_budg_for_activation). If all queues and
++ * groups have the same weight, this form of preemption,
++ * combined with the hole-recovery heuristic described in the
++ * comments on function bfq_bfqq_update_budg_for_activation,
++ * are enough to preserve a correct bandwidth distribution in
++ * the mid term, even without idling. In fact, even if not
++ * idling allows the internal queues of the device to contain
++ * many requests, and thus to reorder requests, we can rather
++ * safely assume that the internal scheduler still preserves a
++ * minimum of mid-term fairness.
++ *
++ * More precisely, this preemption-based, idleless approach
++ * provides fairness in terms of IOPS, and not sectors per
++ * second. This can be seen with a simple example. Suppose
++ * that there are two queues with the same weight, but that
++ * the first queue receives requests of 8 sectors, while the
++ * second queue receives requests of 1024 sectors. In
++ * addition, suppose that each of the two queues contains at
++ * most one request at a time, which implies that each queue
++ * always remains idle after it is served. Finally, after
++ * remaining idle, each queue receives very quickly a new
++ * request. It follows that the two queues are served
++ * alternatively, preempting each other if needed. This
++ * implies that, although both queues have the same weight,
++ * the queue with large requests receives a service that is
++ * 1024/8 times as high as the service received by the other
++ * queue.
++ *
++ * The motivation for using preemption instead of idling (for
++ * queues with the same weight) is that, by not idling,
++ * service guarantees are preserved (completely or at least in
++ * part) without minimally sacrificing throughput. And, if
++ * there is no active group, then the primary expectation for
++ * this device is probably a high throughput.
++ *
++ * We are now left only with explaining the additional
++ * compound condition that is checked below for deciding
++ * whether the scenario is asymmetric. To explain this
++ * compound condition, we need to add that the function
++ * bfq_symmetric_scenario checks the weights of only
++ * non-weight-raised queues, for efficiency reasons (see
++ * comments on bfq_weights_tree_add()). Then the fact that
++ * bfqq is weight-raised is checked explicitly here. More
++ * precisely, the compound condition below takes into account
++ * also the fact that, even if bfqq is being weight-raised,
++ * the scenario is still symmetric if all queues with requests
++ * waiting for completion happen to be
++ * weight-raised. Actually, we should be even more precise
++ * here, and differentiate between interactive weight raising
++ * and soft real-time weight raising.
++ *
++ * As a side note, it is worth considering that the above
++ * device-idling countermeasures may however fail in the
++ * following unlucky scenario: if idling is (correctly)
++ * disabled in a time period during which all symmetry
++ * sub-conditions hold, and hence the device is allowed to
++ * enqueue many requests, but at some later point in time some
++ * sub-condition stops to hold, then it may become impossible
++ * to let requests be served in the desired order until all
++ * the requests already queued in the device have been served.
++ */
++static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ bool asymmetric_scenario = (bfqq->wr_coeff > 1 &&
++ bfqd->wr_busy_queues <
++ bfq_tot_busy_queues(bfqd)) ||
++ !bfq_symmetric_scenario(bfqd);
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "wr_coeff %d wr_busy %d busy %d asymmetric %d",
++ bfqq->wr_coeff,
++ bfqd->wr_busy_queues,
++ bfq_tot_busy_queues(bfqd),
++ asymmetric_scenario);
++
++ return asymmetric_scenario;
++}
++
++/*
++ * For a queue that becomes empty, device idling is allowed only if
++ * this function returns true for that queue. As a consequence, since
++ * device idling plays a critical role for both throughput boosting
++ * and service guarantees, the return value of this function plays a
++ * critical role as well.
++ *
++ * In a nutshell, this function returns true only if idling is
++ * beneficial for throughput or, even if detrimental for throughput,
++ * idling is however necessary to preserve service guarantees (low
++ * latency, desired throughput distribution, ...). In particular, on
++ * NCQ-capable devices, this function tries to return false, so as to
++ * help keep the drives' internal queues full, whenever this helps the
++ * device boost the throughput without causing any service-guarantee
++ * issue.
++ *
++ * Most of the issues taken into account to get the return value of
++ * this function are not trivial. We discuss these issues in the two
++ * functions providing the main pieces of information needed by this
++ * function.
++ */
++static bool bfq_better_to_idle(struct bfq_queue *bfqq)
++{
++ struct bfq_data *bfqd = bfqq->bfqd;
++ bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
++
++ if (unlikely(bfqd->strict_guarantees))
++ return true;
++
++ /*
++ * Idling is performed only if slice_idle > 0. In addition, we
++ * do not idle if
++ * (a) bfqq is async
++ * (b) bfqq is in the idle io prio class: in this case we do
++ * not idle because we want to minimize the bandwidth that
++ * queues in this class can steal to higher-priority queues
++ */
++ if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
++ bfq_class_idle(bfqq))
++ return false;
++
++ idling_boosts_thr_with_no_issue =
++ idling_boosts_thr_without_issues(bfqd, bfqq);
++
++ idling_needed_for_service_guar =
++ idling_needed_for_service_guarantees(bfqd, bfqq);
++
++ /*
++ * We have now the two components we need to compute the
++ * return value of the function, which is true only if idling
++ * either boosts the throughput (without issues), or is
++ * necessary to preserve service guarantees.
++ */
++ bfq_log_bfqq(bfqd, bfqq,
++ "wr_busy %d boosts %d IO-bound %d guar %d",
++ bfqd->wr_busy_queues,
++ idling_boosts_thr_with_no_issue,
++ bfq_bfqq_IO_bound(bfqq),
++ idling_needed_for_service_guar);
++
++ return idling_boosts_thr_with_no_issue ||
++ idling_needed_for_service_guar;
++}
++
++/*
++ * If the in-service queue is empty but the function bfq_better_to_idle
++ * returns true, then:
++ * 1) the queue must remain in service and cannot be expired, and
++ * 2) the device must be idled to wait for the possible arrival of a new
++ * request for the queue.
++ * See the comments on the function bfq_better_to_idle for the reasons
++ * why performing device idling is the best choice to boost the throughput
++ * and preserve service guarantees when bfq_better_to_idle itself
++ * returns true.
++ */
++static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
++{
++ return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
++}
++
++static struct bfq_queue *bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
++{
++ struct bfq_queue *bfqq;
++
++ /*
++ * A linear search; but, with a high probability, very few
++ * steps are needed to find a candidate queue, i.e., a queue
++ * with enough budget left for its next request. In fact:
++ * - BFQ dynamically updates the budget of every queue so as
++ * to accomodate the expected backlog of the queue;
++ * - if a queue gets all its requests dispatched as injected
++ * service, then the queue is removed from the active list
++ * (and re-added only if it gets new requests, but with
++ * enough budget for its new backlog).
++ */
++ list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
++ if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
++ bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
++ bfq_bfqq_budget_left(bfqq)) {
++ bfq_log_bfqq(bfqd, bfqq, "returned this queue");
++ return bfqq;
++ }
++
++ bfq_log(bfqd, "no queue found");
++ return NULL;
++}
++
++/*
++ * Select a queue for service. If we have a current queue in service,
++ * check whether to continue servicing it, or retrieve and set a new one.
++ */
++static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
++{
++ struct bfq_queue *bfqq;
++ struct request *next_rq;
++ enum bfqq_expiration reason = BFQ_BFQQ_BUDGET_TIMEOUT;
++
++ bfqq = bfqd->in_service_queue;
++ if (!bfqq)
++ goto new_queue;
++
++ bfq_log_bfqq(bfqd, bfqq, "already in-service queue");
++
++ /*
++ * Do not expire bfqq for budget timeout if bfqq may be about
++ * to enjoy device idling. The reason why, in this case, we
++ * prevent bfqq from expiring is the same as in the comments
++ * on the case where bfq_bfqq_must_idle() returns true, in
++ * bfq_completed_request().
++ */
++ if (bfq_may_expire_for_budg_timeout(bfqq) &&
++ !bfq_bfqq_must_idle(bfqq))
++ goto expire;
++
++check_queue:
++ /*
++ * This loop is rarely executed more than once. Even when it
++ * happens, it is much more convenient to re-execute this loop
++ * than to return NULL and trigger a new dispatch to get a
++ * request served.
++ */
++ next_rq = bfqq->next_rq;
++ /*
++ * If bfqq has requests queued and it has enough budget left to
++ * serve them, keep the queue, otherwise expire it.
++ */
++ if (next_rq) {
++ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
++
++ if (bfq_serv_to_charge(next_rq, bfqq) >
++ bfq_bfqq_budget_left(bfqq)) {
++ /*
++ * Expire the queue for budget exhaustion,
++ * which makes sure that the next budget is
++ * enough to serve the next request, even if
++ * it comes from the fifo expired path.
++ */
++ reason = BFQ_BFQQ_BUDGET_EXHAUSTED;
++ goto expire;
++ } else {
++ /*
++ * The idle timer may be pending because we may
++ * not disable disk idling even when a new request
++ * arrives.
++ */
++ if (bfq_bfqq_wait_request(bfqq)) {
++ /*
++ * If we get here: 1) at least a new request
++ * has arrived but we have not disabled the
++ * timer because the request was too small,
++ * 2) then the block layer has unplugged
++ * the device, causing the dispatch to be
++ * invoked.
++ *
++ * Since the device is unplugged, now the
++ * requests are probably large enough to
++ * provide a reasonable throughput.
++ * So we disable idling.
++ */
++ bfq_clear_bfqq_wait_request(bfqq);
++ hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
++ }
++ goto keep_queue;
++ }
++ }
++
++ /*
++ * No requests pending. However, if the in-service queue is idling
++ * for a new request, or has requests waiting for a completion and
++ * may idle after their completion, then keep it anyway.
++ *
++ * Yet, to boost throughput, inject service from other queues if
++ * possible.
++ */
++ if (bfq_bfqq_wait_request(bfqq) ||
++ (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
++ if (bfq_bfqq_injectable(bfqq) &&
++ bfqq->injected_service * bfqq->inject_coeff <
++ bfqq->entity.service * 10) {
++ bfq_log_bfqq(bfqd, bfqq, "looking for queue for injection");
++ bfqq = bfq_choose_bfqq_for_injection(bfqd);
++ } else {
++ if (BFQQ_SEEKY(bfqq))
++ bfq_log_bfqq(bfqd, bfqq,
++ "injection saturated %d * %d >= %d * 10",
++ bfqq->injected_service, bfqq->inject_coeff,
++ bfqq->entity.service);
++ bfqq = NULL;
++ }
++ goto keep_queue;
++ }
++
++ reason = BFQ_BFQQ_NO_MORE_REQUESTS;
++expire:
++ bfq_bfqq_expire(bfqd, bfqq, false, reason);
++new_queue:
++ bfqq = bfq_set_in_service_queue(bfqd);
++ if (bfqq) {
++ bfq_log_bfqq(bfqd, bfqq, "checking new queue");
++ goto check_queue;
++ }
++keep_queue:
++ if (bfqq)
++ bfq_log_bfqq(bfqd, bfqq, "returned this queue");
++ else
++ bfq_log(bfqd, "no queue returned");
++
++ return bfqq;
++}
++
++static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++
++ if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
++ BUG_ON(bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
++ time_is_after_jiffies(bfqq->last_wr_start_finish));
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
++ jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
++ jiffies_to_msecs(bfqq->wr_cur_max_time),
++ bfqq->wr_coeff,
++ bfqq->entity.weight, bfqq->entity.orig_weight);
++
++ BUG_ON(bfqq != bfqd->in_service_queue && entity->weight !=
++ entity->orig_weight * bfqq->wr_coeff);
++ if (entity->prio_changed)
++ bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
++
++ /*
++ * If the queue was activated in a burst, or too much
++ * time has elapsed from the beginning of this
++ * weight-raising period, then end weight raising.
++ */
++ if (bfq_bfqq_in_large_burst(bfqq))
++ bfq_bfqq_end_wr(bfqq);
++ else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
++ bfqq->wr_cur_max_time)) {
++ if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
++ time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
++ bfq_wr_duration(bfqd)))
++ bfq_bfqq_end_wr(bfqq);
++ else {
++ switch_back_to_interactive_wr(bfqq, bfqd);
++ BUG_ON(time_is_after_jiffies(
++ bfqq->last_wr_start_finish));
++ bfqq->entity.prio_changed = 1;
++ bfq_log_bfqq(bfqd, bfqq,
++ "back to interactive wr");
++ }
++ }
++ if (bfqq->wr_coeff > 1 &&
++ bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
++ bfqq->service_from_wr > max_service_from_wr) {
++ /* see comments on max_service_from_wr */
++ bfq_bfqq_end_wr(bfqq);
++ bfq_log_bfqq(bfqd, bfqq,
++ "too much service");
++ }
++ }
++ /*
++ * To improve latency (for this or other queues), immediately
++ * update weight both if it must be raised and if it must be
++ * lowered. Since, entity may be on some active tree here, and
++ * might have a pending change of its ioprio class, invoke
++ * next function with the last parameter unset (see the
++ * comments on the function).
++ */
++ if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
++ __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
++ entity, false);
++}
++
++/*
++ * Dispatch next request from bfqq.
++ */
++static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ struct request *rq = bfqq->next_rq;
++ unsigned long service_to_charge;
++
++ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
++ BUG_ON(!rq);
++ service_to_charge = bfq_serv_to_charge(rq, bfqq);
++
++ BUG_ON(service_to_charge > bfq_bfqq_budget_left(bfqq));
++
++ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
++
++ bfq_bfqq_served(bfqq, service_to_charge);
++
++ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
++
++ bfq_dispatch_remove(bfqd->queue, rq);
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "dispatched %u sec req (%llu), budg left %d, new disp_nr %d",
++ blk_rq_sectors(rq),
++ (unsigned long long) blk_rq_pos(rq),
++ bfq_bfqq_budget_left(bfqq),
++ bfqq->dispatched);
++
++ if (bfqq != bfqd->in_service_queue) {
++ if (likely(bfqd->in_service_queue)) {
++ bfqd->in_service_queue->injected_service +=
++ bfq_serv_to_charge(rq, bfqq);
++ bfq_log_bfqq(bfqd, bfqd->in_service_queue,
++ "injected_service increased to %d",
++ bfqd->in_service_queue->injected_service);
++ }
++ goto return_rq;
++ }
++
++ /*
++ * If weight raising has to terminate for bfqq, then next
++ * function causes an immediate update of bfqq's weight,
++ * without waiting for next activation. As a consequence, on
++ * expiration, bfqq will be timestamped as if has never been
++ * weight-raised during this service slot, even if it has
++ * received part or even most of the service as a
++ * weight-raised queue. This inflates bfqq's timestamps, which
++ * is beneficial, as bfqq is then more willing to leave the
++ * device immediately to possible other weight-raised queues.
++ */
++ bfq_update_wr_data(bfqd, bfqq);
++
++ /*
++ * Expire bfqq, pretending that its budget expired, if bfqq
++ * belongs to CLASS_IDLE and other queues are waiting for
++ * service.
++ */
++ if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
++ goto return_rq;
++
++ bfq_bfqq_expire(bfqd, bfqq, false, BFQ_BFQQ_BUDGET_EXHAUSTED);
++
++return_rq:
++ return rq;
++}
++
++static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
++{
++ struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
++
++ bfq_log(bfqd, "dispatch_non_empty %d busy_queues %d",
++ !list_empty_careful(&bfqd->dispatch), bfq_tot_busy_queues(bfqd) > 0);
++
++ /*
++ * Avoiding lock: a race on bfqd->busy_queues should cause at
++ * most a call to dispatch for nothing
++ */
++ return !list_empty_careful(&bfqd->dispatch) ||
++ bfq_tot_busy_queues(bfqd) > 0;
++}
++
++static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
++{
++ struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
++ struct request *rq = NULL;
++ struct bfq_queue *bfqq = NULL;
++
++ if (!list_empty(&bfqd->dispatch)) {
++ rq = list_first_entry(&bfqd->dispatch, struct request,
++ queuelist);
++ list_del_init(&rq->queuelist);
++ rq->rq_flags &= ~RQF_DISP_LIST;
++
++ bfq_log(bfqd,
++ "picked %p from dispatch list", rq);
++ bfqq = RQ_BFQQ(rq);
++
++ if (bfqq) {
++ /*
++ * Increment counters here, because this
++ * dispatch does not follow the standard
++ * dispatch flow (where counters are
++ * incremented)
++ */
++ bfqq->dispatched++;
++
++ /*
++ * TESTING: reset DISP_LIST flag, because: 1)
++ * this rq this request has passed through
++ * bfq_prepare_request, 2) then it will have
++ * bfq_finish_requeue_request invoked on it, and 3) in
++ * bfq_finish_requeue_request we use this flag to check
++ * that bfq_finish_requeue_request is not invoked on
++ * requests for which bfq_prepare_request has
++ * been invoked.
++ */
++ rq->rq_flags &= ~RQF_DISP_LIST;
++ goto inc_in_driver_start_rq;
++ }
++
++ /*
++ * We exploit the bfq_finish_requeue_request hook to decrement
++ * rq_in_driver, but bfq_finish_requeue_request will not be
++ * invoked on this request. So, to avoid unbalance,
++ * just start this request, without incrementing
++ * rq_in_driver. As a negative consequence,
++ * rq_in_driver is deceptively lower than it should be
++ * while this request is in service. This may cause
++ * bfq_schedule_dispatch to be invoked uselessly.
++ *
++ * As for implementing an exact solution, the
++ * bfq_finish_requeue_request hook, if defined, is probably
++ * invoked also on this request. So, by exploiting
++ * this hook, we could 1) increment rq_in_driver here,
++ * and 2) decrement it in bfq_finish_requeue_request. Such a
++ * solution would let the value of the counter be
++ * always accurate, but it would entail using an extra
++ * interface function. This cost seems higher than the
++ * benefit, being the frequency of non-elevator-private
++ * requests very low.
++ */
++ goto start_rq;
++ }
++
++ bfq_log(bfqd, "%d busy queues", bfq_tot_busy_queues(bfqd));
++
++ if (bfq_tot_busy_queues(bfqd) == 0)
++ goto exit;
++
++ /*
++ * Force device to serve one request at a time if
++ * strict_guarantees is true. Forcing this service scheme is
++ * currently the ONLY way to guarantee that the request
++ * service order enforced by the scheduler is respected by a
++ * queueing device. Otherwise the device is free even to make
++ * some unlucky request wait for as long as the device
++ * wishes.
++ *
++ * Of course, serving one request at at time may cause loss of
++ * throughput.
++ */
++ if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
++ goto exit;
++
++ bfqq = bfq_select_queue(bfqd);
++ if (!bfqq)
++ goto exit;
++
++ BUG_ON(bfqq == bfqd->in_service_queue &&
++ bfqq->entity.budget < bfqq->entity.service);
++
++ BUG_ON(bfqq == bfqd->in_service_queue &&
++ bfq_bfqq_wait_request(bfqq));
++
++ rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
++
++ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
++
++ if (rq) {
++ inc_in_driver_start_rq:
++ bfqd->rq_in_driver++;
++ start_rq:
++ rq->rq_flags |= RQF_STARTED;
++ if (bfqq)
++ bfq_log_bfqq(bfqd, bfqq,
++ "%s request %p, rq_in_driver %d",
++ bfq_bfqq_sync(bfqq) ? "sync" : "async",
++ rq,
++ bfqd->rq_in_driver);
++ else
++ bfq_log(bfqd,
++ "request %p from dispatch list, rq_in_driver %d",
++ rq, bfqd->rq_in_driver);
++ } else
++ bfq_log(bfqd,
++ "returned NULL request, rq_in_driver %d",
++ bfqd->rq_in_driver);
++
++exit:
++ return rq;
++}
++
++
++#if defined(BFQ_GROUP_IOSCHED_ENABLED) && defined(CONFIG_DEBUG_BLK_CGROUP)
++static void bfq_update_dispatch_stats(struct request_queue *q,
++ struct request *rq,
++ struct bfq_queue *in_serv_queue,
++ bool idle_timer_disabled)
++{
++ struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
++
++ if (!idle_timer_disabled && !bfqq)
++ return;
++
++ /*
++ * rq and bfqq are guaranteed to exist until this function
++ * ends, for the following reasons. First, rq can be
++ * dispatched to the device, and then can be completed and
++ * freed, only after this function ends. Second, rq cannot be
++ * merged (and thus freed because of a merge) any longer,
++ * because it has already started. Thus rq cannot be freed
++ * before this function ends, and, since rq has a reference to
++ * bfqq, the same guarantee holds for bfqq too.
++ *
++ * In addition, the following queue lock guarantees that
++ * bfqq_group(bfqq) exists as well.
++ */
++ spin_lock_irq(q->queue_lock);
++ if (idle_timer_disabled)
++ /*
++ * Since the idle timer has been disabled,
++ * in_serv_queue contained some request when
++ * __bfq_dispatch_request was invoked above, which
++ * implies that rq was picked exactly from
++ * in_serv_queue. Thus in_serv_queue == bfqq, and is
++ * therefore guaranteed to exist because of the above
++ * arguments.
++ */
++ bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
++ if (bfqq) {
++ struct bfq_group *bfqg = bfqq_group(bfqq);
++
++ bfqg_stats_update_avg_queue_size(bfqg);
++ bfqg_stats_set_start_empty_time(bfqg);
++ bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
++ }
++ spin_unlock_irq(q->queue_lock);
++}
++#else
++static inline void bfq_update_dispatch_stats(struct request_queue *q,
++ struct request *rq,
++ struct bfq_queue *in_serv_queue,
++ bool idle_timer_disabled) {}
++#endif
++static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
++{
++ struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
++ struct request *rq;
++ struct bfq_queue *in_serv_queue;
++ bool waiting_rq, idle_timer_disabled;
++
++ spin_lock_irq(&bfqd->lock);
++
++ in_serv_queue = bfqd->in_service_queue;
++ waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
++
++ rq = __bfq_dispatch_request(hctx);
++
++ idle_timer_disabled =
++ waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
++
++ spin_unlock_irq(&bfqd->lock);
++
++ bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
++ idle_timer_disabled);
++
++ return rq;
++}
++
++/*
++ * Task holds one reference to the queue, dropped when task exits. Each rq
++ * in-flight on this queue also holds a reference, dropped when rq is freed.
++ *
++ * Scheduler lock must be held here. Recall not to use bfqq after calling
++ * this function on it.
++ */
++static void bfq_put_queue(struct bfq_queue *bfqq)
++{
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ struct bfq_group *bfqg = bfqq_group(bfqq);
++#endif
++
++ assert_spin_locked(&bfqq->bfqd->lock);
++
++ BUG_ON(bfqq->ref <= 0);
++
++ if (bfqq->bfqd)
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "%p %d", bfqq, bfqq->ref);
++
++ bfqq->ref--;
++ if (bfqq->ref)
++ return;
++
++ BUG_ON(rb_first(&bfqq->sort_list));
++ BUG_ON(bfqq->allocated != 0);
++ BUG_ON(bfqq->entity.tree);
++ BUG_ON(bfq_bfqq_busy(bfqq));
++
++ if (!hlist_unhashed(&bfqq->burst_list_node)) {
++ hlist_del_init(&bfqq->burst_list_node);
++ /*
++ * Decrement also burst size after the removal, if the
++ * process associated with bfqq is exiting, and thus
++ * does not contribute to the burst any longer. This
++ * decrement helps filter out false positives of large
++ * bursts, when some short-lived process (often due to
++ * the execution of commands by some service) happens
++ * to start and exit while a complex application is
++ * starting, and thus spawning several processes that
++ * do I/O (and that *must not* be treated as a large
++ * burst, see comments on bfq_handle_burst).
++ *
++ * In particular, the decrement is performed only if:
++ * 1) bfqq is not a merged queue, because, if it is,
++ * then this free of bfqq is not triggered by the exit
++ * of the process bfqq is associated with, but exactly
++ * by the fact that bfqq has just been merged.
++ * 2) burst_size is greater than 0, to handle
++ * unbalanced decrements. Unbalanced decrements may
++ * happen in te following case: bfqq is inserted into
++ * the current burst list--without incrementing
++ * bust_size--because of a split, but the current
++ * burst list is not the burst list bfqq belonged to
++ * (see comments on the case of a split in
++ * bfq_set_request).
++ */
++ if (bfqq->bic && bfqq->bfqd->burst_size > 0)
++ bfqq->bfqd->burst_size--;
++ }
++
++ if (bfqq->bfqd)
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "%p freed", bfqq);
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "putting blkg and bfqg %p\n", bfqg);
++ bfqg_and_blkg_put(bfqg);
++#endif
++ kmem_cache_free(bfq_pool, bfqq);
++}
++
++static void bfq_put_cooperator(struct bfq_queue *bfqq)
++{
++ struct bfq_queue *__bfqq, *next;
++
++ /*
++ * If this queue was scheduled to merge with another queue, be
++ * sure to drop the reference taken on that queue (and others in
++ * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
++ */
++ __bfqq = bfqq->new_bfqq;
++ while (__bfqq) {
++ if (__bfqq == bfqq)
++ break;
++ next = __bfqq->new_bfqq;
++ bfq_put_queue(__bfqq);
++ __bfqq = next;
++ }
++}
++
++static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ if (bfqq == bfqd->in_service_queue) {
++ __bfq_bfqq_expire(bfqd, bfqq);
++ bfq_schedule_dispatch(bfqd);
++ }
++
++ bfq_log_bfqq(bfqd, bfqq, "%p, %d", bfqq, bfqq->ref);
++
++ bfq_put_cooperator(bfqq);
++
++ bfq_put_queue(bfqq); /* release process reference */
++}
++
++static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
++{
++ struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
++ struct bfq_data *bfqd;
++
++ if (bfqq)
++ bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
++
++ if (bfqq && bfqd) {
++ unsigned long flags;
++
++ spin_lock_irqsave(&bfqd->lock, flags);
++ bfq_exit_bfqq(bfqd, bfqq);
++ bic_set_bfqq(bic, NULL, is_sync);
++ spin_unlock_irqrestore(&bfqd->lock, flags);
++ }
++}
++
++static void bfq_exit_icq(struct io_cq *icq)
++{
++ struct bfq_io_cq *bic = icq_to_bic(icq);
++
++ BUG_ON(!bic);
++ bfq_exit_icq_bfqq(bic, true);
++ bfq_exit_icq_bfqq(bic, false);
++}
++
++/*
++ * Update the entity prio values; note that the new values will not
++ * be used until the next (re)activation.
++ */
++static void bfq_set_next_ioprio_data(struct bfq_queue *bfqq,
++ struct bfq_io_cq *bic)
++{
++ struct task_struct *tsk = current;
++ int ioprio_class;
++ struct bfq_data *bfqd = bfqq->bfqd;
++
++ WARN_ON(!bfqd);
++ if (!bfqd)
++ return;
++
++ ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
++ switch (ioprio_class) {
++ default:
++ dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
++ "bfq: bad prio class %d\n", ioprio_class);
++ case IOPRIO_CLASS_NONE:
++ /*
++ * No prio set, inherit CPU scheduling settings.
++ */
++ bfqq->new_ioprio = task_nice_ioprio(tsk);
++ bfqq->new_ioprio_class = task_nice_ioclass(tsk);
++ break;
++ case IOPRIO_CLASS_RT:
++ bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
++ bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
++ break;
++ case IOPRIO_CLASS_BE:
++ bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
++ bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
++ break;
++ case IOPRIO_CLASS_IDLE:
++ bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
++ bfqq->new_ioprio = 7;
++ break;
++ }
++
++ if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
++ pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
++ bfqq->new_ioprio);
++ BUG();
++ }
++
++ bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
++ bfqq->entity.prio_changed = 1;
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "bic_class %d prio %d class %d",
++ ioprio_class, bfqq->new_ioprio, bfqq->new_ioprio_class);
++}
++
++static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
++{
++ struct bfq_data *bfqd = bic_to_bfqd(bic);
++ struct bfq_queue *bfqq;
++ unsigned long uninitialized_var(flags);
++ int ioprio = bic->icq.ioc->ioprio;
++
++ /*
++ * This condition may trigger on a newly created bic, be sure to
++ * drop the lock before returning.
++ */
++ if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
++ return;
++
++ bic->ioprio = ioprio;
++
++ bfqq = bic_to_bfqq(bic, false);
++ if (bfqq) {
++ /* release process reference on this queue */
++ bfq_put_queue(bfqq);
++ bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
++ bic_set_bfqq(bic, bfqq, false);
++ bfq_log_bfqq(bfqd, bfqq,
++ "bfqq %p %d",
++ bfqq, bfqq->ref);
++ }
++
++ bfqq = bic_to_bfqq(bic, true);
++ if (bfqq)
++ bfq_set_next_ioprio_data(bfqq, bic);
++}
++
++static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ struct bfq_io_cq *bic, pid_t pid, int is_sync)
++{
++ RB_CLEAR_NODE(&bfqq->entity.rb_node);
++ INIT_LIST_HEAD(&bfqq->fifo);
++ INIT_HLIST_NODE(&bfqq->burst_list_node);
++ BUG_ON(!hlist_unhashed(&bfqq->burst_list_node));
++
++ bfqq->ref = 0;
++ bfqq->bfqd = bfqd;
++
++ if (bic)
++ bfq_set_next_ioprio_data(bfqq, bic);
++
++ if (is_sync) {
++ /*
++ * No need to mark as has_short_ttime if in
++ * idle_class, because no device idling is performed
++ * for queues in idle class
++ */
++ if (!bfq_class_idle(bfqq))
++ /* tentatively mark as has_short_ttime */
++ bfq_mark_bfqq_has_short_ttime(bfqq);
++ bfq_mark_bfqq_sync(bfqq);
++ bfq_mark_bfqq_just_created(bfqq);
++ /*
++ * Aggressively inject a lot of service: up to 90%.
++ * This coefficient remains constant during bfqq life,
++ * but this behavior might be changed, after enough
++ * testing and tuning.
++ */
++ bfqq->inject_coeff = 1;
++ } else
++ bfq_clear_bfqq_sync(bfqq);
++
++ bfqq->ttime.last_end_request = ktime_get_ns() - (1ULL<<32);
++
++ bfq_mark_bfqq_IO_bound(bfqq);
++
++ /* Tentative initial value to trade off between thr and lat */
++ bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
++ bfqq->pid = pid;
++
++ bfqq->wr_coeff = 1;
++ bfqq->last_wr_start_finish = jiffies;
++ bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
++ bfqq->budget_timeout = bfq_smallest_from_now();
++ bfqq->split_time = bfq_smallest_from_now();
++
++ /*
++ * To not forget the possibly high bandwidth consumed by a
++ * process/queue in the recent past,
++ * bfq_bfqq_softrt_next_start() returns a value at least equal
++ * to the current value of bfqq->soft_rt_next_start (see
++ * comments on bfq_bfqq_softrt_next_start). Set
++ * soft_rt_next_start to now, to mean that bfqq has consumed
++ * no bandwidth so far.
++ */
++ bfqq->soft_rt_next_start = jiffies;
++
++ /* first request is almost certainly seeky */
++ bfqq->seek_history = 1;
++}
++
++static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
++ struct bfq_group *bfqg,
++ int ioprio_class, int ioprio)
++{
++ switch (ioprio_class) {
++ case IOPRIO_CLASS_RT:
++ return &bfqg->async_bfqq[0][ioprio];
++ case IOPRIO_CLASS_NONE:
++ ioprio = IOPRIO_NORM;
++ /* fall through */
++ case IOPRIO_CLASS_BE:
++ return &bfqg->async_bfqq[1][ioprio];
++ case IOPRIO_CLASS_IDLE:
++ return &bfqg->async_idle_bfqq;
++ default:
++ BUG();
++ }
++}
++
++static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
++ struct bio *bio, bool is_sync,
++ struct bfq_io_cq *bic)
++{
++ const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
++ const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
++ struct bfq_queue **async_bfqq = NULL;
++ struct bfq_queue *bfqq;
++ struct bfq_group *bfqg;
++
++ rcu_read_lock();
++
++ bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
++ if (!bfqg) {
++ bfqq = &bfqd->oom_bfqq;
++ goto out;
++ }
++
++ if (!is_sync) {
++ async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
++ ioprio);
++ bfqq = *async_bfqq;
++ if (bfqq)
++ goto out;
++ }
++
++ bfqq = kmem_cache_alloc_node(bfq_pool,
++ GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
++ bfqd->queue->node);
++
++ if (bfqq) {
++ bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
++ is_sync);
++ bfq_init_entity(&bfqq->entity, bfqg);
++ bfq_log_bfqq(bfqd, bfqq, "allocated");
++ } else {
++ bfqq = &bfqd->oom_bfqq;
++ bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
++ goto out;
++ }
++
++ /*
++ * Pin the queue now that it's allocated, scheduler exit will
++ * prune it.
++ */
++ if (async_bfqq) {
++ bfqq->ref++; /*
++ * Extra group reference, w.r.t. sync
++ * queue. This extra reference is removed
++ * only if bfqq->bfqg disappears, to
++ * guarantee that this queue is not freed
++ * until its group goes away.
++ */
++ bfq_log_bfqq(bfqd, bfqq, "bfqq not in async: %p, %d",
++ bfqq, bfqq->ref);
++ *async_bfqq = bfqq;
++ }
++
++out:
++ bfqq->ref++; /* get a process reference to this queue */
++ bfq_log_bfqq(bfqd, bfqq, "at end: %p, %d", bfqq, bfqq->ref);
++ rcu_read_unlock();
++ return bfqq;
++}
++
++static void bfq_update_io_thinktime(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ struct bfq_ttime *ttime = &bfqq->ttime;
++ u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
++
++ elapsed = min_t(u64, elapsed, 2 * bfqd->bfq_slice_idle);
++
++ ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
++ ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
++ ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
++ ttime->ttime_samples);
++}
++
++static void
++bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ struct request *rq)
++{
++ bfqq->seek_history <<= 1;
++ bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
++}
++
++static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ struct bfq_io_cq *bic)
++{
++ bool has_short_ttime = true;
++
++ /*
++ * No need to update has_short_ttime if bfqq is async or in
++ * idle io prio class, or if bfq_slice_idle is zero, because
++ * no device idling is performed for bfqq in this case.
++ */
++ if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
++ bfqd->bfq_slice_idle == 0)
++ return;
++
++ /* Idle window just restored, statistics are meaningless. */
++ if (time_is_after_eq_jiffies(bfqq->split_time +
++ bfqd->bfq_wr_min_idle_time))
++ return;
++
++ /* Think time is infinite if no process is linked to
++ * bfqq. Otherwise check average think time to
++ * decide whether to mark as has_short_ttime
++ */
++ if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
++ (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
++ bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
++ has_short_ttime = false;
++
++ bfq_log_bfqq(bfqd, bfqq, "has_short_ttime %d",
++ has_short_ttime);
++
++ if (has_short_ttime)
++ bfq_mark_bfqq_has_short_ttime(bfqq);
++ else
++ bfq_clear_bfqq_has_short_ttime(bfqq);
++}
++
++/*
++ * Called when a new fs request (rq) is added to bfqq. Check if there's
++ * something we should do about it.
++ */
++static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ struct request *rq)
++{
++ struct bfq_io_cq *bic = RQ_BIC(rq);
++
++ if (rq->cmd_flags & REQ_META)
++ bfqq->meta_pending++;
++
++ bfq_update_io_thinktime(bfqd, bfqq);
++ bfq_update_has_short_ttime(bfqd, bfqq, bic);
++ bfq_update_io_seektime(bfqd, bfqq, rq);
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "has_short_ttime=%d (seeky %d)",
++ bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
++
++ bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
++
++ if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
++ bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
++ blk_rq_sectors(rq) < 32;
++ bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
++
++ /*
++ * There is just this request queued: if
++ * - the request is small, and
++ * - we are idling to boost throughput, and
++ * - the queue is not to be expired,
++ * then just exit.
++ *
++ * In this way, if the device is being idled to wait
++ * for a new request from the in-service queue, we
++ * avoid unplugging the device and committing the
++ * device to serve just a small request. In contrast
++ * we wait for the block layer to decide when to
++ * unplug the device: hopefully, new requests will be
++ * merged to this one quickly, then the device will be
++ * unplugged and larger requests will be dispatched.
++ */
++ if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
++ !budget_timeout)
++ return;
++
++ /*
++ * A large enough request arrived, or idling is being
++ * performed to preserve service guarantees, or
++ * finally the queue is to be expired: in all these
++ * cases disk idling is to be stopped, so clear
++ * wait_request flag and reset timer.
++ */
++ bfq_clear_bfqq_wait_request(bfqq);
++ hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
++
++ /*
++ * The queue is not empty, because a new request just
++ * arrived. Hence we can safely expire the queue, in
++ * case of budget timeout, without risking that the
++ * timestamps of the queue are not updated correctly.
++ * See [1] for more details.
++ */
++ if (budget_timeout)
++ bfq_bfqq_expire(bfqd, bfqq, false,
++ BFQ_BFQQ_BUDGET_TIMEOUT);
++ }
++}
++
++/* returns true if it causes the idle timer to be disabled */
++static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
++{
++ struct bfq_queue *bfqq = RQ_BFQQ(rq), *new_bfqq;
++ bool waiting, idle_timer_disabled = false;
++ BUG_ON(!bfqq);
++
++ assert_spin_locked(&bfqd->lock);
++
++ bfq_log_bfqq(bfqd, bfqq, "rq %p bfqq %p", rq, bfqq);
++
++ /*
++ * An unplug may trigger a requeue of a request from the device
++ * driver: make sure we are in process context while trying to
++ * merge two bfq_queues.
++ */
++ if (!in_interrupt()) {
++ new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
++ if (new_bfqq) {
++ BUG_ON(bic_to_bfqq(RQ_BIC(rq), 1) != bfqq);
++ /*
++ * Release the request's reference to the old bfqq
++ * and make sure one is taken to the shared queue.
++ */
++ new_bfqq->allocated++;
++ bfqq->allocated--;
++ bfq_log_bfqq(bfqd, bfqq,
++ "new allocated %d", bfqq->allocated);
++ bfq_log_bfqq(bfqd, new_bfqq,
++ "new_bfqq new allocated %d",
++ bfqq->allocated);
++
++ new_bfqq->ref++;
++ /*
++ * If the bic associated with the process
++ * issuing this request still points to bfqq
++ * (and thus has not been already redirected
++ * to new_bfqq or even some other bfq_queue),
++ * then complete the merge and redirect it to
++ * new_bfqq.
++ */
++ if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
++ bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
++ bfqq, new_bfqq);
++
++ bfq_clear_bfqq_just_created(bfqq);
++ /*
++ * rq is about to be enqueued into new_bfqq,
++ * release rq reference on bfqq
++ */
++ bfq_put_queue(bfqq);
++ rq->elv.priv[1] = new_bfqq;
++ bfqq = new_bfqq;
++ }
++ }
++
++ waiting = bfqq && bfq_bfqq_wait_request(bfqq);
++ bfq_add_request(rq);
++ idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
++
++ rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
++ list_add_tail(&rq->queuelist, &bfqq->fifo);
++
++ bfq_rq_enqueued(bfqd, bfqq, rq);
++
++ return idle_timer_disabled;
++}
++
++#if defined(BFQ_GROUP_IOSCHED_ENABLED) && defined(CONFIG_DEBUG_BLK_CGROUP)
++static void bfq_update_insert_stats(struct request_queue *q,
++ struct bfq_queue *bfqq,
++ bool idle_timer_disabled,
++ unsigned int cmd_flags)
++{
++ if (!bfqq)
++ return;
++
++ /*
++ * bfqq still exists, because it can disappear only after
++ * either it is merged with another queue, or the process it
++ * is associated with exits. But both actions must be taken by
++ * the same process currently executing this flow of
++ * instructions.
++ *
++ * In addition, the following queue lock guarantees that
++ * bfqq_group(bfqq) exists as well.
++ */
++ spin_lock_irq(q->queue_lock);
++ bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
++ if (idle_timer_disabled)
++ bfqg_stats_update_idle_time(bfqq_group(bfqq));
++ spin_unlock_irq(q->queue_lock);
++}
++#else
++static inline void bfq_update_insert_stats(struct request_queue *q,
++ struct bfq_queue *bfqq,
++ bool idle_timer_disabled,
++ unsigned int cmd_flags) {}
++#endif
++
++static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
++ bool at_head)
++{
++ struct request_queue *q = hctx->queue;
++ struct bfq_data *bfqd = q->elevator->elevator_data;
++ struct bfq_queue *bfqq;
++ bool idle_timer_disabled = false;
++ unsigned int cmd_flags;
++
++ spin_lock_irq(&bfqd->lock);
++ if (blk_mq_sched_try_insert_merge(q, rq)) {
++ spin_unlock_irq(&bfqd->lock);
++ return;
++ }
++
++ spin_unlock_irq(&bfqd->lock);
++
++ blk_mq_sched_request_inserted(rq);
++
++ spin_lock_irq(&bfqd->lock);
++
++ bfqq = bfq_init_rq(rq);
++ BUG_ON(!bfqq && !(at_head || blk_rq_is_passthrough(rq)));
++ BUG_ON(bfqq && bic_to_bfqq(RQ_BIC(rq), rq_is_sync(rq)) != bfqq);
++
++ if (at_head || blk_rq_is_passthrough(rq)) {
++ if (at_head)
++ list_add(&rq->queuelist, &bfqd->dispatch);
++ else
++ list_add_tail(&rq->queuelist, &bfqd->dispatch);
++
++ rq->rq_flags |= RQF_DISP_LIST;
++ if (bfqq)
++ bfq_log_bfqq(bfqd, bfqq,
++ "%p in disp: at_head %d",
++ rq, at_head);
++ else
++ bfq_log(bfqd,
++ "%p in disp: at_head %d",
++ rq, at_head);
++ } else { /* bfqq is assumed to be non null here */
++ BUG_ON(!bfqq);
++ BUG_ON(!(rq->rq_flags & RQF_GOT));
++ rq->rq_flags &= ~RQF_GOT;
++
++ idle_timer_disabled = __bfq_insert_request(bfqd, rq);
++ /*
++ * Update bfqq, because, if a queue merge has occurred
++ * in __bfq_insert_request, then rq has been
++ * redirected into a new queue.
++ */
++ bfqq = RQ_BFQQ(rq);
++
++ if (rq_mergeable(rq)) {
++ elv_rqhash_add(q, rq);
++ if (!q->last_merge)
++ q->last_merge = rq;
++ }
++ }
++
++ /*
++ * Cache cmd_flags before releasing scheduler lock, because rq
++ * may disappear afterwards (for example, because of a request
++ * merge).
++ */
++ cmd_flags = rq->cmd_flags;
++
++ spin_unlock_irq(&bfqd->lock);
++ bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
++ cmd_flags);
++}
++
++static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
++ struct list_head *list, bool at_head)
++{
++ while (!list_empty(list)) {
++ struct request *rq;
++
++ rq = list_first_entry(list, struct request, queuelist);
++ list_del_init(&rq->queuelist);
++ bfq_insert_request(hctx, rq, at_head);
++ }
++}
++
++static void bfq_update_hw_tag(struct bfq_data *bfqd)
++{
++ struct bfq_queue *bfqq = bfqd->in_service_queue;
++
++ bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
++ bfqd->rq_in_driver);
++
++ if (bfqd->hw_tag == 1)
++ return;
++
++ /*
++ * This sample is valid if the number of outstanding requests
++ * is large enough to allow a queueing behavior. Note that the
++ * sum is not exact, as it's not taking into account deactivated
++ * requests.
++ */
++ if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
++ return;
++
++ /*
++ * If active queue hasn't enough requests and can idle, bfq might not
++ * dispatch sufficient requests to hardware. Don't zero hw_tag in this
++ * case
++ */
++ if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
++ bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
++ BFQ_HW_QUEUE_THRESHOLD && bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
++ return;
++
++ if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
++ return;
++
++ bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
++ bfqd->max_rq_in_driver = 0;
++ bfqd->hw_tag_samples = 0;
++}
++
++static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
++{
++ u64 now_ns;
++ u32 delta_us;
++
++ bfq_update_hw_tag(bfqd);
++
++ BUG_ON(!bfqd->rq_in_driver);
++ BUG_ON(!bfqq->dispatched);
++ bfqd->rq_in_driver--;
++ bfqq->dispatched--;
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "new disp %d, new rq_in_driver %d",
++ bfqq->dispatched, bfqd->rq_in_driver);
++
++ if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
++ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
++ /*
++ * Set budget_timeout (which we overload to store the
++ * time at which the queue remains with no backlog and
++ * no outstanding request; used by the weight-raising
++ * mechanism).
++ */
++ bfqq->budget_timeout = jiffies;
++
++ bfq_weights_tree_remove(bfqd, bfqq);
++ }
++
++ now_ns = ktime_get_ns();
++
++ bfqq->ttime.last_end_request = now_ns;
++
++ /*
++ * Using us instead of ns, to get a reasonable precision in
++ * computing rate in next check.
++ */
++ delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "delta %uus/%luus max_size %u rate %llu/%llu",
++ delta_us, BFQ_MIN_TT/NSEC_PER_USEC, bfqd->last_rq_max_size,
++ delta_us > 0 ?
++ (USEC_PER_SEC*
++ (u64)((bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us))
++ >>BFQ_RATE_SHIFT :
++ (USEC_PER_SEC*
++ (u64)(bfqd->last_rq_max_size<<BFQ_RATE_SHIFT))>>BFQ_RATE_SHIFT,
++ (USEC_PER_SEC*(u64)(1UL<<(BFQ_RATE_SHIFT-10)))>>BFQ_RATE_SHIFT);
++
++ /*
++ * If the request took rather long to complete, and, according
++ * to the maximum request size recorded, this completion latency
++ * implies that the request was certainly served at a very low
++ * rate (less than 1M sectors/sec), then the whole observation
++ * interval that lasts up to this time instant cannot be a
++ * valid time interval for computing a new peak rate. Invoke
++ * bfq_update_rate_reset to have the following three steps
++ * taken:
++ * - close the observation interval at the last (previous)
++ * request dispatch or completion
++ * - compute rate, if possible, for that observation interval
++ * - reset to zero samples, which will trigger a proper
++ * re-initialization of the observation interval on next
++ * dispatch
++ */
++ if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
++ (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
++ 1UL<<(BFQ_RATE_SHIFT - 10))
++ bfq_update_rate_reset(bfqd, NULL);
++ bfqd->last_completion = now_ns;
++
++ /*
++ * If we are waiting to discover whether the request pattern
++ * of the task associated with the queue is actually
++ * isochronous, and both requisites for this condition to hold
++ * are now satisfied, then compute soft_rt_next_start (see the
++ * comments on the function bfq_bfqq_softrt_next_start()). We
++ * do not compute soft_rt_next_start if bfqq is in interactive
++ * weight raising (see the comments in bfq_bfqq_expire() for
++ * an explanation). We schedule this delayed update when bfqq
++ * expires, if it still has in-flight requests.
++ */
++ if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
++ RB_EMPTY_ROOT(&bfqq->sort_list) &&
++ bfqq->wr_coeff != bfqd->bfq_wr_coeff)
++ bfqq->soft_rt_next_start =
++ bfq_bfqq_softrt_next_start(bfqd, bfqq);
++
++ /*
++ * If this is the in-service queue, check if it needs to be expired,
++ * or if we want to idle in case it has no pending requests.
++ */
++ if (bfqd->in_service_queue == bfqq) {
++ if (bfq_bfqq_must_idle(bfqq)) {
++ if (bfqq->dispatched == 0)
++ bfq_arm_slice_timer(bfqd);
++ /*
++ * If we get here, we do not expire bfqq, even
++ * if bfqq was in budget timeout or had no
++ * more requests (as controlled in the next
++ * conditional instructions). The reason for
++ * not expiring bfqq is as follows.
++ *
++ * Here bfqq->dispatched > 0 holds, but
++ * bfq_bfqq_must_idle() returned true. This
++ * implies that, even if no request arrives
++ * for bfqq before bfqq->dispatched reaches 0,
++ * bfqq will, however, not be expired on the
++ * completion event that causes bfqq->dispatch
++ * to reach zero. In contrast, on this event,
++ * bfqq will start enjoying device idling
++ * (I/O-dispatch plugging).
++ *
++ * But, if we expired bfqq here, bfqq would
++ * not have the chance to enjoy device idling
++ * when bfqq->dispatched finally reaches
++ * zero. This would expose bfqq to violation
++ * of its reserved service guarantees.
++ */
++ return;
++ } else if (bfq_may_expire_for_budg_timeout(bfqq))
++ bfq_bfqq_expire(bfqd, bfqq, false,
++ BFQ_BFQQ_BUDGET_TIMEOUT);
++ else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
++ (bfqq->dispatched == 0 ||
++ !bfq_better_to_idle(bfqq)))
++ bfq_bfqq_expire(bfqd, bfqq, false,
++ BFQ_BFQQ_NO_MORE_REQUESTS);
++ }
++}
++
++static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
++{
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "allocated %d", bfqq->allocated);
++ BUG_ON(!bfqq->allocated);
++ bfqq->allocated--;
++
++ bfq_put_queue(bfqq);
++}
++
++/*
++ * Handle either a requeue or a finish for rq. The things to do are
++ * the same in both cases: all references to rq are to be dropped. In
++ * particular, rq is considered completed from the point of view of
++ * the scheduler.
++ */
++static void bfq_finish_requeue_request(struct request *rq)
++{
++ struct bfq_queue *bfqq;
++ struct bfq_data *bfqd;
++ struct bfq_io_cq *bic;
++
++ BUG_ON(!rq);
++
++ bfqq = RQ_BFQQ(rq);
++
++ /*
++ * Requeue and finish hooks are invoked in blk-mq without
++ * checking whether the involved request is actually still
++ * referenced in the scheduler. To handle this fact, the
++ * following two checks make this function exit in case of
++ * spurious invocations, for which there is nothing to do.
++ *
++ * First, check whether rq has nothing to do with an elevator.
++ */
++ if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
++ return;
++
++ /*
++ * rq either is not associated with any icq, or is an already
++ * requeued request that has not (yet) been re-inserted into
++ * a bfq_queue.
++ */
++ if (!rq->elv.icq || !bfqq)
++ return;
++
++ bic = RQ_BIC(rq);
++ BUG_ON(!bic);
++
++ bfqd = bfqq->bfqd;
++ BUG_ON(!bfqd);
++
++ if (rq->rq_flags & RQF_DISP_LIST) {
++ pr_crit("putting disp rq %p for %d", rq, bfqq->pid);
++ BUG();
++ }
++ BUG_ON(rq->rq_flags & RQF_QUEUED);
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "putting rq %p with %u sects left, STARTED %d",
++ rq, blk_rq_sectors(rq),
++ rq->rq_flags & RQF_STARTED);
++
++ if (rq->rq_flags & RQF_STARTED)
++ bfqg_stats_update_completion(bfqq_group(bfqq),
++ rq->start_time_ns,
++ rq->io_start_time_ns,
++ rq->cmd_flags);
++
++ WARN_ON(blk_rq_sectors(rq) == 0 && !(rq->rq_flags & RQF_STARTED));
++
++ if (likely(rq->rq_flags & RQF_STARTED)) {
++ unsigned long flags;
++
++ spin_lock_irqsave(&bfqd->lock, flags);
++
++ bfq_completed_request(bfqq, bfqd);
++ bfq_finish_requeue_request_body(bfqq);
++
++ spin_unlock_irqrestore(&bfqd->lock, flags);
++ } else {
++ /*
++ * Request rq may be still/already in the scheduler,
++ * in which case we need to remove it (this should
++ * never happen in case of requeue). And we cannot
++ * defer such a check and removal, to avoid
++ * inconsistencies in the time interval from the end
++ * of this function to the start of the deferred work.
++ * This situation seems to occur only in process
++ * context, as a consequence of a merge. In the
++ * current version of the code, this implies that the
++ * lock is held.
++ */
++ BUG_ON(in_interrupt());
++
++ assert_spin_locked(&bfqd->lock);
++ if (!RB_EMPTY_NODE(&rq->rb_node)) {
++ bfq_remove_request(rq->q, rq);
++ bfqg_stats_update_io_remove(bfqq_group(bfqq),
++ rq->cmd_flags);
++ }
++ bfq_finish_requeue_request_body(bfqq);
++ }
++
++ /*
++ * Reset private fields. In case of a requeue, this allows
++ * this function to correctly do nothing if it is spuriously
++ * invoked again on this same request (see the check at the
++ * beginning of the function). Probably, a better general
++ * design would be to prevent blk-mq from invoking the requeue
++ * or finish hooks of an elevator, for a request that is not
++ * referred by that elevator.
++ *
++ * Resetting the following fields would break the
++ * request-insertion logic if rq is re-inserted into a bfq
++ * internal queue, without a re-preparation. Here we assume
++ * that re-insertions of requeued requests, without
++ * re-preparation, can happen only for pass_through or at_head
++ * requests (which are not re-inserted into bfq internal
++ * queues).
++ */
++ rq->elv.priv[0] = NULL;
++ rq->elv.priv[1] = NULL;
++}
++
++/*
++ * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
++ * was the last process referring to that bfqq.
++ */
++static struct bfq_queue *
++bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
++{
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
++
++ if (bfqq_process_refs(bfqq) == 1) {
++ bfqq->pid = current->pid;
++ bfq_clear_bfqq_coop(bfqq);
++ bfq_clear_bfqq_split_coop(bfqq);
++ return bfqq;
++ }
++
++ bic_set_bfqq(bic, NULL, 1);
++
++ bfq_put_cooperator(bfqq);
++
++ bfq_put_queue(bfqq);
++ return NULL;
++}
++
++static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
++ struct bfq_io_cq *bic,
++ struct bio *bio,
++ bool split, bool is_sync,
++ bool *new_queue)
++{
++ struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
++
++ if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
++ return bfqq;
++
++ if (new_queue)
++ *new_queue = true;
++
++ if (bfqq)
++ bfq_put_queue(bfqq);
++ bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
++ BUG_ON(!hlist_unhashed(&bfqq->burst_list_node));
++
++ bic_set_bfqq(bic, bfqq, is_sync);
++ if (split && is_sync) {
++ bfq_log_bfqq(bfqd, bfqq,
++ "get_request: was_in_list %d "
++ "was_in_large_burst %d "
++ "large burst in progress %d",
++ bic->was_in_burst_list,
++ bic->saved_in_large_burst,
++ bfqd->large_burst);
++
++ if ((bic->was_in_burst_list && bfqd->large_burst) ||
++ bic->saved_in_large_burst) {
++ bfq_log_bfqq(bfqd, bfqq,
++ "get_request: marking in "
++ "large burst");
++ bfq_mark_bfqq_in_large_burst(bfqq);
++ } else {
++ bfq_log_bfqq(bfqd, bfqq,
++ "get_request: clearing in "
++ "large burst");
++ bfq_clear_bfqq_in_large_burst(bfqq);
++ if (bic->was_in_burst_list)
++ /*
++ * If bfqq was in the current
++ * burst list before being
++ * merged, then we have to add
++ * it back. And we do not need
++ * to increase burst_size, as
++ * we did not decrement
++ * burst_size when we removed
++ * bfqq from the burst list as
++ * a consequence of a merge
++ * (see comments in
++ * bfq_put_queue). In this
++ * respect, it would be rather
++ * costly to know whether the
++ * current burst list is still
++ * the same burst list from
++ * which bfqq was removed on
++ * the merge. To avoid this
++ * cost, if bfqq was in a
++ * burst list, then we add
++ * bfqq to the current burst
++ * list without any further
++ * check. This can cause
++ * inappropriate insertions,
++ * but rarely enough to not
++ * harm the detection of large
++ * bursts significantly.
++ */
++ hlist_add_head(&bfqq->burst_list_node,
++ &bfqd->burst_list);
++ }
++ bfqq->split_time = jiffies;
++ }
++
++ return bfqq;
++}
++
++/*
++ * Only reset private fields. The actual request preparation will be
++ * performed by bfq_init_rq, when rq is either inserted or merged. See
++ * comments on bfq_init_rq for the reason behind this delayed
++ * preparation.
++*/
++static void bfq_prepare_request(struct request *rq, struct bio *bio)
++{
++ /*
++ * Regardless of whether we have an icq attached, we have to
++ * clear the scheduler pointers, as they might point to
++ * previously allocated bic/bfqq structs.
++ */
++ rq->elv.priv[0] = rq->elv.priv[1] = NULL;
++}
++
++/*
++ * If needed, init rq, allocate bfq data structures associated with
++ * rq, and increment reference counters in the destination bfq_queue
++ * for rq. Return the destination bfq_queue for rq, or NULL is rq is
++ * not associated with any bfq_queue.
++ *
++ * This function is invoked by the functions that perform rq insertion
++ * or merging. One may have expected the above preparation operations
++ * to be performed in bfq_prepare_request, and not delayed to when rq
++ * is inserted or merged. The rationale behind this delayed
++ * preparation is that, after the prepare_request hook is invoked for
++ * rq, rq may still be transformed into a request with no icq, i.e., a
++ * request not associated with any queue. No bfq hook is invoked to
++ * signal this tranformation. As a consequence, should these
++ * preparation operations be performed when the prepare_request hook
++ * is invoked, and should rq be transformed one moment later, bfq
++ * would end up in an inconsistent state, because it would have
++ * incremented some queue counters for an rq destined to
++ * transformation, without any chance to correctly lower these
++ * counters back. In contrast, no transformation can still happen for
++ * rq after rq has been inserted or merged. So, it is safe to execute
++ * these preparation operations when rq is finally inserted or merged.
++ */
++static struct bfq_queue *bfq_init_rq(struct request *rq)
++{
++ struct request_queue *q = rq->q;
++ struct bio *bio = rq->bio;
++ struct bfq_data *bfqd = q->elevator->elevator_data;
++ struct bfq_io_cq *bic;
++ const int is_sync = rq_is_sync(rq);
++ struct bfq_queue *bfqq;
++ bool bfqq_already_existing = false, split = false;
++ bool new_queue = false;
++
++ if (unlikely(!rq->elv.icq))
++ return NULL;
++
++ /*
++ * Assuming that elv.priv[1] is set only if everything is set
++ * for this rq. This holds true, because this function is
++ * invoked only for insertion or merging, and, after such
++ * events, a request cannot be manipulated any longer before
++ * being removed from bfq.
++ */
++ if (rq->elv.priv[1]) {
++ BUG_ON(!(rq->rq_flags & RQF_ELVPRIV));
++ return rq->elv.priv[1];
++ }
++
++ bic = icq_to_bic(rq->elv.icq);
++
++ bfq_check_ioprio_change(bic, bio);
++
++ bfq_bic_update_cgroup(bic, bio);
++
++ bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
++ &new_queue);
++
++ if (likely(!new_queue)) {
++ /* If the queue was seeky for too long, break it apart. */
++ if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
++ BUG_ON(!is_sync);
++ bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
++
++ /* Update bic before losing reference to bfqq */
++ if (bfq_bfqq_in_large_burst(bfqq))
++ bic->saved_in_large_burst = true;
++
++ bfqq = bfq_split_bfqq(bic, bfqq);
++ split = true;
++
++ if (!bfqq)
++ bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
++ true, is_sync,
++ NULL);
++ else
++ bfqq_already_existing = true;
++
++ BUG_ON(!bfqq);
++ BUG_ON(bfqq == &bfqd->oom_bfqq);
++ }
++ }
++
++ bfqq->allocated++;
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "new allocated %d", bfqq->allocated);
++
++ bfqq->ref++;
++ bfq_log_bfqq(bfqd, bfqq, "%p: bfqq %p, %d", rq, bfqq, bfqq->ref);
++
++ rq->elv.priv[0] = bic;
++ rq->elv.priv[1] = bfqq;
++ rq->rq_flags &= ~RQF_DISP_LIST;
++
++ /*
++ * If a bfq_queue has only one process reference, it is owned
++ * by only this bic: we can then set bfqq->bic = bic. in
++ * addition, if the queue has also just been split, we have to
++ * resume its state.
++ */
++ if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
++ bfqq->bic = bic;
++ if (split) {
++ /*
++ * The queue has just been split from a shared
++ * queue: restore the idle window and the
++ * possible weight raising period.
++ */
++ bfq_bfqq_resume_state(bfqq, bfqd, bic,
++ bfqq_already_existing);
++ }
++ }
++
++ if (unlikely(bfq_bfqq_just_created(bfqq)))
++ bfq_handle_burst(bfqd, bfqq);
++
++ rq->rq_flags |= RQF_GOT;
++
++ return bfqq;
++}
++
++static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
++{
++ struct bfq_data *bfqd = bfqq->bfqd;
++ enum bfqq_expiration reason;
++ unsigned long flags;
++
++ BUG_ON(!bfqd);
++ spin_lock_irqsave(&bfqd->lock, flags);
++
++ bfq_log_bfqq(bfqd, bfqq, "handling slice_timer expiration");
++ bfq_clear_bfqq_wait_request(bfqq);
++
++ if (bfqq != bfqd->in_service_queue) {
++ spin_unlock_irqrestore(&bfqd->lock, flags);
++ return;
++ }
++
++ if (bfq_bfqq_budget_timeout(bfqq))
++ /*
++ * Also here the queue can be safely expired
++ * for budget timeout without wasting
++ * guarantees
++ */
++ reason = BFQ_BFQQ_BUDGET_TIMEOUT;
++ else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
++ /*
++ * The queue may not be empty upon timer expiration,
++ * because we may not disable the timer when the
++ * first request of the in-service queue arrives
++ * during disk idling.
++ */
++ reason = BFQ_BFQQ_TOO_IDLE;
++ else
++ goto schedule_dispatch;
++
++ bfq_bfqq_expire(bfqd, bfqq, true, reason);
++
++schedule_dispatch:
++ spin_unlock_irqrestore(&bfqd->lock, flags);
++ bfq_schedule_dispatch(bfqd);
++}
++
++/*
++ * Handler of the expiration of the timer running if the in-service queue
++ * is idling inside its time slice.
++ */
++static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
++{
++ struct bfq_data *bfqd = container_of(timer, struct bfq_data,
++ idle_slice_timer);
++ struct bfq_queue *bfqq = bfqd->in_service_queue;
++
++ bfq_log(bfqd, "expired");
++
++ /*
++ * Theoretical race here: the in-service queue can be NULL or
++ * different from the queue that was idling if a new request
++ * arrives for the current queue and there is a full dispatch
++ * cycle that changes the in-service queue. This can hardly
++ * happen, but in the worst case we just expire a queue too
++ * early.
++ */
++ if (bfqq)
++ bfq_idle_slice_timer_body(bfqq);
++
++ return HRTIMER_NORESTART;
++}
++
++static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
++ struct bfq_queue **bfqq_ptr)
++{
++ struct bfq_group *root_group = bfqd->root_group;
++ struct bfq_queue *bfqq = *bfqq_ptr;
++
++ bfq_log(bfqd, "%p", bfqq);
++ if (bfqq) {
++ bfq_bfqq_move(bfqd, bfqq, root_group);
++ bfq_log_bfqq(bfqd, bfqq, "putting %p, %d",
++ bfqq, bfqq->ref);
++ bfq_put_queue(bfqq);
++ *bfqq_ptr = NULL;
++ }
++}
++
++/*
++ * Release all the bfqg references to its async queues. If we are
++ * deallocating the group these queues may still contain requests, so
++ * we reparent them to the root cgroup (i.e., the only one that will
++ * exist for sure until all the requests on a device are gone).
++ */
++static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
++{
++ int i, j;
++
++ for (i = 0; i < 2; i++)
++ for (j = 0; j < IOPRIO_BE_NR; j++)
++ __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
++
++ __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
++}
++
++/*
++ * See the comments on bfq_limit_depth for the purpose of
++ * the depths set in the function. Return minimum shallow depth we'll use.
++ */
++static unsigned int bfq_update_depths(struct bfq_data *bfqd,
++ struct sbitmap_queue *bt)
++{
++ unsigned int i, j, min_shallow = UINT_MAX;
++
++ /*
++ * In-word depths if no bfq_queue is being weight-raised:
++ * leaving 25% of tags only for sync reads.
++ *
++ * In next formulas, right-shift the value
++ * (1U<<bt->sb.shift), instead of computing directly
++ * (1U<<(bt->sb.shift - something)), to be robust against
++ * any possible value of bt->sb.shift, without having to
++ * limit 'something'.
++ */
++ /* no more than 50% of tags for async I/O */
++ bfqd->word_depths[0][0] = max((1U<<bt->sb.shift)>>1, 1U);
++ /*
++ * no more than 75% of tags for sync writes (25% extra tags
++ * w.r.t. async I/O, to prevent async I/O from starving sync
++ * writes)
++ */
++ bfqd->word_depths[0][1] = max(((1U<<bt->sb.shift) * 3)>>2, 1U);
++
++ /*
++ * In-word depths in case some bfq_queue is being weight-
++ * raised: leaving ~63% of tags for sync reads. This is the
++ * highest percentage for which, in our tests, application
++ * start-up times didn't suffer from any regression due to tag
++ * shortage.
++ */
++ /* no more than ~18% of tags for async I/O */
++ bfqd->word_depths[1][0] = max(((1U<<bt->sb.shift) * 3)>>4, 1U);
++ /* no more than ~37% of tags for sync writes (~20% extra tags) */
++ bfqd->word_depths[1][1] = max(((1U<<bt->sb.shift) * 6)>>4, 1U);
++
++ for (i = 0; i < 2; i++)
++ for (j = 0; j < 2; j++)
++ min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
++
++ return min_shallow;
++}
++
++static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
++{
++ struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
++ struct blk_mq_tags *tags = hctx->sched_tags;
++ unsigned int min_shallow;
++
++ min_shallow = bfq_update_depths(bfqd, &tags->bitmap_tags);
++ sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, min_shallow);
++}
++
++static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
++{
++ bfq_depth_updated(hctx);
++ return 0;
++}
++
++static void bfq_exit_queue(struct elevator_queue *e)
++{
++ struct bfq_data *bfqd = e->elevator_data;
++ struct bfq_queue *bfqq, *n;
++
++ bfq_log(bfqd, "starting ...");
++
++ hrtimer_cancel(&bfqd->idle_slice_timer);
++
++ BUG_ON(bfqd->in_service_queue);
++ BUG_ON(!list_empty(&bfqd->active_list));
++
++ spin_lock_irq(&bfqd->lock);
++ list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
++ bfq_deactivate_bfqq(bfqd, bfqq, false, false);
++ spin_unlock_irq(&bfqd->lock);
++
++ hrtimer_cancel(&bfqd->idle_slice_timer);
++
++ BUG_ON(hrtimer_active(&bfqd->idle_slice_timer));
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ /* release oom-queue reference to root group */
++ bfqg_and_blkg_put(bfqd->root_group);
++
++ blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
++#else
++ spin_lock_irq(&bfqd->lock);
++ bfq_put_async_queues(bfqd, bfqd->root_group);
++ kfree(bfqd->root_group);
++ spin_unlock_irq(&bfqd->lock);
++#endif
++
++ bfq_log(bfqd, "finished ...");
++ kfree(bfqd);
++}
++
++static void bfq_init_root_group(struct bfq_group *root_group,
++ struct bfq_data *bfqd)
++{
++ int i;
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ root_group->entity.parent = NULL;
++ root_group->my_entity = NULL;
++ root_group->bfqd = bfqd;
++#endif
++ root_group->rq_pos_tree = RB_ROOT;
++ for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
++ root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
++ root_group->sched_data.bfq_class_idle_last_service = jiffies;
++}
++
++static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
++{
++ struct bfq_data *bfqd;
++ struct elevator_queue *eq;
++
++ eq = elevator_alloc(q, e);
++ if (!eq)
++ return -ENOMEM;
++
++ bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
++ if (!bfqd) {
++ kobject_put(&eq->kobj);
++ return -ENOMEM;
++ }
++ eq->elevator_data = bfqd;
++
++ spin_lock_irq(q->queue_lock);
++ q->elevator = eq;
++ spin_unlock_irq(q->queue_lock);
++
++ /*
++ * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
++ * Grab a permanent reference to it, so that the normal code flow
++ * will not attempt to free it.
++ */
++ bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
++ bfqd->oom_bfqq.ref++;
++ bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
++ bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
++ bfqd->oom_bfqq.entity.new_weight =
++ bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
++
++ /* oom_bfqq does not participate to bursts */
++ bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
++ /*
++ * Trigger weight initialization, according to ioprio, at the
++ * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
++ * class won't be changed any more.
++ */
++ bfqd->oom_bfqq.entity.prio_changed = 1;
++
++ bfqd->queue = q;
++ INIT_LIST_HEAD(&bfqd->dispatch);
++
++ hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
++ HRTIMER_MODE_REL);
++ bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
++
++ bfqd->queue_weights_tree = RB_ROOT;
++ bfqd->num_groups_with_pending_reqs = 0;
++
++ INIT_LIST_HEAD(&bfqd->active_list);
++ INIT_LIST_HEAD(&bfqd->idle_list);
++ INIT_HLIST_HEAD(&bfqd->burst_list);
++
++ bfqd->hw_tag = -1;
++
++ bfqd->bfq_max_budget = bfq_default_max_budget;
++
++ bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
++ bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
++ bfqd->bfq_back_max = bfq_back_max;
++ bfqd->bfq_back_penalty = bfq_back_penalty;
++ bfqd->bfq_slice_idle = bfq_slice_idle;
++ bfqd->bfq_timeout = bfq_timeout;
++
++ bfqd->bfq_requests_within_timer = 120;
++
++ bfqd->bfq_large_burst_thresh = 8;
++ bfqd->bfq_burst_interval = msecs_to_jiffies(180);
++
++ bfqd->low_latency = true;
++
++ /*
++ * Trade-off between responsiveness and fairness.
++ */
++ bfqd->bfq_wr_coeff = 30;
++ bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
++ bfqd->bfq_wr_max_time = 0;
++ bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
++ bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
++ bfqd->bfq_wr_max_softrt_rate = 7000; /*
++ * Approximate rate required
++ * to playback or record a
++ * high-definition compressed
++ * video.
++ */
++ bfqd->wr_busy_queues = 0;
++
++ /*
++ * Begin by assuming, optimistically, that the device peak
++ * rate is equal to 2/3 of the highest reference rate.
++ */
++ bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
++ ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
++ bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
++
++ spin_lock_init(&bfqd->lock);
++
++ /*
++ * The invocation of the next bfq_create_group_hierarchy
++ * function is the head of a chain of function calls
++ * (bfq_create_group_hierarchy->blkcg_activate_policy->
++ * blk_mq_freeze_queue) that may lead to the invocation of the
++ * has_work hook function. For this reason,
++ * bfq_create_group_hierarchy is invoked only after all
++ * scheduler data has been initialized, apart from the fields
++ * that can be initialized only after invoking
++ * bfq_create_group_hierarchy. This, in particular, enables
++ * has_work to correctly return false. Of course, to avoid
++ * other inconsistencies, the blk-mq stack must then refrain
++ * from invoking further scheduler hooks before this init
++ * function is finished.
++ */
++ bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
++ if (!bfqd->root_group)
++ goto out_free;
++ bfq_init_root_group(bfqd->root_group, bfqd);
++ bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
++
++ wbt_disable_default(q);
++ return 0;
++
++out_free:
++ kfree(bfqd);
++ kobject_put(&eq->kobj);
++ return -ENOMEM;
++}
++
++static void bfq_slab_kill(void)
++{
++ kmem_cache_destroy(bfq_pool);
++}
++
++static int __init bfq_slab_setup(void)
++{
++ bfq_pool = KMEM_CACHE(bfq_queue, 0);
++ if (!bfq_pool)
++ return -ENOMEM;
++ return 0;
++}
++
++static ssize_t bfq_var_show(unsigned int var, char *page)
++{
++ return sprintf(page, "%u\n", var);
++}
++
++static ssize_t bfq_var_store(unsigned long *var, const char *page,
++ size_t count)
++{
++ unsigned long new_val;
++ int ret = kstrtoul(page, 10, &new_val);
++
++ if (ret == 0)
++ *var = new_val;
++
++ return count;
++}
++
++static ssize_t bfq_wr_max_time_show(struct elevator_queue *e, char *page)
++{
++ struct bfq_data *bfqd = e->elevator_data;
++
++ return sprintf(page, "%d\n", bfqd->bfq_wr_max_time > 0 ?
++ jiffies_to_msecs(bfqd->bfq_wr_max_time) :
++ jiffies_to_msecs(bfq_wr_duration(bfqd)));
++}
++
++static ssize_t bfq_weights_show(struct elevator_queue *e, char *page)
++{
++ struct bfq_queue *bfqq;
++ struct bfq_data *bfqd = e->elevator_data;
++ ssize_t num_char = 0;
++
++ num_char += sprintf(page + num_char, "Tot reqs queued %d\n\n",
++ bfqd->queued);
++
++ spin_lock_irq(&bfqd->lock);
++
++ num_char += sprintf(page + num_char, "Active:\n");
++ list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list) {
++ num_char += sprintf(page + num_char,
++ "pid%d: weight %hu, nr_queued %d %d, ",
++ bfqq->pid,
++ bfqq->entity.weight,
++ bfqq->queued[0],
++ bfqq->queued[1]);
++ num_char += sprintf(page + num_char,
++ "dur %d/%u\n",
++ jiffies_to_msecs(
++ jiffies -
++ bfqq->last_wr_start_finish),
++ jiffies_to_msecs(bfqq->wr_cur_max_time));
++ }
++
++ num_char += sprintf(page + num_char, "Idle:\n");
++ list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list) {
++ num_char += sprintf(page + num_char,
++ "pid%d: weight %hu, dur %d/%u\n",
++ bfqq->pid,
++ bfqq->entity.weight,
++ jiffies_to_msecs(jiffies -
++ bfqq->last_wr_start_finish),
++ jiffies_to_msecs(bfqq->wr_cur_max_time));
++ }
++
++ spin_unlock_irq(&bfqd->lock);
++
++ return num_char;
++}
++
++#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
++static ssize_t __FUNC(struct elevator_queue *e, char *page) \
++{ \
++ struct bfq_data *bfqd = e->elevator_data; \
++ u64 __data = __VAR; \
++ if (__CONV == 1) \
++ __data = jiffies_to_msecs(__data); \
++ else if (__CONV == 2) \
++ __data = div_u64(__data, NSEC_PER_MSEC); \
++ return bfq_var_show(__data, (page)); \
++}
++SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
++SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
++SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
++SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
++SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
++SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
++SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
++SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
++SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
++SHOW_FUNCTION(bfq_wr_coeff_show, bfqd->bfq_wr_coeff, 0);
++SHOW_FUNCTION(bfq_wr_rt_max_time_show, bfqd->bfq_wr_rt_max_time, 1);
++SHOW_FUNCTION(bfq_wr_min_idle_time_show, bfqd->bfq_wr_min_idle_time, 1);
++SHOW_FUNCTION(bfq_wr_min_inter_arr_async_show, bfqd->bfq_wr_min_inter_arr_async,
++ 1);
++SHOW_FUNCTION(bfq_wr_max_softrt_rate_show, bfqd->bfq_wr_max_softrt_rate, 0);
++#undef SHOW_FUNCTION
++
++#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
++static ssize_t __FUNC(struct elevator_queue *e, char *page) \
++{ \
++ struct bfq_data *bfqd = e->elevator_data; \
++ u64 __data = __VAR; \
++ __data = div_u64(__data, NSEC_PER_USEC); \
++ return bfq_var_show(__data, (page)); \
++}
++USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
++#undef USEC_SHOW_FUNCTION
++
++#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
++static ssize_t \
++__FUNC(struct elevator_queue *e, const char *page, size_t count) \
++{ \
++ struct bfq_data *bfqd = e->elevator_data; \
++ unsigned long uninitialized_var(__data); \
++ int ret = bfq_var_store(&__data, (page), count); \
++ if (__data < (MIN)) \
++ __data = (MIN); \
++ else if (__data > (MAX)) \
++ __data = (MAX); \
++ if (__CONV == 1) \
++ *(__PTR) = msecs_to_jiffies(__data); \
++ else if (__CONV == 2) \
++ *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
++ else \
++ *(__PTR) = __data; \
++ return ret; \
++}
++STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
++ INT_MAX, 2);
++STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
++ INT_MAX, 2);
++STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
++STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
++ INT_MAX, 0);
++STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
++STORE_FUNCTION(bfq_wr_coeff_store, &bfqd->bfq_wr_coeff, 1, INT_MAX, 0);
++STORE_FUNCTION(bfq_wr_max_time_store, &bfqd->bfq_wr_max_time, 0, INT_MAX, 1);
++STORE_FUNCTION(bfq_wr_rt_max_time_store, &bfqd->bfq_wr_rt_max_time, 0, INT_MAX,
++ 1);
++STORE_FUNCTION(bfq_wr_min_idle_time_store, &bfqd->bfq_wr_min_idle_time, 0,
++ INT_MAX, 1);
++STORE_FUNCTION(bfq_wr_min_inter_arr_async_store,
++ &bfqd->bfq_wr_min_inter_arr_async, 0, INT_MAX, 1);
++STORE_FUNCTION(bfq_wr_max_softrt_rate_store, &bfqd->bfq_wr_max_softrt_rate, 0,
++ INT_MAX, 0);
++#undef STORE_FUNCTION
++
++#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
++static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
++{ \
++ struct bfq_data *bfqd = e->elevator_data; \
++ unsigned long uninitialized_var(__data); \
++ int ret = bfq_var_store(&__data, (page), count); \
++ if (__data < (MIN)) \
++ __data = (MIN); \
++ else if (__data > (MAX)) \
++ __data = (MAX); \
++ *(__PTR) = (u64)__data * NSEC_PER_USEC; \
++ return ret; \
++}
++USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
++ UINT_MAX);
++#undef USEC_STORE_FUNCTION
++
++/* do nothing for the moment */
++static ssize_t bfq_weights_store(struct elevator_queue *e,
++ const char *page, size_t count)
++{
++ return count;
++}
++
++static ssize_t bfq_max_budget_store(struct elevator_queue *e,
++ const char *page, size_t count)
++{
++ struct bfq_data *bfqd = e->elevator_data;
++ unsigned long uninitialized_var(__data);
++ int ret = bfq_var_store(&__data, (page), count);
++
++ if (__data == 0)
++ bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
++ else {
++ if (__data > INT_MAX)
++ __data = INT_MAX;
++ bfqd->bfq_max_budget = __data;
++ }
++
++ bfqd->bfq_user_max_budget = __data;
++
++ return ret;
++}
++
++/*
++ * Leaving this name to preserve name compatibility with cfq
++ * parameters, but this timeout is used for both sync and async.
++ */
++static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
++ const char *page, size_t count)
++{
++ struct bfq_data *bfqd = e->elevator_data;
++ unsigned long uninitialized_var(__data);
++ int ret = bfq_var_store(&__data, (page), count);
++
++ if (__data < 1)
++ __data = 1;
++ else if (__data > INT_MAX)
++ __data = INT_MAX;
++
++ bfqd->bfq_timeout = msecs_to_jiffies(__data);
++ if (bfqd->bfq_user_max_budget == 0)
++ bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
++
++ return ret;
++}
++
++static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
++ const char *page, size_t count)
++{
++ struct bfq_data *bfqd = e->elevator_data;
++ unsigned long uninitialized_var(__data);
++ int ret = bfq_var_store(&__data, (page), count);
++
++ if (__data > 1)
++ __data = 1;
++ if (!bfqd->strict_guarantees && __data == 1
++ && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
++ bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
++
++ bfqd->strict_guarantees = __data;
++
++ return ret;
++}
++
++static ssize_t bfq_low_latency_store(struct elevator_queue *e,
++ const char *page, size_t count)
++{
++ struct bfq_data *bfqd = e->elevator_data;
++ unsigned long uninitialized_var(__data);
++ int ret = bfq_var_store(&__data, (page), count);
++
++ if (__data > 1)
++ __data = 1;
++ if (__data == 0 && bfqd->low_latency != 0)
++ bfq_end_wr(bfqd);
++ bfqd->low_latency = __data;
++
++ return ret;
++}
++
++#define BFQ_ATTR(name) \
++ __ATTR(name, S_IRUGO|S_IWUSR, bfq_##name##_show, bfq_##name##_store)
++
++static struct elv_fs_entry bfq_attrs[] = {
++ BFQ_ATTR(fifo_expire_sync),
++ BFQ_ATTR(fifo_expire_async),
++ BFQ_ATTR(back_seek_max),
++ BFQ_ATTR(back_seek_penalty),
++ BFQ_ATTR(slice_idle),
++ BFQ_ATTR(slice_idle_us),
++ BFQ_ATTR(max_budget),
++ BFQ_ATTR(timeout_sync),
++ BFQ_ATTR(strict_guarantees),
++ BFQ_ATTR(low_latency),
++ BFQ_ATTR(wr_coeff),
++ BFQ_ATTR(wr_max_time),
++ BFQ_ATTR(wr_rt_max_time),
++ BFQ_ATTR(wr_min_idle_time),
++ BFQ_ATTR(wr_min_inter_arr_async),
++ BFQ_ATTR(wr_max_softrt_rate),
++ BFQ_ATTR(weights),
++ __ATTR_NULL
++};
++
++static struct elevator_type iosched_bfq_mq = {
++ .ops.mq = {
++ .limit_depth = bfq_limit_depth,
++ .prepare_request = bfq_prepare_request,
++ .requeue_request = bfq_finish_requeue_request,
++ .finish_request = bfq_finish_requeue_request,
++ .exit_icq = bfq_exit_icq,
++ .insert_requests = bfq_insert_requests,
++ .dispatch_request = bfq_dispatch_request,
++ .next_request = elv_rb_latter_request,
++ .former_request = elv_rb_former_request,
++ .allow_merge = bfq_allow_bio_merge,
++ .bio_merge = bfq_bio_merge,
++ .request_merge = bfq_request_merge,
++ .requests_merged = bfq_requests_merged,
++ .request_merged = bfq_request_merged,
++ .has_work = bfq_has_work,
++ .depth_updated = bfq_depth_updated,
++ .init_hctx = bfq_init_hctx,
++ .init_sched = bfq_init_queue,
++ .exit_sched = bfq_exit_queue,
++ },
++
++ .uses_mq = true,
++ .icq_size = sizeof(struct bfq_io_cq),
++ .icq_align = __alignof__(struct bfq_io_cq),
++ .elevator_attrs = bfq_attrs,
++ .elevator_name = "bfq-mq",
++ .elevator_owner = THIS_MODULE,
++};
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++static struct blkcg_policy blkcg_policy_bfq = {
++ .dfl_cftypes = bfq_blkg_files,
++ .legacy_cftypes = bfq_blkcg_legacy_files,
++
++ .cpd_alloc_fn = bfq_cpd_alloc,
++ .cpd_init_fn = bfq_cpd_init,
++ .cpd_bind_fn = bfq_cpd_init,
++ .cpd_free_fn = bfq_cpd_free,
++
++ .pd_alloc_fn = bfq_pd_alloc,
++ .pd_init_fn = bfq_pd_init,
++ .pd_offline_fn = bfq_pd_offline,
++ .pd_free_fn = bfq_pd_free,
++ .pd_reset_stats_fn = bfq_pd_reset_stats,
++};
++#endif
++
++static int __init bfq_init(void)
++{
++ int ret;
++ char msg[60] = "BFQ I/O-scheduler: v9";
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ ret = blkcg_policy_register(&blkcg_policy_bfq);
++ if (ret)
++ return ret;
++#endif
++
++ ret = -ENOMEM;
++ if (bfq_slab_setup())
++ goto err_pol_unreg;
++
++ /*
++ * Times to load large popular applications for the typical
++ * systems installed on the reference devices (see the
++ * comments before the definition of the next
++ * array). Actually, we use slightly lower values, as the
++ * estimated peak rate tends to be smaller than the actual
++ * peak rate. The reason for this last fact is that estimates
++ * are computed over much shorter time intervals than the long
++ * intervals typically used for benchmarking. Why? First, to
++ * adapt more quickly to variations. Second, because an I/O
++ * scheduler cannot rely on a peak-rate-evaluation workload to
++ * be run for a long time.
++ */
++ ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
++ ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
++
++ ret = elv_register(&iosched_bfq_mq);
++ if (ret)
++ goto slab_kill;
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ strcat(msg, " (with cgroups support)");
++#endif
++ pr_info("%s", msg);
++
++ return 0;
++
++slab_kill:
++ bfq_slab_kill();
++err_pol_unreg:
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ blkcg_policy_unregister(&blkcg_policy_bfq);
++#endif
++ return ret;
++}
++
++static void __exit bfq_exit(void)
++{
++ elv_unregister(&iosched_bfq_mq);
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ blkcg_policy_unregister(&blkcg_policy_bfq);
++#endif
++ bfq_slab_kill();
++}
++
++module_init(bfq_init);
++module_exit(bfq_exit);
++
++MODULE_AUTHOR("Paolo Valente");
++MODULE_LICENSE("GPL");
++MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
+diff --git a/block/bfq-mq.h b/block/bfq-mq.h
+new file mode 100644
+index 000000000000..ceb291132a1a
+--- /dev/null
++++ b/block/bfq-mq.h
+@@ -0,0 +1,1077 @@
++/*
++ * BFQ v9: data structures and common functions prototypes.
++ *
++ * Based on ideas and code from CFQ:
++ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
++ *
++ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
++ * Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
++ */
++
++#ifndef _BFQ_H
++#define _BFQ_H
++
++#include <linux/hrtimer.h>
++#include <linux/blk-cgroup.h>
++
++/* see comments on CONFIG_BFQ_GROUP_IOSCHED in bfq.h */
++#ifdef CONFIG_MQ_BFQ_GROUP_IOSCHED
++#define BFQ_GROUP_IOSCHED_ENABLED
++#endif
++
++#define BFQ_IOPRIO_CLASSES 3
++#define BFQ_CL_IDLE_TIMEOUT (HZ/5)
++
++#define BFQ_MIN_WEIGHT 1
++#define BFQ_MAX_WEIGHT 1000
++#define BFQ_WEIGHT_CONVERSION_COEFF 10
++
++#define BFQ_DEFAULT_QUEUE_IOPRIO 4
++
++#define BFQ_WEIGHT_LEGACY_DFL 100
++#define BFQ_DEFAULT_GRP_IOPRIO 0
++#define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE
++
++/*
++ * Soft real-time applications are extremely more latency sensitive
++ * than interactive ones. Over-raise the weight of the former to
++ * privilege them against the latter.
++ */
++#define BFQ_SOFTRT_WEIGHT_FACTOR 100
++
++struct bfq_entity;
++
++/**
++ * struct bfq_service_tree - per ioprio_class service tree.
++ *
++ * Each service tree represents a B-WF2Q+ scheduler on its own. Each
++ * ioprio_class has its own independent scheduler, and so its own
++ * bfq_service_tree. All the fields are protected by the queue lock
++ * of the containing bfqd.
++ */
++struct bfq_service_tree {
++ /* tree for active entities (i.e., those backlogged) */
++ struct rb_root active;
++ /* tree for idle entities (i.e., not backlogged, with V <= F_i)*/
++ struct rb_root idle;
++
++ struct bfq_entity *first_idle; /* idle entity with minimum F_i */
++ struct bfq_entity *last_idle; /* idle entity with maximum F_i */
++
++ u64 vtime; /* scheduler virtual time */
++ /* scheduler weight sum; active and idle entities contribute to it */
++ unsigned long wsum;
++};
++
++/**
++ * struct bfq_sched_data - multi-class scheduler.
++ *
++ * bfq_sched_data is the basic scheduler queue. It supports three
++ * ioprio_classes, and can be used either as a toplevel queue or as an
++ * intermediate queue in a hierarchical setup.
++ *
++ * The supported ioprio_classes are the same as in CFQ, in descending
++ * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE.
++ * Requests from higher priority queues are served before all the
++ * requests from lower priority queues; among requests of the same
++ * queue requests are served according to B-WF2Q+.
++ *
++ * The schedule is implemented by the service trees, plus the field
++ * @next_in_service, which points to the entity on the active trees
++ * that will be served next, if 1) no changes in the schedule occurs
++ * before the current in-service entity is expired, 2) the in-service
++ * queue becomes idle when it expires, and 3) if the entity pointed by
++ * in_service_entity is not a queue, then the in-service child entity
++ * of the entity pointed by in_service_entity becomes idle on
++ * expiration. This peculiar definition allows for the following
++ * optimization, not yet exploited: while a given entity is still in
++ * service, we already know which is the best candidate for next
++ * service among the other active entitities in the same parent
++ * entity. We can then quickly compare the timestamps of the
++ * in-service entity with those of such best candidate.
++ *
++ * All the fields are protected by the queue lock of the containing
++ * bfqd.
++ */
++struct bfq_sched_data {
++ struct bfq_entity *in_service_entity; /* entity in service */
++ /* head-of-the-line entity in the scheduler (see comments above) */
++ struct bfq_entity *next_in_service;
++ /* array of service trees, one per ioprio_class */
++ struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES];
++ /* last time CLASS_IDLE was served */
++ unsigned long bfq_class_idle_last_service;
++
++};
++
++/**
++ * struct bfq_weight_counter - counter of the number of all active queues
++ * with a given weight.
++ */
++struct bfq_weight_counter {
++ unsigned int weight; /* weight of the queues this counter refers to */
++ unsigned int num_active; /* nr of active queues with this weight */
++ /*
++ * Weights tree member (see bfq_data's @queue_weights_tree)
++ */
++ struct rb_node weights_node;
++};
++
++/**
++ * struct bfq_entity - schedulable entity.
++ *
++ * A bfq_entity is used to represent either a bfq_queue (leaf node in the
++ * cgroup hierarchy) or a bfq_group into the upper level scheduler. Each
++ * entity belongs to the sched_data of the parent group in the cgroup
++ * hierarchy. Non-leaf entities have also their own sched_data, stored
++ * in @my_sched_data.
++ *
++ * Each entity stores independently its priority values; this would
++ * allow different weights on different devices, but this
++ * functionality is not exported to userspace by now. Priorities and
++ * weights are updated lazily, first storing the new values into the
++ * new_* fields, then setting the @prio_changed flag. As soon as
++ * there is a transition in the entity state that allows the priority
++ * update to take place the effective and the requested priority
++ * values are synchronized.
++ *
++ * Unless cgroups are used, the weight value is calculated from the
++ * ioprio to export the same interface as CFQ. When dealing with
++ * ``well-behaved'' queues (i.e., queues that do not spend too much
++ * time to consume their budget and have true sequential behavior, and
++ * when there are no external factors breaking anticipation) the
++ * relative weights at each level of the cgroups hierarchy should be
++ * guaranteed. All the fields are protected by the queue lock of the
++ * containing bfqd.
++ */
++struct bfq_entity {
++ struct rb_node rb_node; /* service_tree member */
++
++ /*
++ * Flag, true if the entity is on a tree (either the active or
++ * the idle one of its service_tree) or is in service.
++ */
++ bool on_st;
++
++ u64 finish; /* B-WF2Q+ finish timestamp (aka F_i) */
++ u64 start; /* B-WF2Q+ start timestamp (aka S_i) */
++
++ /* tree the entity is enqueued into; %NULL if not on a tree */
++ struct rb_root *tree;
++
++ /*
++ * minimum start time of the (active) subtree rooted at this
++ * entity; used for O(log N) lookups into active trees
++ */
++ u64 min_start;
++
++ /* amount of service received during the last service slot */
++ int service;
++
++ /* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */
++ int budget;
++
++ unsigned int weight; /* weight of the queue */
++ unsigned int new_weight; /* next weight if a change is in progress */
++
++ /* original weight, used to implement weight boosting */
++ unsigned int orig_weight;
++
++ /* parent entity, for hierarchical scheduling */
++ struct bfq_entity *parent;
++
++ /*
++ * For non-leaf nodes in the hierarchy, the associated
++ * scheduler queue, %NULL on leaf nodes.
++ */
++ struct bfq_sched_data *my_sched_data;
++ /* the scheduler queue this entity belongs to */
++ struct bfq_sched_data *sched_data;
++
++ /* flag, set to request a weight, ioprio or ioprio_class change */
++ int prio_changed;
++
++ /* flag, set if the entity is counted in groups_with_pending_reqs */
++ bool in_groups_with_pending_reqs;
++};
++
++struct bfq_group;
++
++/**
++ * struct bfq_ttime - per process thinktime stats.
++ */
++struct bfq_ttime {
++ u64 last_end_request; /* completion time of last request */
++
++ u64 ttime_total; /* total process thinktime */
++ unsigned long ttime_samples; /* number of thinktime samples */
++ u64 ttime_mean; /* average process thinktime */
++
++};
++
++/**
++ * struct bfq_queue - leaf schedulable entity.
++ *
++ * A bfq_queue is a leaf request queue; it can be associated with an
++ * io_context or more, if it is async or shared between cooperating
++ * processes. @cgroup holds a reference to the cgroup, to be sure that it
++ * does not disappear while a bfqq still references it (mostly to avoid
++ * races between request issuing and task migration followed by cgroup
++ * destruction).
++ * All the fields are protected by the queue lock of the containing bfqd.
++ */
++struct bfq_queue {
++ /* reference counter */
++ int ref;
++ /* parent bfq_data */
++ struct bfq_data *bfqd;
++
++ /* current ioprio and ioprio class */
++ unsigned short ioprio, ioprio_class;
++ /* next ioprio and ioprio class if a change is in progress */
++ unsigned short new_ioprio, new_ioprio_class;
++
++ /*
++ * Shared bfq_queue if queue is cooperating with one or more
++ * other queues.
++ */
++ struct bfq_queue *new_bfqq;
++ /* request-position tree member (see bfq_group's @rq_pos_tree) */
++ struct rb_node pos_node;
++ /* request-position tree root (see bfq_group's @rq_pos_tree) */
++ struct rb_root *pos_root;
++
++ /* sorted list of pending requests */
++ struct rb_root sort_list;
++ /* if fifo isn't expired, next request to serve */
++ struct request *next_rq;
++ /* number of sync and async requests queued */
++ int queued[2];
++ /* number of requests currently allocated */
++ int allocated;
++ /* number of pending metadata requests */
++ int meta_pending;
++ /* fifo list of requests in sort_list */
++ struct list_head fifo;
++
++ /* entity representing this queue in the scheduler */
++ struct bfq_entity entity;
++
++ /* pointer to the weight counter associated with this queue */
++ struct bfq_weight_counter *weight_counter;
++
++ /* maximum budget allowed from the feedback mechanism */
++ int max_budget;
++ /* budget expiration (in jiffies) */
++ unsigned long budget_timeout;
++
++ /* number of requests on the dispatch list or inside driver */
++ int dispatched;
++
++ unsigned int flags; /* status flags.*/
++
++ /* node for active/idle bfqq list inside parent bfqd */
++ struct list_head bfqq_list;
++
++ /* associated @bfq_ttime struct */
++ struct bfq_ttime ttime;
++
++ /* bit vector: a 1 for each seeky requests in history */
++ u32 seek_history;
++
++ /* node for the device's burst list */
++ struct hlist_node burst_list_node;
++
++ /* position of the last request enqueued */
++ sector_t last_request_pos;
++
++ /* Number of consecutive pairs of request completion and
++ * arrival, such that the queue becomes idle after the
++ * completion, but the next request arrives within an idle
++ * time slice; used only if the queue's IO_bound flag has been
++ * cleared.
++ */
++ unsigned int requests_within_timer;
++
++ /* pid of the process owning the queue, used for logging purposes */
++ pid_t pid;
++
++ /*
++ * Pointer to the bfq_io_cq owning the bfq_queue, set to %NULL
++ * if the queue is shared.
++ */
++ struct bfq_io_cq *bic;
++
++ /* current maximum weight-raising time for this queue */
++ unsigned long wr_cur_max_time;
++ /*
++ * Minimum time instant such that, only if a new request is
++ * enqueued after this time instant in an idle @bfq_queue with
++ * no outstanding requests, then the task associated with the
++ * queue it is deemed as soft real-time (see the comments on
++ * the function bfq_bfqq_softrt_next_start())
++ */
++ unsigned long soft_rt_next_start;
++ /*
++ * Start time of the current weight-raising period if
++ * the @bfq-queue is being weight-raised, otherwise
++ * finish time of the last weight-raising period.
++ */
++ unsigned long last_wr_start_finish;
++ /* factor by which the weight of this queue is multiplied */
++ unsigned int wr_coeff;
++ /*
++ * Time of the last transition of the @bfq_queue from idle to
++ * backlogged.
++ */
++ unsigned long last_idle_bklogged;
++ /*
++ * Cumulative service received from the @bfq_queue since the
++ * last transition from idle to backlogged.
++ */
++ unsigned long service_from_backlogged;
++ /*
++ * Cumulative service received from the @bfq_queue since its
++ * last transition to weight-raised state.
++ */
++ unsigned long service_from_wr;
++ /*
++ * Value of wr start time when switching to soft rt
++ */
++ unsigned long wr_start_at_switch_to_srt;
++
++ unsigned long split_time; /* time of last split */
++ unsigned long first_IO_time; /* time of first I/O for this queue */
++
++ /* max service rate measured so far */
++ u32 max_service_rate;
++ /*
++ * Ratio between the service received by bfqq while it is in
++ * service, and the cumulative service (of requests of other
++ * queues) that may be injected while bfqq is empty but still
++ * in service. To increase precision, the coefficient is
++ * measured in tenths of unit. Here are some example of (1)
++ * ratios, (2) resulting percentages of service injected
++ * w.r.t. to the total service dispatched while bfqq is in
++ * service, and (3) corresponding values of the coefficient:
++ * 1 (50%) -> 10
++ * 2 (33%) -> 20
++ * 10 (9%) -> 100
++ * 9.9 (9%) -> 99
++ * 1.5 (40%) -> 15
++ * 0.5 (66%) -> 5
++ * 0.1 (90%) -> 1
++ *
++ * So, if the coefficient is lower than 10, then
++ * injected service is more than bfqq service.
++ */
++ unsigned int inject_coeff;
++ /* amount of service injected in current service slot */
++ unsigned int injected_service;
++};
++
++/**
++ * struct bfq_io_cq - per (request_queue, io_context) structure.
++ */
++struct bfq_io_cq {
++ /* associated io_cq structure */
++ struct io_cq icq; /* must be the first member */
++ /* array of two process queues, the sync and the async */
++ struct bfq_queue *bfqq[2];
++ /* per (request_queue, blkcg) ioprio */
++ int ioprio;
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ uint64_t blkcg_serial_nr; /* the current blkcg serial */
++#endif
++
++ /*
++ * Snapshot of the has_short_time flag before merging; taken
++ * to remember its value while the queue is merged, so as to
++ * be able to restore it in case of split.
++ */
++ bool saved_has_short_ttime;
++ /*
++ * Same purpose as the previous two fields for the I/O bound
++ * classification of a queue.
++ */
++ bool saved_IO_bound;
++
++ /*
++ * Same purpose as the previous fields for the value of the
++ * field keeping the queue's belonging to a large burst
++ */
++ bool saved_in_large_burst;
++ /*
++ * True if the queue belonged to a burst list before its merge
++ * with another cooperating queue.
++ */
++ bool was_in_burst_list;
++
++ /*
++ * Similar to previous fields: save wr information.
++ */
++ unsigned long saved_wr_coeff;
++ unsigned long saved_last_wr_start_finish;
++ unsigned long saved_wr_start_at_switch_to_srt;
++ unsigned int saved_wr_cur_max_time;
++ struct bfq_ttime saved_ttime;
++};
++
++/**
++ * struct bfq_data - per-device data structure.
++ *
++ * All the fields are protected by @lock.
++ */
++struct bfq_data {
++ /* device request queue */
++ struct request_queue *queue;
++ /* dispatch queue */
++ struct list_head dispatch;
++
++ /* root bfq_group for the device */
++ struct bfq_group *root_group;
++
++ /*
++ * rbtree of weight counters of @bfq_queues, sorted by
++ * weight. Used to keep track of whether all @bfq_queues have
++ * the same weight. The tree contains one counter for each
++ * distinct weight associated to some active and not
++ * weight-raised @bfq_queue (see the comments to the functions
++ * bfq_weights_tree_[add|remove] for further details).
++ */
++ struct rb_root queue_weights_tree;
++
++ /*
++ * Number of groups with at least one descendant process that
++ * has at least one request waiting for completion. Note that
++ * this accounts for also requests already dispatched, but not
++ * yet completed. Therefore this number of groups may differ
++ * (be larger) than the number of active groups, as a group is
++ * considered active only if its corresponding entity has
++ * descendant queues with at least one request queued. This
++ * number is used to decide whether a scenario is symmetric.
++ * For a detailed explanation see comments on the computation
++ * of the variable asymmetric_scenario in the function
++ * bfq_better_to_idle().
++ *
++ * However, it is hard to compute this number exactly, for
++ * groups with multiple descendant processes. Consider a group
++ * that is inactive, i.e., that has no descendant process with
++ * pending I/O inside BFQ queues. Then suppose that
++ * num_groups_with_pending_reqs is still accounting for this
++ * group, because the group has descendant processes with some
++ * I/O request still in flight. num_groups_with_pending_reqs
++ * should be decremented when the in-flight request of the
++ * last descendant process is finally completed (assuming that
++ * nothing else has changed for the group in the meantime, in
++ * terms of composition of the group and active/inactive state of child
++ * groups and processes). To accomplish this, an additional
++ * pending-request counter must be added to entities, and must
++ * be updated correctly. To avoid this additional field and operations,
++ * we resort to the following tradeoff between simplicity and
++ * accuracy: for an inactive group that is still counted in
++ * num_groups_with_pending_reqs, we decrement
++ * num_groups_with_pending_reqs when the first descendant
++ * process of the group remains with no request waiting for
++ * completion.
++ *
++ * Even this simpler decrement strategy requires a little
++ * carefulness: to avoid multiple decrements, we flag a group,
++ * more precisely an entity representing a group, as still
++ * counted in num_groups_with_pending_reqs when it becomes
++ * inactive. Then, when the first descendant queue of the
++ * entity remains with no request waiting for completion,
++ * num_groups_with_pending_reqs is decremented, and this flag
++ * is reset. After this flag is reset for the entity,
++ * num_groups_with_pending_reqs won't be decremented any
++ * longer in case a new descendant queue of the entity remains
++ * with no request waiting for completion.
++ */
++ unsigned int num_groups_with_pending_reqs;
++
++ /*
++ * Per-class (RT, BE, IDLE) number of bfq_queues containing
++ * requests (including the queue in service, even if it is
++ * idling).
++ */
++ unsigned int busy_queues[3];
++ /* number of weight-raised busy @bfq_queues */
++ int wr_busy_queues;
++ /* number of queued requests */
++ int queued;
++ /* number of requests dispatched and waiting for completion */
++ int rq_in_driver;
++
++ /*
++ * Maximum number of requests in driver in the last
++ * @hw_tag_samples completed requests.
++ */
++ int max_rq_in_driver;
++ /* number of samples used to calculate hw_tag */
++ int hw_tag_samples;
++ /* flag set to one if the driver is showing a queueing behavior */
++ int hw_tag;
++
++ /* number of budgets assigned */
++ int budgets_assigned;
++
++ /*
++ * Timer set when idling (waiting) for the next request from
++ * the queue in service.
++ */
++ struct hrtimer idle_slice_timer;
++
++ /* bfq_queue in service */
++ struct bfq_queue *in_service_queue;
++
++ /* on-disk position of the last served request */
++ sector_t last_position;
++
++ /* position of the last served request for the in-service queue */
++ sector_t in_serv_last_pos;
++
++ /* time of last request completion (ns) */
++ u64 last_completion;
++
++ /* time of first rq dispatch in current observation interval (ns) */
++ u64 first_dispatch;
++ /* time of last rq dispatch in current observation interval (ns) */
++ u64 last_dispatch;
++
++ /* beginning of the last budget */
++ ktime_t last_budget_start;
++ /* beginning of the last idle slice */
++ ktime_t last_idling_start;
++
++ /* number of samples in current observation interval */
++ int peak_rate_samples;
++ /* num of samples of seq dispatches in current observation interval */
++ u32 sequential_samples;
++ /* total num of sectors transferred in current observation interval */
++ u64 tot_sectors_dispatched;
++ /* max rq size seen during current observation interval (sectors) */
++ u32 last_rq_max_size;
++ /* time elapsed from first dispatch in current observ. interval (us) */
++ u64 delta_from_first;
++ /*
++ * Current estimate of the device peak rate, measured in
++ * [(sectors/usec) / 2^BFQ_RATE_SHIFT]. The left-shift by
++ * BFQ_RATE_SHIFT is performed to increase precision in
++ * fixed-point calculations.
++ */
++ u32 peak_rate;
++
++ /* maximum budget allotted to a bfq_queue before rescheduling */
++ int bfq_max_budget;
++
++ /* list of all the bfq_queues active on the device */
++ struct list_head active_list;
++ /* list of all the bfq_queues idle on the device */
++ struct list_head idle_list;
++
++ /*
++ * Timeout for async/sync requests; when it fires, requests
++ * are served in fifo order.
++ */
++ u64 bfq_fifo_expire[2];
++ /* weight of backward seeks wrt forward ones */
++ unsigned int bfq_back_penalty;
++ /* maximum allowed backward seek */
++ unsigned int bfq_back_max;
++ /* maximum idling time */
++ u32 bfq_slice_idle;
++
++ /* user-configured max budget value (0 for auto-tuning) */
++ int bfq_user_max_budget;
++ /*
++ * Timeout for bfq_queues to consume their budget; used to
++ * prevent seeky queues from imposing long latencies to
++ * sequential or quasi-sequential ones (this also implies that
++ * seeky queues cannot receive guarantees in the service
++ * domain; after a timeout they are charged for the time they
++ * have been in service, to preserve fairness among them, but
++ * without service-domain guarantees).
++ */
++ unsigned int bfq_timeout;
++
++ /*
++ * Number of consecutive requests that must be issued within
++ * the idle time slice to set again idling to a queue which
++ * was marked as non-I/O-bound (see the definition of the
++ * IO_bound flag for further details).
++ */
++ unsigned int bfq_requests_within_timer;
++
++ /*
++ * Force device idling whenever needed to provide accurate
++ * service guarantees, without caring about throughput
++ * issues. CAVEAT: this may even increase latencies, in case
++ * of useless idling for processes that did stop doing I/O.
++ */
++ bool strict_guarantees;
++
++ /*
++ * Last time at which a queue entered the current burst of
++ * queues being activated shortly after each other; for more
++ * details about this and the following parameters related to
++ * a burst of activations, see the comments on the function
++ * bfq_handle_burst.
++ */
++ unsigned long last_ins_in_burst;
++ /*
++ * Reference time interval used to decide whether a queue has
++ * been activated shortly after @last_ins_in_burst.
++ */
++ unsigned long bfq_burst_interval;
++ /* number of queues in the current burst of queue activations */
++ int burst_size;
++
++ /* common parent entity for the queues in the burst */
++ struct bfq_entity *burst_parent_entity;
++ /* Maximum burst size above which the current queue-activation
++ * burst is deemed as 'large'.
++ */
++ unsigned long bfq_large_burst_thresh;
++ /* true if a large queue-activation burst is in progress */
++ bool large_burst;
++ /*
++ * Head of the burst list (as for the above fields, more
++ * details in the comments on the function bfq_handle_burst).
++ */
++ struct hlist_head burst_list;
++
++ /* if set to true, low-latency heuristics are enabled */
++ bool low_latency;
++ /*
++ * Maximum factor by which the weight of a weight-raised queue
++ * is multiplied.
++ */
++ unsigned int bfq_wr_coeff;
++ /* maximum duration of a weight-raising period (jiffies) */
++ unsigned int bfq_wr_max_time;
++
++ /* Maximum weight-raising duration for soft real-time processes */
++ unsigned int bfq_wr_rt_max_time;
++ /*
++ * Minimum idle period after which weight-raising may be
++ * reactivated for a queue (in jiffies).
++ */
++ unsigned int bfq_wr_min_idle_time;
++ /*
++ * Minimum period between request arrivals after which
++ * weight-raising may be reactivated for an already busy async
++ * queue (in jiffies).
++ */
++ unsigned long bfq_wr_min_inter_arr_async;
++
++ /* Max service-rate for a soft real-time queue, in sectors/sec */
++ unsigned int bfq_wr_max_softrt_rate;
++ /*
++ * Cached value of the product ref_rate*ref_wr_duration, used
++ * for computing the maximum duration of weight raising
++ * automatically.
++ */
++ u64 rate_dur_prod;
++
++ /* fallback dummy bfqq for extreme OOM conditions */
++ struct bfq_queue oom_bfqq;
++
++ spinlock_t lock;
++
++ /*
++ * bic associated with the task issuing current bio for
++ * merging. This and the next field are used as a support to
++ * be able to perform the bic lookup, needed by bio-merge
++ * functions, before the scheduler lock is taken, and thus
++ * avoid taking the request-queue lock while the scheduler
++ * lock is being held.
++ */
++ struct bfq_io_cq *bio_bic;
++ /* bfqq associated with the task issuing current bio for merging */
++ struct bfq_queue *bio_bfqq;
++ /* Extra flag used only for TESTING */
++ bool bio_bfqq_set;
++
++ /*
++ * Depth limits used in bfq_limit_depth (see comments on the
++ * function)
++ */
++ unsigned int word_depths[2][2];
++};
++
++enum bfqq_state_flags {
++ BFQ_BFQQ_FLAG_just_created = 0, /* queue just allocated */
++ BFQ_BFQQ_FLAG_busy, /* has requests or is in service */
++ BFQ_BFQQ_FLAG_wait_request, /* waiting for a request */
++ BFQ_BFQQ_FLAG_non_blocking_wait_rq, /*
++ * waiting for a request
++ * without idling the device
++ */
++ BFQ_BFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
++ BFQ_BFQQ_FLAG_has_short_ttime, /* queue has a short think time */
++ BFQ_BFQQ_FLAG_sync, /* synchronous queue */
++ BFQ_BFQQ_FLAG_IO_bound, /*
++ * bfqq has timed-out at least once
++ * having consumed at most 2/10 of
++ * its budget
++ */
++ BFQ_BFQQ_FLAG_in_large_burst, /*
++ * bfqq activated in a large burst,
++ * see comments to bfq_handle_burst.
++ */
++ BFQ_BFQQ_FLAG_softrt_update, /*
++ * may need softrt-next-start
++ * update
++ */
++ BFQ_BFQQ_FLAG_coop, /* bfqq is shared */
++ BFQ_BFQQ_FLAG_split_coop /* shared bfqq will be split */
++};
++
++#define BFQ_BFQQ_FNS(name) \
++static void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
++{ \
++ (bfqq)->flags |= (1 << BFQ_BFQQ_FLAG_##name); \
++} \
++static void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
++{ \
++ (bfqq)->flags &= ~(1 << BFQ_BFQQ_FLAG_##name); \
++} \
++static int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
++{ \
++ return ((bfqq)->flags & (1 << BFQ_BFQQ_FLAG_##name)) != 0; \
++}
++
++BFQ_BFQQ_FNS(just_created);
++BFQ_BFQQ_FNS(busy);
++BFQ_BFQQ_FNS(wait_request);
++BFQ_BFQQ_FNS(non_blocking_wait_rq);
++BFQ_BFQQ_FNS(fifo_expire);
++BFQ_BFQQ_FNS(has_short_ttime);
++BFQ_BFQQ_FNS(sync);
++BFQ_BFQQ_FNS(IO_bound);
++BFQ_BFQQ_FNS(in_large_burst);
++BFQ_BFQQ_FNS(coop);
++BFQ_BFQQ_FNS(split_coop);
++BFQ_BFQQ_FNS(softrt_update);
++#undef BFQ_BFQQ_FNS
++
++/* Logging facilities. */
++#ifdef CONFIG_BFQ_REDIRECT_TO_CONSOLE
++
++static const char *checked_dev_name(const struct device *dev)
++{
++ static const char nodev[] = "nodev";
++
++ if (dev)
++ return dev_name(dev);
++
++ return nodev;
++}
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
++static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg);
++
++#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \
++ pr_crit("%s bfq%d%c %s [%s] " fmt "\n", \
++ checked_dev_name((bfqd)->queue->backing_dev_info->dev), \
++ (bfqq)->pid, \
++ bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
++ bfqq_group(bfqq)->blkg_path, __func__, ##args); \
++} while (0)
++
++#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do { \
++ pr_crit("%s %s [%s] " fmt "\n", \
++ checked_dev_name((bfqd)->queue->backing_dev_info->dev), \
++ bfqg->blkg_path, __func__, ##args); \
++} while (0)
++
++#else /* BFQ_GROUP_IOSCHED_ENABLED */
++
++#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \
++ pr_crit("%s bfq%d%c [%s] " fmt "\n", \
++ checked_dev_name((bfqd)->queue->backing_dev_info->dev), \
++ (bfqq)->pid, bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
++ __func__, ##args)
++#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do {} while (0)
++
++#endif /* BFQ_GROUP_IOSCHED_ENABLED */
++
++#define bfq_log(bfqd, fmt, args...) \
++ pr_crit("%s bfq [%s] " fmt "\n", \
++ checked_dev_name((bfqd)->queue->backing_dev_info->dev), \
++ __func__, ##args)
++
++#else /* CONFIG_BFQ_REDIRECT_TO_CONSOLE */
++
++#if !defined(CONFIG_BLK_DEV_IO_TRACE)
++
++/* Avoid possible "unused-variable" warning. See commit message. */
++
++#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) ((void) (bfqq))
++
++#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) ((void) (bfqg))
++
++#define bfq_log(bfqd, fmt, args...) do {} while (0)
++
++#else /* CONFIG_BLK_DEV_IO_TRACE */
++
++#include <linux/blktrace_api.h>
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
++static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg);
++
++#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \
++ blk_add_trace_msg((bfqd)->queue, "bfq%d%c %s [%s] " fmt, \
++ (bfqq)->pid, \
++ bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
++ bfqq_group(bfqq)->blkg_path, __func__, ##args); \
++} while (0)
++
++#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do { \
++ blk_add_trace_msg((bfqd)->queue, "%s [%s] " fmt, bfqg->blkg_path, \
++ __func__, ##args);\
++} while (0)
++
++#else /* BFQ_GROUP_IOSCHED_ENABLED */
++
++#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \
++ blk_add_trace_msg((bfqd)->queue, "bfq%d%c [%s] " fmt, (bfqq)->pid, \
++ bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
++ __func__, ##args)
++#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do {} while (0)
++
++#endif /* BFQ_GROUP_IOSCHED_ENABLED */
++
++#define bfq_log(bfqd, fmt, args...) \
++ blk_add_trace_msg((bfqd)->queue, "bfq [%s] " fmt, __func__, ##args)
++
++#endif /* CONFIG_BLK_DEV_IO_TRACE */
++#endif /* CONFIG_BFQ_REDIRECT_TO_CONSOLE */
++
++/* Expiration reasons. */
++enum bfqq_expiration {
++ BFQ_BFQQ_TOO_IDLE = 0, /*
++ * queue has been idling for
++ * too long
++ */
++ BFQ_BFQQ_BUDGET_TIMEOUT, /* budget took too long to be used */
++ BFQ_BFQQ_BUDGET_EXHAUSTED, /* budget consumed */
++ BFQ_BFQQ_NO_MORE_REQUESTS, /* the queue has no more requests */
++ BFQ_BFQQ_PREEMPTED /* preemption in progress */
++};
++
++
++struct bfqg_stats {
++#if defined(BFQ_GROUP_IOSCHED_ENABLED) && defined(CONFIG_DEBUG_BLK_CGROUP)
++ /* number of ios merged */
++ struct blkg_rwstat merged;
++ /* total time spent on device in ns, may not be accurate w/ queueing */
++ struct blkg_rwstat service_time;
++ /* total time spent waiting in scheduler queue in ns */
++ struct blkg_rwstat wait_time;
++ /* number of IOs queued up */
++ struct blkg_rwstat queued;
++ /* total disk time and nr sectors dispatched by this group */
++ struct blkg_stat time;
++ /* sum of number of ios queued across all samples */
++ struct blkg_stat avg_queue_size_sum;
++ /* count of samples taken for average */
++ struct blkg_stat avg_queue_size_samples;
++ /* how many times this group has been removed from service tree */
++ struct blkg_stat dequeue;
++ /* total time spent waiting for it to be assigned a timeslice. */
++ struct blkg_stat group_wait_time;
++ /* time spent idling for this blkcg_gq */
++ struct blkg_stat idle_time;
++ /* total time with empty current active q with other requests queued */
++ struct blkg_stat empty_time;
++ /* fields after this shouldn't be cleared on stat reset */
++ u64 start_group_wait_time;
++ u64 start_idle_time;
++ u64 start_empty_time;
++ uint16_t flags;
++#endif /* BFQ_GROUP_IOSCHED_ENABLED && CONFIG_DEBUG_BLK_CGROUP */
++};
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++/*
++ * struct bfq_group_data - per-blkcg storage for the blkio subsystem.
++ *
++ * @ps: @blkcg_policy_storage that this structure inherits
++ * @weight: weight of the bfq_group
++ */
++struct bfq_group_data {
++ /* must be the first member */
++ struct blkcg_policy_data pd;
++
++ unsigned int weight;
++};
++
++/**
++ * struct bfq_group - per (device, cgroup) data structure.
++ * @entity: schedulable entity to insert into the parent group sched_data.
++ * @sched_data: own sched_data, to contain child entities (they may be
++ * both bfq_queues and bfq_groups).
++ * @bfqd: the bfq_data for the device this group acts upon.
++ * @async_bfqq: array of async queues for all the tasks belonging to
++ * the group, one queue per ioprio value per ioprio_class,
++ * except for the idle class that has only one queue.
++ * @async_idle_bfqq: async queue for the idle class (ioprio is ignored).
++ * @my_entity: pointer to @entity, %NULL for the toplevel group; used
++ * to avoid too many special cases during group creation/
++ * migration.
++ * @active_entities: number of active entities belonging to the group;
++ * unused for the root group. Used to know whether there
++ * are groups with more than one active @bfq_entity
++ * (see the comments to the function
++ * bfq_bfqq_may_idle()).
++ * @rq_pos_tree: rbtree sorted by next_request position, used when
++ * determining if two or more queues have interleaving
++ * requests (see bfq_find_close_cooperator()).
++ *
++ * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup
++ * there is a set of bfq_groups, each one collecting the lower-level
++ * entities belonging to the group that are acting on the same device.
++ *
++ * Locking works as follows:
++ * o @bfqd is protected by the queue lock, RCU is used to access it
++ * from the readers.
++ * o All the other fields are protected by the @bfqd queue lock.
++ */
++struct bfq_group {
++ /* must be the first member */
++ struct blkg_policy_data pd;
++
++ /* cached path for this blkg (see comments in bfq_bic_update_cgroup) */
++ char blkg_path[128];
++
++ /* reference counter (see comments in bfq_bic_update_cgroup) */
++ int ref;
++
++ struct bfq_entity entity;
++ struct bfq_sched_data sched_data;
++
++ void *bfqd;
++
++ struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
++ struct bfq_queue *async_idle_bfqq;
++
++ struct bfq_entity *my_entity;
++
++ int active_entities;
++
++ struct rb_root rq_pos_tree;
++
++ struct bfqg_stats stats;
++};
++
++#else
++struct bfq_group {
++ struct bfq_sched_data sched_data;
++
++ struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
++ struct bfq_queue *async_idle_bfqq;
++
++ struct rb_root rq_pos_tree;
++};
++#endif
++
++static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
++
++static unsigned int bfq_class_idx(struct bfq_entity *entity)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++
++ return bfqq ? bfqq->ioprio_class - 1 :
++ BFQ_DEFAULT_GRP_CLASS - 1;
++}
++
++static unsigned int bfq_tot_busy_queues(struct bfq_data *bfqd)
++{
++ return bfqd->busy_queues[0] + bfqd->busy_queues[1] +
++ bfqd->busy_queues[2];
++}
++
++static struct bfq_service_tree *
++bfq_entity_service_tree(struct bfq_entity *entity)
++{
++ struct bfq_sched_data *sched_data = entity->sched_data;
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++ unsigned int idx = bfq_class_idx(entity);
++
++ BUG_ON(idx >= BFQ_IOPRIO_CLASSES);
++ BUG_ON(sched_data == NULL);
++
++ if (bfqq)
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "%p %d",
++ sched_data->service_tree + idx, idx);
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ else {
++ struct bfq_group *bfqg =
++ container_of(entity, struct bfq_group, entity);
++
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++ "%p %d",
++ sched_data->service_tree + idx, idx);
++ }
++#endif
++ return sched_data->service_tree + idx;
++}
++
++static struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
++{
++ return bic->bfqq[is_sync];
++}
++
++static void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq,
++ bool is_sync)
++{
++ bic->bfqq[is_sync] = bfqq;
++}
++
++static struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
++{
++ return bic->icq.q->elevator->elevator_data;
++}
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++
++static struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
++{
++ struct bfq_entity *group_entity = bfqq->entity.parent;
++
++ if (!group_entity)
++ group_entity = &bfqq->bfqd->root_group->entity;
++
++ return container_of(group_entity, struct bfq_group, entity);
++}
++
++#else
++
++static struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
++{
++ return bfqq->bfqd->root_group;
++}
++
++#endif
++
++static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio);
++static void bfq_put_queue(struct bfq_queue *bfqq);
++static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
++ struct bio *bio, bool is_sync,
++ struct bfq_io_cq *bic);
++static void bfq_end_wr_async_queues(struct bfq_data *bfqd,
++ struct bfq_group *bfqg);
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
++#endif
++static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
++
++#endif /* _BFQ_H */
+diff --git a/block/bfq-sched.c b/block/bfq-sched.c
+new file mode 100644
+index 000000000000..7a4923231106
+--- /dev/null
++++ b/block/bfq-sched.c
+@@ -0,0 +1,2077 @@
++/*
++ * BFQ: Hierarchical B-WF2Q+ scheduler.
++ *
++ * Based on ideas and code from CFQ:
++ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
++ *
++ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
++ * Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2016 Paolo Valente <paolo.valente@linaro.org>
++ */
++
++static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
++
++/**
++ * bfq_gt - compare two timestamps.
++ * @a: first ts.
++ * @b: second ts.
++ *
++ * Return @a > @b, dealing with wrapping correctly.
++ */
++static int bfq_gt(u64 a, u64 b)
++{
++ return (s64)(a - b) > 0;
++}
++
++static struct bfq_entity *bfq_root_active_entity(struct rb_root *tree)
++{
++ struct rb_node *node = tree->rb_node;
++
++ return rb_entry(node, struct bfq_entity, rb_node);
++}
++
++static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
++ bool expiration);
++
++static bool bfq_update_parent_budget(struct bfq_entity *next_in_service);
++
++/**
++ * bfq_update_next_in_service - update sd->next_in_service
++ * @sd: sched_data for which to perform the update.
++ * @new_entity: if not NULL, pointer to the entity whose activation,
++ * requeueing or repositionig triggered the invocation of
++ * this function.
++ * @expiration: id true, this function is being invoked after the
++ * expiration of the in-service entity
++ *
++ * This function is called to update sd->next_in_service, which, in
++ * its turn, may change as a consequence of the insertion or
++ * extraction of an entity into/from one of the active trees of
++ * sd. These insertions/extractions occur as a consequence of
++ * activations/deactivations of entities, with some activations being
++ * 'true' activations, and other activations being requeueings (i.e.,
++ * implementing the second, requeueing phase of the mechanism used to
++ * reposition an entity in its active tree; see comments on
++ * __bfq_activate_entity and __bfq_requeue_entity for details). In
++ * both the last two activation sub-cases, new_entity points to the
++ * just activated or requeued entity.
++ *
++ * Returns true if sd->next_in_service changes in such a way that
++ * entity->parent may become the next_in_service for its parent
++ * entity.
++ */
++static bool bfq_update_next_in_service(struct bfq_sched_data *sd,
++ struct bfq_entity *new_entity,
++ bool expiration)
++{
++ struct bfq_entity *next_in_service = sd->next_in_service;
++ struct bfq_queue *bfqq;
++ bool parent_sched_may_change = false;
++ bool change_without_lookup = false;
++
++ /*
++ * If this update is triggered by the activation, requeueing
++ * or repositiong of an entity that does not coincide with
++ * sd->next_in_service, then a full lookup in the active tree
++ * can be avoided. In fact, it is enough to check whether the
++ * just-modified entity has the same priority as
++ * sd->next_in_service, is eligible and has a lower virtual
++ * finish time than sd->next_in_service. If this compound
++ * condition holds, then the new entity becomes the new
++ * next_in_service. Otherwise no change is needed.
++ */
++ if (new_entity && new_entity != sd->next_in_service) {
++ /*
++ * Flag used to decide whether to replace
++ * sd->next_in_service with new_entity. Tentatively
++ * set to true, and left as true if
++ * sd->next_in_service is NULL.
++ */
++ change_without_lookup = true;
++
++ /*
++ * If there is already a next_in_service candidate
++ * entity, then compare timestamps to decide whether
++ * to replace sd->service_tree with new_entity.
++ */
++ if (next_in_service) {
++ unsigned int new_entity_class_idx =
++ bfq_class_idx(new_entity);
++ struct bfq_service_tree *st =
++ sd->service_tree + new_entity_class_idx;
++
++ change_without_lookup =
++ (new_entity_class_idx ==
++ bfq_class_idx(next_in_service)
++ &&
++ !bfq_gt(new_entity->start, st->vtime)
++ &&
++ bfq_gt(next_in_service->finish,
++ new_entity->finish));
++ }
++
++ if (change_without_lookup) {
++ next_in_service = new_entity;
++ bfqq = bfq_entity_to_bfqq(next_in_service);
++
++ if (bfqq)
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "chose without lookup");
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ else {
++ struct bfq_group *bfqg =
++ container_of(next_in_service,
++ struct bfq_group, entity);
++
++ bfq_log_bfqg((struct bfq_data*)bfqg->bfqd, bfqg,
++ "chose without lookup");
++ }
++#endif
++ }
++ }
++
++ if (!change_without_lookup) /* lookup needed */
++ next_in_service = bfq_lookup_next_entity(sd, expiration);
++
++ if (next_in_service) {
++ bool new_budget_triggers_change =
++ bfq_update_parent_budget(next_in_service);
++
++ parent_sched_may_change = !sd->next_in_service ||
++ new_budget_triggers_change;
++ }
++
++ sd->next_in_service = next_in_service;
++
++ if (!next_in_service)
++ return parent_sched_may_change;
++
++ bfqq = bfq_entity_to_bfqq(next_in_service);
++ if (bfqq)
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "chosen this queue");
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ else {
++ struct bfq_group *bfqg =
++ container_of(next_in_service,
++ struct bfq_group, entity);
++
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++ "chosen this entity");
++ }
++#endif
++ return parent_sched_may_change;
++}
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++/* both next loops stop at one of the child entities of the root group */
++#define for_each_entity(entity) \
++ for (; entity ; entity = entity->parent)
++
++/*
++ * For each iteration, compute parent in advance, so as to be safe if
++ * entity is deallocated during the iteration. Such a deallocation may
++ * happen as a consequence of a bfq_put_queue that frees the bfq_queue
++ * containing entity.
++ */
++#define for_each_entity_safe(entity, parent) \
++ for (; entity && ({ parent = entity->parent; 1; }); entity = parent)
++
++/*
++ * Returns true if this budget changes may let next_in_service->parent
++ * become the next_in_service entity for its parent entity.
++ */
++static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
++{
++ struct bfq_entity *bfqg_entity;
++ struct bfq_group *bfqg;
++ struct bfq_sched_data *group_sd;
++ bool ret = false;
++
++ BUG_ON(!next_in_service);
++
++ group_sd = next_in_service->sched_data;
++
++ bfqg = container_of(group_sd, struct bfq_group, sched_data);
++ /*
++ * bfq_group's my_entity field is not NULL only if the group
++ * is not the root group. We must not touch the root entity
++ * as it must never become an in-service entity.
++ */
++ bfqg_entity = bfqg->my_entity;
++ if (bfqg_entity) {
++ if (bfqg_entity->budget > next_in_service->budget)
++ ret = true;
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++ "old budg: %d, new budg: %d",
++ bfqg_entity->budget, next_in_service->budget);
++ bfqg_entity->budget = next_in_service->budget;
++ }
++
++ return ret;
++}
++
++/*
++ * This function tells whether entity stops being a candidate for next
++ * service, according to the restrictive definition of the field
++ * next_in_service. In particular, this function is invoked for an
++ * entity that is about to be set in service.
++ *
++ * If entity is a queue, then the entity is no longer a candidate for
++ * next service according to the that definition, because entity is
++ * about to become the in-service queue. This function then returns
++ * true if entity is a queue.
++ *
++ * In contrast, entity could still be a candidate for next service if
++ * it is not a queue, and has more than one active child. In fact,
++ * even if one of its children is about to be set in service, other
++ * active children may still be the next to serve, for the parent
++ * entity, even according to the above definition. As a consequence, a
++ * non-queue entity is not a candidate for next-service only if it has
++ * only one active child. And only if this condition holds, then this
++ * function returns true for a non-queue entity.
++ */
++static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
++{
++ struct bfq_group *bfqg;
++
++ if (bfq_entity_to_bfqq(entity))
++ return true;
++
++ bfqg = container_of(entity, struct bfq_group, entity);
++
++ BUG_ON(bfqg == ((struct bfq_data *)(bfqg->bfqd))->root_group);
++ BUG_ON(bfqg->active_entities == 0);
++ /*
++ * The field active_entities does not always contain the
++ * actual number of active children entities: it happens to
++ * not account for the in-service entity in case the latter is
++ * removed from its active tree (which may get done after
++ * invoking the function bfq_no_longer_next_in_service in
++ * bfq_get_next_queue). Fortunately, here, i.e., while
++ * bfq_no_longer_next_in_service is not yet completed in
++ * bfq_get_next_queue, bfq_active_extract has not yet been
++ * invoked, and thus active_entities still coincides with the
++ * actual number of active entities.
++ */
++ if (bfqg->active_entities == 1)
++ return true;
++
++ return false;
++}
++
++#else /* BFQ_GROUP_IOSCHED_ENABLED */
++#define for_each_entity(entity) \
++ for (; entity ; entity = NULL)
++
++#define for_each_entity_safe(entity, parent) \
++ for (parent = NULL; entity ; entity = parent)
++
++static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
++{
++ return false;
++}
++
++static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
++{
++ return true;
++}
++
++#endif /* BFQ_GROUP_IOSCHED_ENABLED */
++
++/*
++ * Shift for timestamp calculations. This actually limits the maximum
++ * service allowed in one timestamp delta (small shift values increase it),
++ * the maximum total weight that can be used for the queues in the system
++ * (big shift values increase it), and the period of virtual time
++ * wraparounds.
++ */
++#define WFQ_SERVICE_SHIFT 22
++
++static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
++{
++ struct bfq_queue *bfqq = NULL;
++
++ BUG_ON(!entity);
++
++ if (!entity->my_sched_data)
++ bfqq = container_of(entity, struct bfq_queue, entity);
++
++ return bfqq;
++}
++
++
++/**
++ * bfq_delta - map service into the virtual time domain.
++ * @service: amount of service.
++ * @weight: scale factor (weight of an entity or weight sum).
++ */
++static u64 bfq_delta(unsigned long service, unsigned long weight)
++{
++ u64 d = (u64)service << WFQ_SERVICE_SHIFT;
++
++ do_div(d, weight);
++ return d;
++}
++
++/**
++ * bfq_calc_finish - assign the finish time to an entity.
++ * @entity: the entity to act upon.
++ * @service: the service to be charged to the entity.
++ */
++static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++ unsigned long long start, finish, delta;
++
++ BUG_ON(entity->weight == 0);
++
++ entity->finish = entity->start +
++ bfq_delta(service, entity->weight);
++
++ start = ((entity->start>>10)*1000)>>12;
++ finish = ((entity->finish>>10)*1000)>>12;
++ delta = ((bfq_delta(service, entity->weight)>>10)*1000)>>12;
++
++ if (bfqq) {
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "serv %lu, w %d",
++ service, entity->weight);
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "start %llu, finish %llu, delta %llu",
++ start, finish, delta);
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ } else {
++ struct bfq_group *bfqg =
++ container_of(entity, struct bfq_group, entity);
++
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++ "group: serv %lu, w %d",
++ service, entity->weight);
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++ "group: start %llu, finish %llu, delta %llu",
++ start, finish, delta);
++#endif
++ }
++}
++
++/**
++ * bfq_entity_of - get an entity from a node.
++ * @node: the node field of the entity.
++ *
++ * Convert a node pointer to the relative entity. This is used only
++ * to simplify the logic of some functions and not as the generic
++ * conversion mechanism because, e.g., in the tree walking functions,
++ * the check for a %NULL value would be redundant.
++ */
++static struct bfq_entity *bfq_entity_of(struct rb_node *node)
++{
++ struct bfq_entity *entity = NULL;
++
++ if (node)
++ entity = rb_entry(node, struct bfq_entity, rb_node);
++
++ return entity;
++}
++
++/**
++ * bfq_extract - remove an entity from a tree.
++ * @root: the tree root.
++ * @entity: the entity to remove.
++ */
++static void bfq_extract(struct rb_root *root, struct bfq_entity *entity)
++{
++ BUG_ON(entity->tree != root);
++
++ entity->tree = NULL;
++ rb_erase(&entity->rb_node, root);
++}
++
++/**
++ * bfq_idle_extract - extract an entity from the idle tree.
++ * @st: the service tree of the owning @entity.
++ * @entity: the entity being removed.
++ */
++static void bfq_idle_extract(struct bfq_service_tree *st,
++ struct bfq_entity *entity)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++ struct rb_node *next;
++
++ BUG_ON(entity->tree != &st->idle);
++
++ if (entity == st->first_idle) {
++ next = rb_next(&entity->rb_node);
++ st->first_idle = bfq_entity_of(next);
++ }
++
++ if (entity == st->last_idle) {
++ next = rb_prev(&entity->rb_node);
++ st->last_idle = bfq_entity_of(next);
++ }
++
++ bfq_extract(&st->idle, entity);
++
++ if (bfqq)
++ list_del(&bfqq->bfqq_list);
++}
++
++/**
++ * bfq_insert - generic tree insertion.
++ * @root: tree root.
++ * @entity: entity to insert.
++ *
++ * This is used for the idle and the active tree, since they are both
++ * ordered by finish time.
++ */
++static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
++{
++ struct bfq_entity *entry;
++ struct rb_node **node = &root->rb_node;
++ struct rb_node *parent = NULL;
++
++ BUG_ON(entity->tree);
++
++ while (*node) {
++ parent = *node;
++ entry = rb_entry(parent, struct bfq_entity, rb_node);
++
++ if (bfq_gt(entry->finish, entity->finish))
++ node = &parent->rb_left;
++ else
++ node = &parent->rb_right;
++ }
++
++ rb_link_node(&entity->rb_node, parent, node);
++ rb_insert_color(&entity->rb_node, root);
++
++ entity->tree = root;
++}
++
++/**
++ * bfq_update_min - update the min_start field of a entity.
++ * @entity: the entity to update.
++ * @node: one of its children.
++ *
++ * This function is called when @entity may store an invalid value for
++ * min_start due to updates to the active tree. The function assumes
++ * that the subtree rooted at @node (which may be its left or its right
++ * child) has a valid min_start value.
++ */
++static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node)
++{
++ struct bfq_entity *child;
++
++ if (node) {
++ child = rb_entry(node, struct bfq_entity, rb_node);
++ if (bfq_gt(entity->min_start, child->min_start))
++ entity->min_start = child->min_start;
++ }
++}
++
++/**
++ * bfq_update_active_node - recalculate min_start.
++ * @node: the node to update.
++ *
++ * @node may have changed position or one of its children may have moved,
++ * this function updates its min_start value. The left and right subtrees
++ * are assumed to hold a correct min_start value.
++ */
++static void bfq_update_active_node(struct rb_node *node)
++{
++ struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++
++ entity->min_start = entity->start;
++ bfq_update_min(entity, node->rb_right);
++ bfq_update_min(entity, node->rb_left);
++
++ if (bfqq) {
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "new min_start %llu",
++ ((entity->min_start>>10)*1000)>>12);
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ } else {
++ struct bfq_group *bfqg =
++ container_of(entity, struct bfq_group, entity);
++
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++ "new min_start %llu",
++ ((entity->min_start>>10)*1000)>>12);
++#endif
++ }
++}
++
++/**
++ * bfq_update_active_tree - update min_start for the whole active tree.
++ * @node: the starting node.
++ *
++ * @node must be the deepest modified node after an update. This function
++ * updates its min_start using the values held by its children, assuming
++ * that they did not change, and then updates all the nodes that may have
++ * changed in the path to the root. The only nodes that may have changed
++ * are the ones in the path or their siblings.
++ */
++static void bfq_update_active_tree(struct rb_node *node)
++{
++ struct rb_node *parent;
++
++up:
++ bfq_update_active_node(node);
++
++ parent = rb_parent(node);
++ if (!parent)
++ return;
++
++ if (node == parent->rb_left && parent->rb_right)
++ bfq_update_active_node(parent->rb_right);
++ else if (parent->rb_left)
++ bfq_update_active_node(parent->rb_left);
++
++ node = parent;
++ goto up;
++}
++
++static void bfq_weights_tree_add(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ struct rb_root *root);
++
++static void __bfq_weights_tree_remove(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ struct rb_root *root);
++
++static void bfq_weights_tree_remove(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq);
++
++
++/**
++ * bfq_active_insert - insert an entity in the active tree of its
++ * group/device.
++ * @st: the service tree of the entity.
++ * @entity: the entity being inserted.
++ *
++ * The active tree is ordered by finish time, but an extra key is kept
++ * per each node, containing the minimum value for the start times of
++ * its children (and the node itself), so it's possible to search for
++ * the eligible node with the lowest finish time in logarithmic time.
++ */
++static void bfq_active_insert(struct bfq_service_tree *st,
++ struct bfq_entity *entity)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++ struct rb_node *node = &entity->rb_node;
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ struct bfq_sched_data *sd = NULL;
++ struct bfq_group *bfqg = NULL;
++ struct bfq_data *bfqd = NULL;
++#endif
++
++ bfq_insert(&st->active, entity);
++
++ if (node->rb_left)
++ node = node->rb_left;
++ else if (node->rb_right)
++ node = node->rb_right;
++
++ bfq_update_active_tree(node);
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ sd = entity->sched_data;
++ bfqg = container_of(sd, struct bfq_group, sched_data);
++ BUG_ON(!bfqg);
++ bfqd = (struct bfq_data *)bfqg->bfqd;
++#endif
++ if (bfqq)
++ list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ if (bfqg != bfqd->root_group) {
++ BUG_ON(!bfqg);
++ BUG_ON(!bfqd);
++ bfqg->active_entities++;
++ }
++#endif
++}
++
++/**
++ * bfq_ioprio_to_weight - calc a weight from an ioprio.
++ * @ioprio: the ioprio value to convert.
++ */
++static unsigned short bfq_ioprio_to_weight(int ioprio)
++{
++ BUG_ON(ioprio < 0 || ioprio >= IOPRIO_BE_NR);
++ return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF;
++}
++
++/**
++ * bfq_weight_to_ioprio - calc an ioprio from a weight.
++ * @weight: the weight value to convert.
++ *
++ * To preserve as much as possible the old only-ioprio user interface,
++ * 0 is used as an escape ioprio value for weights (numerically) equal or
++ * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF.
++ */
++static unsigned short bfq_weight_to_ioprio(int weight)
++{
++ BUG_ON(weight < BFQ_MIN_WEIGHT || weight > BFQ_MAX_WEIGHT);
++ return IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight < 0 ?
++ 0 : IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight;
++}
++
++static void bfq_get_entity(struct bfq_entity *entity)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++
++ if (bfqq) {
++ bfqq->ref++;
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "%p %d",
++ bfqq, bfqq->ref);
++ }
++}
++
++/**
++ * bfq_find_deepest - find the deepest node that an extraction can modify.
++ * @node: the node being removed.
++ *
++ * Do the first step of an extraction in an rb tree, looking for the
++ * node that will replace @node, and returning the deepest node that
++ * the following modifications to the tree can touch. If @node is the
++ * last node in the tree return %NULL.
++ */
++static struct rb_node *bfq_find_deepest(struct rb_node *node)
++{
++ struct rb_node *deepest;
++
++ if (!node->rb_right && !node->rb_left)
++ deepest = rb_parent(node);
++ else if (!node->rb_right)
++ deepest = node->rb_left;
++ else if (!node->rb_left)
++ deepest = node->rb_right;
++ else {
++ deepest = rb_next(node);
++ if (deepest->rb_right)
++ deepest = deepest->rb_right;
++ else if (rb_parent(deepest) != node)
++ deepest = rb_parent(deepest);
++ }
++
++ return deepest;
++}
++
++/**
++ * bfq_active_extract - remove an entity from the active tree.
++ * @st: the service_tree containing the tree.
++ * @entity: the entity being removed.
++ */
++static void bfq_active_extract(struct bfq_service_tree *st,
++ struct bfq_entity *entity)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++ struct rb_node *node;
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ struct bfq_sched_data *sd = NULL;
++ struct bfq_group *bfqg = NULL;
++ struct bfq_data *bfqd = NULL;
++#endif
++
++ node = bfq_find_deepest(&entity->rb_node);
++ bfq_extract(&st->active, entity);
++
++ if (node)
++ bfq_update_active_tree(node);
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ sd = entity->sched_data;
++ bfqg = container_of(sd, struct bfq_group, sched_data);
++ BUG_ON(!bfqg);
++ bfqd = (struct bfq_data *)bfqg->bfqd;
++#endif
++ if (bfqq)
++ list_del(&bfqq->bfqq_list);
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ if (bfqg != bfqd->root_group) {
++ BUG_ON(!bfqg);
++ BUG_ON(!bfqd);
++ BUG_ON(!bfqg->active_entities);
++ bfqg->active_entities--;
++ }
++#endif
++}
++
++/**
++ * bfq_idle_insert - insert an entity into the idle tree.
++ * @st: the service tree containing the tree.
++ * @entity: the entity to insert.
++ */
++static void bfq_idle_insert(struct bfq_service_tree *st,
++ struct bfq_entity *entity)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++ struct bfq_entity *first_idle = st->first_idle;
++ struct bfq_entity *last_idle = st->last_idle;
++
++ if (!first_idle || bfq_gt(first_idle->finish, entity->finish))
++ st->first_idle = entity;
++ if (!last_idle || bfq_gt(entity->finish, last_idle->finish))
++ st->last_idle = entity;
++
++ bfq_insert(&st->idle, entity);
++
++ if (bfqq)
++ list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
++}
++
++/**
++ * bfq_forget_entity - do not consider entity any longer for scheduling
++ * @st: the service tree.
++ * @entity: the entity being removed.
++ * @is_in_service: true if entity is currently the in-service entity.
++ *
++ * Forget everything about @entity. In addition, if entity represents
++ * a queue, and the latter is not in service, then release the service
++ * reference to the queue (the one taken through bfq_get_entity). In
++ * fact, in this case, there is really no more service reference to
++ * the queue, as the latter is also outside any service tree. If,
++ * instead, the queue is in service, then __bfq_bfqd_reset_in_service
++ * will take care of putting the reference when the queue finally
++ * stops being served.
++ */
++static void bfq_forget_entity(struct bfq_service_tree *st,
++ struct bfq_entity *entity,
++ bool is_in_service)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++ BUG_ON(!entity->on_st);
++
++ entity->on_st = false;
++ st->wsum -= entity->weight;
++ if (bfqq && !is_in_service) {
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "(before): %p %d",
++ bfqq, bfqq->ref);
++ bfq_put_queue(bfqq);
++ }
++}
++
++/**
++ * bfq_put_idle_entity - release the idle tree ref of an entity.
++ * @st: service tree for the entity.
++ * @entity: the entity being released.
++ */
++static void bfq_put_idle_entity(struct bfq_service_tree *st,
++ struct bfq_entity *entity)
++{
++ bfq_idle_extract(st, entity);
++ bfq_forget_entity(st, entity,
++ entity == entity->sched_data->in_service_entity);
++}
++
++/**
++ * bfq_forget_idle - update the idle tree if necessary.
++ * @st: the service tree to act upon.
++ *
++ * To preserve the global O(log N) complexity we only remove one entry here;
++ * as the idle tree will not grow indefinitely this can be done safely.
++ */
++static void bfq_forget_idle(struct bfq_service_tree *st)
++{
++ struct bfq_entity *first_idle = st->first_idle;
++ struct bfq_entity *last_idle = st->last_idle;
++
++ if (RB_EMPTY_ROOT(&st->active) && last_idle &&
++ !bfq_gt(last_idle->finish, st->vtime)) {
++ /*
++ * Forget the whole idle tree, increasing the vtime past
++ * the last finish time of idle entities.
++ */
++ st->vtime = last_idle->finish;
++ }
++
++ if (first_idle && !bfq_gt(first_idle->finish, st->vtime))
++ bfq_put_idle_entity(st, first_idle);
++}
++
++/*
++ * Update weight and priority of entity. If update_class_too is true,
++ * then update the ioprio_class of entity too.
++ *
++ * The reason why the update of ioprio_class is controlled through the
++ * last parameter is as follows. Changing the ioprio class of an
++ * entity implies changing the destination service trees for that
++ * entity. If such a change occurred when the entity is already on one
++ * of the service trees for its previous class, then the state of the
++ * entity would become more complex: none of the new possible service
++ * trees for the entity, according to bfq_entity_service_tree(), would
++ * match any of the possible service trees on which the entity
++ * is. Complex operations involving these trees, such as entity
++ * activations and deactivations, should take into account this
++ * additional complexity. To avoid this issue, this function is
++ * invoked with update_class_too unset in the points in the code where
++ * entity may happen to be on some tree.
++ */
++static struct bfq_service_tree *
++__bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
++ struct bfq_entity *entity,
++ bool update_class_too)
++{
++ struct bfq_service_tree *new_st = old_st;
++
++ if (entity->prio_changed) {
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++ unsigned int prev_weight, new_weight;
++ struct bfq_data *bfqd = NULL;
++ struct rb_root *root;
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ struct bfq_sched_data *sd;
++ struct bfq_group *bfqg;
++#endif
++
++ if (bfqq)
++ bfqd = bfqq->bfqd;
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ else {
++ sd = entity->my_sched_data;
++ bfqg = container_of(sd, struct bfq_group, sched_data);
++ BUG_ON(!bfqg);
++ bfqd = (struct bfq_data *)bfqg->bfqd;
++ BUG_ON(!bfqd);
++ }
++#endif
++
++ BUG_ON(entity->tree && update_class_too);
++ BUG_ON(old_st->wsum < entity->weight);
++ old_st->wsum -= entity->weight;
++
++ if (entity->new_weight != entity->orig_weight) {
++ if (entity->new_weight < BFQ_MIN_WEIGHT ||
++ entity->new_weight > BFQ_MAX_WEIGHT) {
++ pr_crit("update_weight_prio: new_weight %d\n",
++ entity->new_weight);
++ if (entity->new_weight < BFQ_MIN_WEIGHT)
++ entity->new_weight = BFQ_MIN_WEIGHT;
++ else
++ entity->new_weight = BFQ_MAX_WEIGHT;
++ }
++ entity->orig_weight = entity->new_weight;
++ if (bfqq)
++ bfqq->ioprio =
++ bfq_weight_to_ioprio(entity->orig_weight);
++ }
++
++ if (bfqq && update_class_too)
++ bfqq->ioprio_class = bfqq->new_ioprio_class;
++
++ /*
++ * Reset prio_changed only if the ioprio_class change
++ * is not pending any longer.
++ */
++ if (!bfqq || bfqq->ioprio_class == bfqq->new_ioprio_class)
++ entity->prio_changed = 0;
++
++ /*
++ * NOTE: here we may be changing the weight too early,
++ * this will cause unfairness. The correct approach
++ * would have required additional complexity to defer
++ * weight changes to the proper time instants (i.e.,
++ * when entity->finish <= old_st->vtime).
++ */
++ new_st = bfq_entity_service_tree(entity);
++
++ prev_weight = entity->weight;
++ new_weight = entity->orig_weight *
++ (bfqq ? bfqq->wr_coeff : 1);
++ /*
++ * If the weight of the entity changes and the entity is a
++ * queue, remove the entity from its old weight counter (if
++ * there is a counter associated with the entity).
++ */
++ if (prev_weight != new_weight && bfqq) {
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "weight changed %d %d(%d %d)",
++ prev_weight, new_weight,
++ entity->orig_weight,
++ bfqq->wr_coeff);
++
++ root = &bfqd->queue_weights_tree;
++ __bfq_weights_tree_remove(bfqd, bfqq, root);
++ }
++ entity->weight = new_weight;
++ /*
++ * Add the entity, if it is not a weight-raised queue, to the
++ * counter associated with its new weight.
++ */
++ if (prev_weight != new_weight && bfqq && bfqq->wr_coeff == 1) {
++ /* If we get here, root has been initialized. */
++ bfq_weights_tree_add(bfqd, bfqq, root);
++ }
++
++ new_st->wsum += entity->weight;
++
++ if (new_st != old_st) {
++ BUG_ON(!update_class_too);
++ entity->start = new_st->vtime;
++ }
++ }
++
++ return new_st;
++}
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++static void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg);
++#endif
++
++/**
++ * bfq_bfqq_served - update the scheduler status after selection for
++ * service.
++ * @bfqq: the queue being served.
++ * @served: bytes to transfer.
++ *
++ * NOTE: this can be optimized, as the timestamps of upper level entities
++ * are synchronized every time a new bfqq is selected for service. By now,
++ * we keep it to better check consistency.
++ */
++static void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++ struct bfq_service_tree *st;
++
++ if (!bfqq->service_from_backlogged)
++ bfqq->first_IO_time = jiffies;
++
++ if (bfqq->wr_coeff > 1)
++ bfqq->service_from_wr += served;
++
++ bfqq->service_from_backlogged += served;
++ for_each_entity(entity) {
++ st = bfq_entity_service_tree(entity);
++
++ entity->service += served;
++
++ BUG_ON(st->wsum == 0);
++
++ st->vtime += bfq_delta(served, st->wsum);
++ bfq_forget_idle(st);
++ }
++#ifndef BFQ_MQ
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ bfqg_stats_set_start_empty_time(bfqq_group(bfqq));
++#endif
++#endif
++ st = bfq_entity_service_tree(&bfqq->entity);
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs, vtime %llu on %p",
++ served, ((st->vtime>>10)*1000)>>12, st);
++}
++
++/**
++ * bfq_bfqq_charge_time - charge an amount of service equivalent to the length
++ * of the time interval during which bfqq has been in
++ * service.
++ * @bfqd: the device
++ * @bfqq: the queue that needs a service update.
++ * @time_ms: the amount of time during which the queue has received service
++ *
++ * If a queue does not consume its budget fast enough, then providing
++ * the queue with service fairness may impair throughput, more or less
++ * severely. For this reason, queues that consume their budget slowly
++ * are provided with time fairness instead of service fairness. This
++ * goal is achieved through the BFQ scheduling engine, even if such an
++ * engine works in the service, and not in the time domain. The trick
++ * is charging these queues with an inflated amount of service, equal
++ * to the amount of service that they would have received during their
++ * service slot if they had been fast, i.e., if their requests had
++ * been dispatched at a rate equal to the estimated peak rate.
++ *
++ * It is worth noting that time fairness can cause important
++ * distortions in terms of bandwidth distribution, on devices with
++ * internal queueing. The reason is that I/O requests dispatched
++ * during the service slot of a queue may be served after that service
++ * slot is finished, and may have a total processing time loosely
++ * correlated with the duration of the service slot. This is
++ * especially true for short service slots.
++ */
++static void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ unsigned long time_ms)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++ unsigned long timeout_ms = jiffies_to_msecs(bfq_timeout);
++ unsigned long bounded_time_ms = min(time_ms, timeout_ms);
++ int serv_to_charge_for_time =
++ (bfqd->bfq_max_budget * bounded_time_ms) / timeout_ms;
++ int tot_serv_to_charge = max(serv_to_charge_for_time, entity->service);
++
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "%lu/%lu ms, %d/%d/%d/%d sectors",
++ time_ms, timeout_ms,
++ entity->service,
++ tot_serv_to_charge,
++ bfqd->bfq_max_budget,
++ entity->budget);
++
++ /* Increase budget to avoid inconsistencies */
++ if (tot_serv_to_charge > entity->budget)
++ entity->budget = tot_serv_to_charge;
++
++ bfq_bfqq_served(bfqq,
++ max_t(int, 0, tot_serv_to_charge - entity->service));
++}
++
++static void bfq_update_fin_time_enqueue(struct bfq_entity *entity,
++ struct bfq_service_tree *st,
++ bool backshifted)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++ struct bfq_sched_data *sd = entity->sched_data;
++
++ /*
++ * When this function is invoked, entity is not in any service
++ * tree, then it is safe to invoke next function with the last
++ * parameter set (see the comments on the function).
++ */
++ BUG_ON(entity->tree);
++ st = __bfq_entity_update_weight_prio(st, entity, true);
++ bfq_calc_finish(entity, entity->budget);
++
++ /*
++ * If some queues enjoy backshifting for a while, then their
++ * (virtual) finish timestamps may happen to become lower and
++ * lower than the system virtual time. In particular, if
++ * these queues often happen to be idle for short time
++ * periods, and during such time periods other queues with
++ * higher timestamps happen to be busy, then the backshifted
++ * timestamps of the former queues can become much lower than
++ * the system virtual time. In fact, to serve the queues with
++ * higher timestamps while the ones with lower timestamps are
++ * idle, the system virtual time may be pushed-up to much
++ * higher values than the finish timestamps of the idle
++ * queues. As a consequence, the finish timestamps of all new
++ * or newly activated queues may end up being much larger than
++ * those of lucky queues with backshifted timestamps. The
++ * latter queues may then monopolize the device for a lot of
++ * time. This would simply break service guarantees.
++ *
++ * To reduce this problem, push up a little bit the
++ * backshifted timestamps of the queue associated with this
++ * entity (only a queue can happen to have the backshifted
++ * flag set): just enough to let the finish timestamp of the
++ * queue be equal to the current value of the system virtual
++ * time. This may introduce a little unfairness among queues
++ * with backshifted timestamps, but it does not break
++ * worst-case fairness guarantees.
++ *
++ * As a special case, if bfqq is weight-raised, push up
++ * timestamps much less, to keep very low the probability that
++ * this push up causes the backshifted finish timestamps of
++ * weight-raised queues to become higher than the backshifted
++ * finish timestamps of non weight-raised queues.
++ */
++ if (backshifted && bfq_gt(st->vtime, entity->finish)) {
++ unsigned long delta = st->vtime - entity->finish;
++
++ if (bfqq)
++ delta /= bfqq->wr_coeff;
++
++ entity->start += delta;
++ entity->finish += delta;
++
++ if (bfqq) {
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "new queue finish %llu",
++ ((entity->finish>>10)*1000)>>12);
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ } else {
++ struct bfq_group *bfqg =
++ container_of(entity, struct bfq_group, entity);
++
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++ "new group finish %llu",
++ ((entity->finish>>10)*1000)>>12);
++#endif
++ }
++ }
++
++ bfq_active_insert(st, entity);
++
++ if (bfqq) {
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "queue %seligible in st %p",
++ entity->start <= st->vtime ? "" : "non ", st);
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ } else {
++ struct bfq_group *bfqg =
++ container_of(entity, struct bfq_group, entity);
++
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++ "group %seligible in st %p",
++ entity->start <= st->vtime ? "" : "non ", st);
++#endif
++ }
++ BUG_ON(RB_EMPTY_ROOT(&st->active));
++ BUG_ON(&st->active != &sd->service_tree->active &&
++ &st->active != &(sd->service_tree+1)->active &&
++ &st->active != &(sd->service_tree+2)->active);
++}
++
++/**
++ * __bfq_activate_entity - handle activation of entity.
++ * @entity: the entity being activated.
++ * @non_blocking_wait_rq: true if entity was waiting for a request
++ *
++ * Called for a 'true' activation, i.e., if entity is not active and
++ * one of its children receives a new request.
++ *
++ * Basically, this function updates the timestamps of entity and
++ * inserts entity into its active tree, after possibly extracting it
++ * from its idle tree.
++ */
++static void __bfq_activate_entity(struct bfq_entity *entity,
++ bool non_blocking_wait_rq)
++{
++ struct bfq_sched_data *sd = entity->sched_data;
++ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++ bool backshifted = false;
++ unsigned long long min_vstart;
++
++ BUG_ON(!sd);
++ BUG_ON(!st);
++
++ /* See comments on bfq_fqq_update_budg_for_activation */
++ if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) {
++ backshifted = true;
++ min_vstart = entity->finish;
++ } else
++ min_vstart = st->vtime;
++
++ if (entity->tree == &st->idle) {
++ /*
++ * Must be on the idle tree, bfq_idle_extract() will
++ * check for that.
++ */
++ bfq_idle_extract(st, entity);
++ BUG_ON(entity->tree);
++ entity->start = bfq_gt(min_vstart, entity->finish) ?
++ min_vstart : entity->finish;
++ } else {
++ BUG_ON(entity->tree);
++ /*
++ * The finish time of the entity may be invalid, and
++ * it is in the past for sure, otherwise the queue
++ * would have been on the idle tree.
++ */
++ entity->start = min_vstart;
++ st->wsum += entity->weight;
++ /*
++ * entity is about to be inserted into a service tree,
++ * and then set in service: get a reference to make
++ * sure entity does not disappear until it is no
++ * longer in service or scheduled for service.
++ */
++ bfq_get_entity(entity);
++
++ BUG_ON(entity->on_st && bfqq);
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ if (entity->on_st && !bfqq) {
++ struct bfq_group *bfqg =
++ container_of(entity, struct bfq_group,
++ entity);
++
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd,
++ bfqg,
++ "activate bug, class %d in_service %p",
++ bfq_class_idx(entity), sd->in_service_entity);
++ }
++#endif
++ BUG_ON(entity->on_st && !bfqq);
++ entity->on_st = true;
++ }
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ if (!bfq_entity_to_bfqq(entity)) { /* bfq_group */
++ struct bfq_group *bfqg =
++ container_of(entity, struct bfq_group, entity);
++ struct bfq_data *bfqd = bfqg->bfqd;
++
++ BUG_ON(!bfqd);
++ if (!entity->in_groups_with_pending_reqs) {
++ entity->in_groups_with_pending_reqs = true;
++ bfqd->num_groups_with_pending_reqs++;
++ }
++ bfq_log_bfqg(bfqd, bfqg, "num_groups_with_pending_reqs %u",
++ bfqd->num_groups_with_pending_reqs);
++ }
++#endif
++
++ bfq_update_fin_time_enqueue(entity, st, backshifted);
++}
++
++/**
++ * __bfq_requeue_entity - handle requeueing or repositioning of an entity.
++ * @entity: the entity being requeued or repositioned.
++ *
++ * Requeueing is needed if this entity stops being served, which
++ * happens if a leaf descendant entity has expired. On the other hand,
++ * repositioning is needed if the next_inservice_entity for the child
++ * entity has changed. See the comments inside the function for
++ * details.
++ *
++ * Basically, this function: 1) removes entity from its active tree if
++ * present there, 2) updates the timestamps of entity and 3) inserts
++ * entity back into its active tree (in the new, right position for
++ * the new values of the timestamps).
++ */
++static void __bfq_requeue_entity(struct bfq_entity *entity)
++{
++ struct bfq_sched_data *sd = entity->sched_data;
++ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
++
++ BUG_ON(!sd);
++ BUG_ON(!st);
++
++ BUG_ON(entity != sd->in_service_entity &&
++ entity->tree != &st->active);
++
++ if (entity == sd->in_service_entity) {
++ /*
++ * We are requeueing the current in-service entity,
++ * which may have to be done for one of the following
++ * reasons:
++ * - entity represents the in-service queue, and the
++ * in-service queue is being requeued after an
++ * expiration;
++ * - entity represents a group, and its budget has
++ * changed because one of its child entities has
++ * just been either activated or requeued for some
++ * reason; the timestamps of the entity need then to
++ * be updated, and the entity needs to be enqueued
++ * or repositioned accordingly.
++ *
++ * In particular, before requeueing, the start time of
++ * the entity must be moved forward to account for the
++ * service that the entity has received while in
++ * service. This is done by the next instructions. The
++ * finish time will then be updated according to this
++ * new value of the start time, and to the budget of
++ * the entity.
++ */
++ bfq_calc_finish(entity, entity->service);
++ entity->start = entity->finish;
++ BUG_ON(entity->tree && entity->tree == &st->idle);
++ BUG_ON(entity->tree && entity->tree != &st->active);
++ /*
++ * In addition, if the entity had more than one child
++ * when set in service, then it was not extracted from
++ * the active tree. This implies that the position of
++ * the entity in the active tree may need to be
++ * changed now, because we have just updated the start
++ * time of the entity, and we will update its finish
++ * time in a moment (the requeueing is then, more
++ * precisely, a repositioning in this case). To
++ * implement this repositioning, we: 1) dequeue the
++ * entity here, 2) update the finish time and requeue
++ * the entity according to the new timestamps below.
++ */
++ if (entity->tree)
++ bfq_active_extract(st, entity);
++ } else { /* The entity is already active, and not in service */
++ /*
++ * In this case, this function gets called only if the
++ * next_in_service entity below this entity has
++ * changed, and this change has caused the budget of
++ * this entity to change, which, finally implies that
++ * the finish time of this entity must be
++ * updated. Such an update may cause the scheduling,
++ * i.e., the position in the active tree, of this
++ * entity to change. We handle this change by: 1)
++ * dequeueing the entity here, 2) updating the finish
++ * time and requeueing the entity according to the new
++ * timestamps below. This is the same approach as the
++ * non-extracted-entity sub-case above.
++ */
++ bfq_active_extract(st, entity);
++ }
++
++ bfq_update_fin_time_enqueue(entity, st, false);
++}
++
++static void __bfq_activate_requeue_entity(struct bfq_entity *entity,
++ struct bfq_sched_data *sd,
++ bool non_blocking_wait_rq)
++{
++ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
++
++ if (sd->in_service_entity == entity || entity->tree == &st->active)
++ /*
++ * in service or already queued on the active tree,
++ * requeue or reposition
++ */
++ __bfq_requeue_entity(entity);
++ else
++ /*
++ * Not in service and not queued on its active tree:
++ * the activity is idle and this is a true activation.
++ */
++ __bfq_activate_entity(entity, non_blocking_wait_rq);
++}
++
++
++/**
++ * bfq_activate_requeue_entity - activate or requeue an entity representing a bfq_queue,
++ * and activate, requeue or reposition all ancestors
++ * for which such an update becomes necessary.
++ * @entity: the entity to activate.
++ * @non_blocking_wait_rq: true if this entity was waiting for a request
++ * @requeue: true if this is a requeue, which implies that bfqq is
++ * being expired; thus ALL its ancestors stop being served and must
++ * therefore be requeued
++ * @expiration: true if this function is being invoked in the expiration path
++ * of the in-service queue
++ */
++static void bfq_activate_requeue_entity(struct bfq_entity *entity,
++ bool non_blocking_wait_rq,
++ bool requeue, bool expiration)
++{
++ struct bfq_sched_data *sd;
++
++ for_each_entity(entity) {
++ BUG_ON(!entity);
++ sd = entity->sched_data;
++ __bfq_activate_requeue_entity(entity, sd, non_blocking_wait_rq);
++
++ BUG_ON(RB_EMPTY_ROOT(&sd->service_tree->active) &&
++ RB_EMPTY_ROOT(&(sd->service_tree+1)->active) &&
++ RB_EMPTY_ROOT(&(sd->service_tree+2)->active));
++
++ if (!bfq_update_next_in_service(sd, entity, expiration) &&
++ !requeue) {
++ BUG_ON(!sd->next_in_service);
++ break;
++ }
++ BUG_ON(!sd->next_in_service);
++ }
++}
++
++/**
++ * __bfq_deactivate_entity - update sched_data and service trees for
++ * entity, so as to represent entity as inactive
++ * @entity: the entity being deactivated.
++ * @ins_into_idle_tree: if false, the entity will not be put into the
++ * idle tree.
++ *
++ * If necessary and allowed, puts entity into the idle tree. NOTE:
++ * entity may be on no tree if in service.
++ */
++static bool __bfq_deactivate_entity(struct bfq_entity *entity,
++ bool ins_into_idle_tree)
++{
++ struct bfq_sched_data *sd = entity->sched_data;
++ struct bfq_service_tree *st;
++ bool is_in_service;
++
++ if (!entity->on_st) { /* entity never activated, or already inactive */
++ BUG_ON(sd && entity == sd->in_service_entity);
++ return false;
++ }
++
++ /*
++ * If we get here, then entity is active, which implies that
++ * bfq_group_set_parent has already been invoked for the group
++ * represented by entity. Therefore, the field
++ * entity->sched_data has been set, and we can safely use it.
++ */
++ st = bfq_entity_service_tree(entity);
++ is_in_service = entity == sd->in_service_entity;
++
++ BUG_ON(is_in_service && entity->tree && entity->tree != &st->active);
++
++ bfq_calc_finish(entity, entity->service);
++
++ if (is_in_service) {
++ sd->in_service_entity = NULL;
++ } else
++ /*
++ * Non in-service entity: nobody will take care of
++ * resetting its service counter on expiration. Do it
++ * now.
++ */
++ entity->service = 0;
++
++ if (entity->tree == &st->active)
++ bfq_active_extract(st, entity);
++ else if (!is_in_service && entity->tree == &st->idle)
++ bfq_idle_extract(st, entity);
++ else if (entity->tree)
++ BUG();
++
++ if (!ins_into_idle_tree || !bfq_gt(entity->finish, st->vtime))
++ bfq_forget_entity(st, entity, is_in_service);
++ else
++ bfq_idle_insert(st, entity);
++
++ return true;
++}
++
++/**
++ * bfq_deactivate_entity - deactivate an entity representing a bfq_queue.
++ * @entity: the entity to deactivate.
++ * @ins_into_idle_tree: true if the entity can be put into the idle tree
++ * @expiration: true if this function is being invoked in the expiration path
++ * of the in-service queue
++ */
++static void bfq_deactivate_entity(struct bfq_entity *entity,
++ bool ins_into_idle_tree,
++ bool expiration)
++{
++ struct bfq_sched_data *sd;
++ struct bfq_entity *parent = NULL;
++
++ for_each_entity_safe(entity, parent) {
++ sd = entity->sched_data;
++
++ BUG_ON(sd == NULL); /*
++ * It would mean that this is the
++ * root group.
++ */
++
++ BUG_ON(expiration && entity != sd->in_service_entity);
++
++ BUG_ON(entity != sd->in_service_entity &&
++ entity->tree ==
++ &bfq_entity_service_tree(entity)->active &&
++ !sd->next_in_service);
++
++ if (!__bfq_deactivate_entity(entity, ins_into_idle_tree)) {
++ /*
++ * entity is not in any tree any more, so
++ * this deactivation is a no-op, and there is
++ * nothing to change for upper-level entities
++ * (in case of expiration, this can never
++ * happen).
++ */
++ BUG_ON(expiration); /*
++ * entity cannot be already out of
++ * any tree
++ */
++ return;
++ }
++
++ if (sd->next_in_service == entity)
++ /*
++ * entity was the next_in_service entity,
++ * then, since entity has just been
++ * deactivated, a new one must be found.
++ */
++ bfq_update_next_in_service(sd, NULL, expiration);
++
++ if (sd->next_in_service || sd->in_service_entity) {
++ /*
++ * The parent entity is still active, because
++ * either next_in_service or in_service_entity
++ * is not NULL. So, no further upwards
++ * deactivation must be performed. Yet,
++ * next_in_service has changed. Then the
++ * schedule does need to be updated upwards.
++ *
++ * NOTE If in_service_entity is not NULL, then
++ * next_in_service may happen to be NULL,
++ * although the parent entity is evidently
++ * active. This happens if 1) the entity
++ * pointed by in_service_entity is the only
++ * active entity in the parent entity, and 2)
++ * according to the definition of
++ * next_in_service, the in_service_entity
++ * cannot be considered as
++ * next_in_service. See the comments on the
++ * definition of next_in_service for details.
++ */
++ BUG_ON(sd->next_in_service == entity);
++ BUG_ON(sd->in_service_entity == entity);
++ break;
++ }
++
++ /*
++ * If we get here, then the parent is no more
++ * backlogged and we need to propagate the
++ * deactivation upwards. Thus let the loop go on.
++ */
++
++ /*
++ * Also let parent be queued into the idle tree on
++ * deactivation, to preserve service guarantees, and
++ * assuming that who invoked this function does not
++ * need parent entities too to be removed completely.
++ */
++ ins_into_idle_tree = true;
++ }
++
++ /*
++ * If the deactivation loop is fully executed, then there are
++ * no more entities to touch and next loop is not executed at
++ * all. Otherwise, requeue remaining entities if they are
++ * about to stop receiving service, or reposition them if this
++ * is not the case.
++ */
++ entity = parent;
++ for_each_entity(entity) {
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++
++ /*
++ * Invoke __bfq_requeue_entity on entity, even if
++ * already active, to requeue/reposition it in the
++ * active tree (because sd->next_in_service has
++ * changed)
++ */
++ __bfq_requeue_entity(entity);
++
++ sd = entity->sched_data;
++ BUG_ON(expiration && sd->in_service_entity != entity);
++
++ if (bfqq)
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "invoking udpdate_next for this queue");
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ else {
++ struct bfq_group *bfqg =
++ container_of(entity,
++ struct bfq_group, entity);
++
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++ "invoking udpdate_next for this entity");
++ }
++#endif
++ if (!bfq_update_next_in_service(sd, entity, expiration) &&
++ !expiration)
++ /*
++ * next_in_service unchanged or not causing
++ * any change in entity->parent->sd, and no
++ * requeueing needed for expiration: stop
++ * here.
++ */
++ break;
++ }
++}
++
++/**
++ * bfq_calc_vtime_jump - compute the value to which the vtime should jump,
++ * if needed, to have at least one entity eligible.
++ * @st: the service tree to act upon.
++ *
++ * Assumes that st is not empty.
++ */
++static u64 bfq_calc_vtime_jump(struct bfq_service_tree *st)
++{
++ struct bfq_entity *root_entity = bfq_root_active_entity(&st->active);
++
++ if (bfq_gt(root_entity->min_start, st->vtime)) {
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(root_entity);
++
++ if (bfqq)
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "new value %llu",
++ ((root_entity->min_start>>10)*1000)>>12);
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ else {
++ struct bfq_group *bfqg =
++ container_of(root_entity, struct bfq_group,
++ entity);
++
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++ "new value %llu",
++ ((root_entity->min_start>>10)*1000)>>12);
++ }
++#endif
++ return root_entity->min_start;
++ }
++ return st->vtime;
++}
++
++static void bfq_update_vtime(struct bfq_service_tree *st, u64 new_value)
++{
++ if (new_value > st->vtime) {
++ st->vtime = new_value;
++ bfq_forget_idle(st);
++ }
++}
++
++/**
++ * bfq_first_active_entity - find the eligible entity with
++ * the smallest finish time
++ * @st: the service tree to select from.
++ * @vtime: the system virtual to use as a reference for eligibility
++ *
++ * This function searches the first schedulable entity, starting from the
++ * root of the tree and going on the left every time on this side there is
++ * a subtree with at least one eligible (start >= vtime) entity. The path on
++ * the right is followed only if a) the left subtree contains no eligible
++ * entities and b) no eligible entity has been found yet.
++ */
++static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st,
++ u64 vtime)
++{
++ struct bfq_entity *entry, *first = NULL;
++ struct rb_node *node = st->active.rb_node;
++
++ while (node) {
++ entry = rb_entry(node, struct bfq_entity, rb_node);
++left:
++ if (!bfq_gt(entry->start, vtime))
++ first = entry;
++
++ BUG_ON(bfq_gt(entry->min_start, vtime));
++
++ if (node->rb_left) {
++ entry = rb_entry(node->rb_left,
++ struct bfq_entity, rb_node);
++ if (!bfq_gt(entry->min_start, vtime)) {
++ node = node->rb_left;
++ goto left;
++ }
++ }
++ if (first)
++ break;
++ node = node->rb_right;
++ }
++
++ BUG_ON(!first && !RB_EMPTY_ROOT(&st->active));
++ return first;
++}
++
++/**
++ * __bfq_lookup_next_entity - return the first eligible entity in @st.
++ * @st: the service tree.
++ *
++ * If there is no in-service entity for the sched_data st belongs to,
++ * then return the entity that will be set in service if:
++ * 1) the parent entity this st belongs to is set in service;
++ * 2) no entity belonging to such parent entity undergoes a state change
++ * that would influence the timestamps of the entity (e.g., becomes idle,
++ * becomes backlogged, changes its budget, ...).
++ *
++ * In this first case, update the virtual time in @st too (see the
++ * comments on this update inside the function).
++ *
++ * In constrast, if there is an in-service entity, then return the
++ * entity that would be set in service if not only the above
++ * conditions, but also the next one held true: the currently
++ * in-service entity, on expiration,
++ * 1) gets a finish time equal to the current one, or
++ * 2) is not eligible any more, or
++ * 3) is idle.
++ */
++static struct bfq_entity *
++__bfq_lookup_next_entity(struct bfq_service_tree *st, bool in_service)
++{
++ struct bfq_entity *entity;
++ u64 new_vtime;
++ struct bfq_queue *bfqq;
++
++ if (RB_EMPTY_ROOT(&st->active))
++ return NULL;
++
++ /*
++ * Get the value of the system virtual time for which at
++ * least one entity is eligible.
++ */
++ new_vtime = bfq_calc_vtime_jump(st);
++
++ /*
++ * If there is no in-service entity for the sched_data this
++ * active tree belongs to, then push the system virtual time
++ * up to the value that guarantees that at least one entity is
++ * eligible. If, instead, there is an in-service entity, then
++ * do not make any such update, because there is already an
++ * eligible entity, namely the in-service one (even if the
++ * entity is not on st, because it was extracted when set in
++ * service).
++ */
++ if (!in_service)
++ bfq_update_vtime(st, new_vtime);
++
++ entity = bfq_first_active_entity(st, new_vtime);
++ BUG_ON(bfq_gt(entity->start, new_vtime));
++
++ /* Log some information */
++ bfqq = bfq_entity_to_bfqq(entity);
++ if (bfqq)
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "start %llu vtime %llu st %p",
++ ((entity->start>>10)*1000)>>12,
++ ((new_vtime>>10)*1000)>>12, st);
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ else {
++ struct bfq_group *bfqg =
++ container_of(entity, struct bfq_group, entity);
++
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++ "start %llu vtime %llu (%llu) st %p",
++ ((entity->start>>10)*1000)>>12,
++ ((st->vtime>>10)*1000)>>12,
++ ((new_vtime>>10)*1000)>>12, st);
++ }
++#endif
++
++ BUG_ON(!entity);
++
++ return entity;
++}
++
++/**
++ * bfq_lookup_next_entity - return the first eligible entity in @sd.
++ * @sd: the sched_data.
++ * @expiration: true if we are on the expiration path of the in-service queue
++ *
++ * This function is invoked when there has been a change in the trees
++ * for sd, and we need to know what is the new next entity to serve
++ * after this change.
++ */
++static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
++ bool expiration)
++{
++ struct bfq_service_tree *st = sd->service_tree;
++ struct bfq_service_tree *idle_class_st = st + (BFQ_IOPRIO_CLASSES - 1);
++ struct bfq_entity *entity = NULL;
++ struct bfq_queue *bfqq;
++ int class_idx = 0;
++
++ BUG_ON(!sd);
++ BUG_ON(!st);
++ /*
++ * Choose from idle class, if needed to guarantee a minimum
++ * bandwidth to this class (and if there is some active entity
++ * in idle class). This should also mitigate
++ * priority-inversion problems in case a low priority task is
++ * holding file system resources.
++ */
++ if (time_is_before_jiffies(sd->bfq_class_idle_last_service +
++ BFQ_CL_IDLE_TIMEOUT)) {
++ if (!RB_EMPTY_ROOT(&idle_class_st->active))
++ class_idx = BFQ_IOPRIO_CLASSES - 1;
++ /* About to be served if backlogged, or not yet backlogged */
++ sd->bfq_class_idle_last_service = jiffies;
++ }
++
++ /*
++ * Find the next entity to serve for the highest-priority
++ * class, unless the idle class needs to be served.
++ */
++ for (; class_idx < BFQ_IOPRIO_CLASSES; class_idx++) {
++ /*
++ * If expiration is true, then bfq_lookup_next_entity
++ * is being invoked as a part of the expiration path
++ * of the in-service queue. In this case, even if
++ * sd->in_service_entity is not NULL,
++ * sd->in_service_entiy at this point is actually not
++ * in service any more, and, if needed, has already
++ * been properly queued or requeued into the right
++ * tree. The reason why sd->in_service_entity is still
++ * not NULL here, even if expiration is true, is that
++ * sd->in_service_entiy is reset as a last step in the
++ * expiration path. So, if expiration is true, tell
++ * __bfq_lookup_next_entity that there is no
++ * sd->in_service_entity.
++ */
++ entity = __bfq_lookup_next_entity(st + class_idx,
++ sd->in_service_entity &&
++ !expiration);
++
++ if (entity)
++ break;
++ }
++
++ BUG_ON(!entity &&
++ (!RB_EMPTY_ROOT(&st->active) || !RB_EMPTY_ROOT(&(st+1)->active) ||
++ !RB_EMPTY_ROOT(&(st+2)->active)));
++
++ if (!entity)
++ return NULL;
++
++ /* Log some information */
++ bfqq = bfq_entity_to_bfqq(entity);
++ if (bfqq)
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "chosen from st %p %d",
++ st + class_idx, class_idx);
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ else {
++ struct bfq_group *bfqg =
++ container_of(entity, struct bfq_group, entity);
++
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++ "chosen from st %p %d",
++ st + class_idx, class_idx);
++ }
++#endif
++
++ return entity;
++}
++
++static bool next_queue_may_preempt(struct bfq_data *bfqd)
++{
++ struct bfq_sched_data *sd = &bfqd->root_group->sched_data;
++
++ return sd->next_in_service != sd->in_service_entity;
++}
++
++/*
++ * Get next queue for service.
++ */
++static struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
++{
++ struct bfq_entity *entity = NULL;
++ struct bfq_sched_data *sd;
++ struct bfq_queue *bfqq;
++
++ BUG_ON(bfqd->in_service_queue);
++
++ if (bfq_tot_busy_queues(bfqd) == 0)
++ return NULL;
++
++ /*
++ * Traverse the path from the root to the leaf entity to
++ * serve. Set in service all the entities visited along the
++ * way.
++ */
++ sd = &bfqd->root_group->sched_data;
++ for (; sd ; sd = entity->my_sched_data) {
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ if (entity) {
++ struct bfq_group *bfqg =
++ container_of(entity, struct bfq_group, entity);
++
++ bfq_log_bfqg(bfqd, bfqg,
++ "lookup in this group");
++ if (!sd->next_in_service)
++ pr_crit("lookup in this group");
++ } else {
++ bfq_log_bfqg(bfqd, bfqd->root_group,
++ "lookup in root group");
++ if (!sd->next_in_service)
++ pr_crit("lookup in root group");
++ }
++#endif
++
++ BUG_ON(!sd->next_in_service);
++
++ /*
++ * WARNING. We are about to set the in-service entity
++ * to sd->next_in_service, i.e., to the (cached) value
++ * returned by bfq_lookup_next_entity(sd) the last
++ * time it was invoked, i.e., the last time when the
++ * service order in sd changed as a consequence of the
++ * activation or deactivation of an entity. In this
++ * respect, if we execute bfq_lookup_next_entity(sd)
++ * in this very moment, it may, although with low
++ * probability, yield a different entity than that
++ * pointed to by sd->next_in_service. This rare event
++ * happens in case there was no CLASS_IDLE entity to
++ * serve for sd when bfq_lookup_next_entity(sd) was
++ * invoked for the last time, while there is now one
++ * such entity.
++ *
++ * If the above event happens, then the scheduling of
++ * such entity in CLASS_IDLE is postponed until the
++ * service of the sd->next_in_service entity
++ * finishes. In fact, when the latter is expired,
++ * bfq_lookup_next_entity(sd) gets called again,
++ * exactly to update sd->next_in_service.
++ */
++
++ /* Make next_in_service entity become in_service_entity */
++ entity = sd->next_in_service;
++ sd->in_service_entity = entity;
++
++ /*
++ * If entity is no longer a candidate for next
++ * service, then it must be extracted from its active
++ * tree, so as to make sure that it won't be
++ * considered when computing next_in_service. See the
++ * comments on the function
++ * bfq_no_longer_next_in_service() for details.
++ */
++ if (bfq_no_longer_next_in_service(entity))
++ bfq_active_extract(bfq_entity_service_tree(entity),
++ entity);
++
++ /*
++ * Even if entity is not to be extracted according to
++ * the above check, a descendant entity may get
++ * extracted in one of the next iterations of this
++ * loop. Such an event could cause a change in
++ * next_in_service for the level of the descendant
++ * entity, and thus possibly back to this level.
++ *
++ * However, we cannot perform the resulting needed
++ * update of next_in_service for this level before the
++ * end of the whole loop, because, to know which is
++ * the correct next-to-serve candidate entity for each
++ * level, we need first to find the leaf entity to set
++ * in service. In fact, only after we know which is
++ * the next-to-serve leaf entity, we can discover
++ * whether the parent entity of the leaf entity
++ * becomes the next-to-serve, and so on.
++ */
++
++ /* Log some information */
++ bfqq = bfq_entity_to_bfqq(entity);
++ if (bfqq)
++ bfq_log_bfqq(bfqd, bfqq,
++ "this queue, finish %llu",
++ (((entity->finish>>10)*1000)>>10)>>2);
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ else {
++ struct bfq_group *bfqg =
++ container_of(entity, struct bfq_group, entity);
++
++ bfq_log_bfqg(bfqd, bfqg,
++ "this entity, finish %llu",
++ (((entity->finish>>10)*1000)>>10)>>2);
++ }
++#endif
++
++ }
++
++ BUG_ON(!entity);
++ bfqq = bfq_entity_to_bfqq(entity);
++ BUG_ON(!bfqq);
++
++ /*
++ * We can finally update all next-to-serve entities along the
++ * path from the leaf entity just set in service to the root.
++ */
++ for_each_entity(entity) {
++ struct bfq_sched_data *sd = entity->sched_data;
++
++ if (!bfq_update_next_in_service(sd, NULL, false))
++ break;
++ }
++
++ return bfqq;
++}
++
++static void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
++{
++ struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue;
++ struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity;
++ struct bfq_entity *entity = in_serv_entity;
++
++#ifndef BFQ_MQ
++ if (bfqd->in_service_bic) {
++ put_io_context(bfqd->in_service_bic->icq.ioc);
++ bfqd->in_service_bic = NULL;
++ }
++#endif
++
++ bfq_clear_bfqq_wait_request(in_serv_bfqq);
++ hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
++ bfqd->in_service_queue = NULL;
++
++ /*
++ * When this function is called, all in-service entities have
++ * been properly deactivated or requeued, so we can safely
++ * execute the final step: reset in_service_entity along the
++ * path from entity to the root.
++ */
++ for_each_entity(entity)
++ entity->sched_data->in_service_entity = NULL;
++
++ /*
++ * in_serv_entity is no longer in service, so, if it is in no
++ * service tree either, then release the service reference to
++ * the queue it represents (taken with bfq_get_entity).
++ */
++ if (!in_serv_entity->on_st)
++ bfq_put_queue(in_serv_bfqq);
++}
++
++static void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ bool ins_into_idle_tree, bool expiration)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++
++ bfq_deactivate_entity(entity, ins_into_idle_tree, expiration);
++}
++
++static void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
++
++ BUG_ON(bfqq == bfqd->in_service_queue);
++ BUG_ON(entity->tree != &st->active && entity->tree != &st->idle &&
++ entity->on_st);
++
++ bfq_activate_requeue_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq),
++ false, false);
++ bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
++}
++
++static void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ bool expiration)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++
++ bfq_activate_requeue_entity(entity, false,
++ bfqq == bfqd->in_service_queue, expiration);
++}
++
++static void bfqg_stats_update_dequeue(struct bfq_group *bfqg);
++
++/*
++ * Called when the bfqq no longer has requests pending, remove it from
++ * the service tree. As a special case, it can be invoked during an
++ * expiration.
++ */
++static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ bool expiration)
++{
++ BUG_ON(!bfq_bfqq_busy(bfqq));
++ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
++
++ bfq_log_bfqq(bfqd, bfqq, "del from busy");
++
++ bfq_clear_bfqq_busy(bfqq);
++
++ BUG_ON(bfq_tot_busy_queues(bfqd) == 0);
++ bfqd->busy_queues[bfqq->ioprio_class - 1]--;
++
++ if (bfqq->wr_coeff > 1) {
++ bfqd->wr_busy_queues--;
++ BUG_ON(bfqd->wr_busy_queues < 0);
++ }
++
++ bfqg_stats_update_dequeue(bfqq_group(bfqq));
++
++ BUG_ON(bfqq->entity.budget < 0);
++
++ bfq_deactivate_bfqq(bfqd, bfqq, true, expiration);
++ if (!bfqq->dispatched)
++ bfq_weights_tree_remove(bfqd, bfqq);
++}
++
++/*
++ * Called when an inactive queue receives a new request.
++ */
++static void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ BUG_ON(bfq_bfqq_busy(bfqq));
++ BUG_ON(bfqq == bfqd->in_service_queue);
++
++ bfq_log_bfqq(bfqd, bfqq, "add to busy");
++
++ bfq_activate_bfqq(bfqd, bfqq);
++
++ bfq_mark_bfqq_busy(bfqq);
++ bfqd->busy_queues[bfqq->ioprio_class - 1]++;
++
++ if (!bfqq->dispatched)
++ if (bfqq->wr_coeff == 1)
++ bfq_weights_tree_add(bfqd, bfqq,
++ &bfqd->queue_weights_tree);
++
++ if (bfqq->wr_coeff > 1) {
++ bfqd->wr_busy_queues++;
++ BUG_ON(bfqd->wr_busy_queues > bfq_tot_busy_queues(bfqd));
++ }
++
++}
+diff --git a/block/bfq-sq-iosched.c b/block/bfq-sq-iosched.c
+new file mode 100644
+index 000000000000..6da94eef0cf1
+--- /dev/null
++++ b/block/bfq-sq-iosched.c
+@@ -0,0 +1,5957 @@
++/*
++ * Budget Fair Queueing (BFQ) I/O scheduler.
++ *
++ * Based on ideas and code from CFQ:
++ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
++ *
++ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
++ * Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
++ *
++ * Licensed under the GPL-2 as detailed in the accompanying COPYING.BFQ
++ * file.
++ *
++ * BFQ is a proportional-share I/O scheduler, with some extra
++ * low-latency capabilities. BFQ also supports full hierarchical
++ * scheduling through cgroups. Next paragraphs provide an introduction
++ * on BFQ inner workings. Details on BFQ benefits and usage can be
++ * found in Documentation/block/bfq-iosched.txt.
++ *
++ * BFQ is a proportional-share storage-I/O scheduling algorithm based
++ * on the slice-by-slice service scheme of CFQ. But BFQ assigns
++ * budgets, measured in number of sectors, to processes instead of
++ * time slices. The device is not granted to the in-service process
++ * for a given time slice, but until it has exhausted its assigned
++ * budget. This change from the time to the service domain enables BFQ
++ * to distribute the device throughput among processes as desired,
++ * without any distortion due to throughput fluctuations, or to device
++ * internal queueing. BFQ uses an ad hoc internal scheduler, called
++ * B-WF2Q+, to schedule processes according to their budgets. More
++ * precisely, BFQ schedules queues associated with processes. Thanks to
++ * the accurate policy of B-WF2Q+, BFQ can afford to assign high
++ * budgets to I/O-bound processes issuing sequential requests (to
++ * boost the throughput), and yet guarantee a low latency to
++ * interactive and soft real-time applications.
++ *
++ * In particular, BFQ schedules I/O so as to achieve the latter goal--
++ * low latency for interactive and soft real-time applications--if the
++ * low_latency parameter is set (default configuration). To this
++ * purpose, BFQ constantly tries to detect whether the I/O requests in
++ * a bfq_queue come from an interactive or a soft real-time
++ * application. For brevity, in these cases, the queue is said to be
++ * interactive or soft real-time. In both cases, BFQ privileges the
++ * service of the queue, over that of non-interactive and
++ * non-soft-real-time queues. This privileging is performed, mainly,
++ * by raising the weight of the queue. So, for brevity, we call just
++ * weight-raising periods the time periods during which a queue is
++ * privileged, because deemed interactive or soft real-time.
++ *
++ * The detection of soft real-time queues/applications is described in
++ * detail in the comments on the function
++ * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
++ * interactive queue works as follows: a queue is deemed interactive
++ * if it is constantly non empty only for a limited time interval,
++ * after which it does become empty. The queue may be deemed
++ * interactive again (for a limited time), if it restarts being
++ * constantly non empty, provided that this happens only after the
++ * queue has remained empty for a given minimum idle time.
++ *
++ * By default, BFQ computes automatically the above maximum time
++ * interval, i.e., the time interval after which a constantly
++ * non-empty queue stops being deemed interactive. Since a queue is
++ * weight-raised while it is deemed interactive, this maximum time
++ * interval happens to coincide with the (maximum) duration of the
++ * weight-raising for interactive queues.
++ *
++ * NOTE: if the main or only goal, with a given device, is to achieve
++ * the maximum-possible throughput at all times, then do switch off
++ * all low-latency heuristics for that device, by setting low_latency
++ * to 0.
++ *
++ * BFQ is described in [1], where also a reference to the initial,
++ * more theoretical paper on BFQ can be found. The interested reader
++ * can find in the latter paper full details on the main algorithm, as
++ * well as formulas of the guarantees and formal proofs of all the
++ * properties. With respect to the version of BFQ presented in these
++ * papers, this implementation adds a few more heuristics, such as the
++ * one that guarantees a low latency to soft real-time applications,
++ * and a hierarchical extension based on H-WF2Q+.
++ *
++ * B-WF2Q+ is based on WF2Q+, that is described in [2], together with
++ * H-WF2Q+, while the augmented tree used to implement B-WF2Q+ with O(log N)
++ * complexity derives from the one introduced with EEVDF in [3].
++ *
++ * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
++ * Scheduler", Proceedings of the First Workshop on Mobile System
++ * Technologies (MST-2015), May 2015.
++ * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
++ *
++ * http://algogroup.unimo.it/people/paolo/disk_sched/bf1-v1-suite-results.pdf
++ *
++ * [2] Jon C.R. Bennett and H. Zhang, ``Hierarchical Packet Fair Queueing
++ * Algorithms,'' IEEE/ACM Transactions on Networking, 5(5):675-689,
++ * Oct 1997.
++ *
++ * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
++ *
++ * [3] I. Stoica and H. Abdel-Wahab, ``Earliest Eligible Virtual Deadline
++ * First: A Flexible and Accurate Mechanism for Proportional Share
++ * Resource Allocation,'' technical report.
++ *
++ * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
++ */
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/blkdev.h>
++#include <linux/cgroup.h>
++#include <linux/elevator.h>
++#include <linux/jiffies.h>
++#include <linux/rbtree.h>
++#include <linux/ioprio.h>
++#include "blk.h"
++#include "bfq.h"
++#include "blk-wbt.h"
++
++/* Expiration time of sync (0) and async (1) requests, in ns. */
++static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
++
++/* Maximum backwards seek, in KiB. */
++static const int bfq_back_max = (16 * 1024);
++
++/* Penalty of a backwards seek, in number of sectors. */
++static const int bfq_back_penalty = 2;
++
++/* Idling period duration, in ns. */
++static u32 bfq_slice_idle = (NSEC_PER_SEC / 125);
++
++/* Minimum number of assigned budgets for which stats are safe to compute. */
++static const int bfq_stats_min_budgets = 194;
++
++/* Default maximum budget values, in sectors and number of requests. */
++static const int bfq_default_max_budget = (16 * 1024);
++
++/*
++ * When a sync request is dispatched, the queue that contains that
++ * request, and all the ancestor entities of that queue, are charged
++ * with the number of sectors of the request. In constrast, if the
++ * request is async, then the queue and its ancestor entities are
++ * charged with the number of sectors of the request, multiplied by
++ * the factor below. This throttles the bandwidth for async I/O,
++ * w.r.t. to sync I/O, and it is done to counter the tendency of async
++ * writes to steal I/O throughput to reads.
++ *
++ * The current value of this parameter is the result of a tuning with
++ * several hardware and software configurations. We tried to find the
++ * lowest value for which writes do not cause noticeable problems to
++ * reads. In fact, the lower this parameter, the stabler I/O control,
++ * in the following respect. The lower this parameter is, the less
++ * the bandwidth enjoyed by a group decreases
++ * - when the group does writes, w.r.t. to when it does reads;
++ * - when other groups do reads, w.r.t. to when they do writes.
++ */
++static const int bfq_async_charge_factor = 3;
++
++/* Default timeout values, in jiffies, approximating CFQ defaults. */
++static const int bfq_timeout = (HZ / 8);
++
++/*
++ * Time limit for merging (see comments in bfq_setup_cooperator). Set
++ * to the slowest value that, in our tests, proved to be effective in
++ * removing false positives, while not causing true positives to miss
++ * queue merging.
++ *
++ * As can be deduced from the low time limit below, queue merging, if
++ * successful, happens at the very beggining of the I/O of the involved
++ * cooperating processes, as a consequence of the arrival of the very
++ * first requests from each cooperator. After that, there is very
++ * little chance to find cooperators.
++ */
++static const unsigned long bfq_merge_time_limit = HZ/10;
++
++#define MAX_LENGTH_REASON_NAME 25
++
++static const char reason_name[][MAX_LENGTH_REASON_NAME] = {"TOO_IDLE",
++"BUDGET_TIMEOUT", "BUDGET_EXHAUSTED", "NO_MORE_REQUESTS",
++"PREEMPTED"};
++
++static struct kmem_cache *bfq_pool;
++
++/* Below this threshold (in ns), we consider thinktime immediate. */
++#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
++
++/* hw_tag detection: parallel requests threshold and min samples needed. */
++#define BFQ_HW_QUEUE_THRESHOLD 3
++#define BFQ_HW_QUEUE_SAMPLES 32
++
++#define BFQQ_SEEK_THR (sector_t)(8 * 100)
++#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
++#define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
++ (get_sdist(last_pos, rq) > \
++ BFQQ_SEEK_THR && \
++ (!blk_queue_nonrot(bfqd->queue) || \
++ blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
++#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
++#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 19)
++
++/* Min number of samples required to perform peak-rate update */
++#define BFQ_RATE_MIN_SAMPLES 32
++/* Min observation time interval required to perform a peak-rate update (ns) */
++#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
++/* Target observation time interval for a peak-rate update (ns) */
++#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
++
++/*
++ * Shift used for peak-rate fixed precision calculations.
++ * With
++ * - the current shift: 16 positions
++ * - the current type used to store rate: u32
++ * - the current unit of measure for rate: [sectors/usec], or, more precisely,
++ * [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
++ * the range of rates that can be stored is
++ * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
++ * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
++ * [15, 65G] sectors/sec
++ * Which, assuming a sector size of 512B, corresponds to a range of
++ * [7.5K, 33T] B/sec
++ */
++#define BFQ_RATE_SHIFT 16
++
++/*
++ * When configured for computing the duration of the weight-raising
++ * for interactive queues automatically (see the comments at the
++ * beginning of this file), BFQ does it using the following formula:
++ * duration = (ref_rate / r) * ref_wr_duration,
++ * where r is the peak rate of the device, and ref_rate and
++ * ref_wr_duration are two reference parameters. In particular,
++ * ref_rate is the peak rate of the reference storage device (see
++ * below), and ref_wr_duration is about the maximum time needed, with
++ * BFQ and while reading two files in parallel, to load typical large
++ * applications on the reference device (see the comments on
++ * max_service_from_wr below, for more details on how ref_wr_duration
++ * is obtained). In practice, the slower/faster the device at hand
++ * is, the more/less it takes to load applications with respect to the
++ * reference device. Accordingly, the longer/shorter BFQ grants
++ * weight raising to interactive applications.
++ *
++ * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
++ * depending on whether the device is rotational or non-rotational.
++ *
++ * In the following definitions, ref_rate[0] and ref_wr_duration[0]
++ * are the reference values for a rotational device, whereas
++ * ref_rate[1] and ref_wr_duration[1] are the reference values for a
++ * non-rotational device. The reference rates are not the actual peak
++ * rates of the devices used as a reference, but slightly lower
++ * values. The reason for using slightly lower values is that the
++ * peak-rate estimator tends to yield slightly lower values than the
++ * actual peak rate (it can yield the actual peak rate only if there
++ * is only one process doing I/O, and the process does sequential
++ * I/O).
++ *
++ * The reference peak rates are measured in sectors/usec, left-shifted
++ * by BFQ_RATE_SHIFT.
++ */
++static int ref_rate[2] = {14000, 33000};
++/*
++ * To improve readability, a conversion function is used to initialize
++ * the following array, which entails that the array can be
++ * initialized only in a function.
++ */
++static int ref_wr_duration[2];
++
++/*
++ * BFQ uses the above-detailed, time-based weight-raising mechanism to
++ * privilege interactive tasks. This mechanism is vulnerable to the
++ * following false positives: I/O-bound applications that will go on
++ * doing I/O for much longer than the duration of weight
++ * raising. These applications have basically no benefit from being
++ * weight-raised at the beginning of their I/O. On the opposite end,
++ * while being weight-raised, these applications
++ * a) unjustly steal throughput to applications that may actually need
++ * low latency;
++ * b) make BFQ uselessly perform device idling; device idling results
++ * in loss of device throughput with most flash-based storage, and may
++ * increase latencies when used purposelessly.
++ *
++ * BFQ tries to reduce these problems, by adopting the following
++ * countermeasure. To introduce this countermeasure, we need first to
++ * finish explaining how the duration of weight-raising for
++ * interactive tasks is computed.
++ *
++ * For a bfq_queue deemed as interactive, the duration of weight
++ * raising is dynamically adjusted, as a function of the estimated
++ * peak rate of the device, so as to be equal to the time needed to
++ * execute the 'largest' interactive task we benchmarked so far. By
++ * largest task, we mean the task for which each involved process has
++ * to do more I/O than for any of the other tasks we benchmarked. This
++ * reference interactive task is the start-up of LibreOffice Writer,
++ * and in this task each process/bfq_queue needs to have at most ~110K
++ * sectors transfered.
++ *
++ * This last piece of information enables BFQ to reduce the actual
++ * duration of weight-raising for at least one class of I/O-bound
++ * applications: those doing sequential or quasi-sequential I/O. An
++ * example is file copy. In fact, once started, the main I/O-bound
++ * processes of these applications usually consume the above 110K
++ * sectors in much less time than the processes of an application that
++ * is starting, because these I/O-bound processes will greedily devote
++ * almost all their CPU cycles only to their target,
++ * throughput-friendly I/O operations. This is even more true if BFQ
++ * happens to be underestimating the device peak rate, and thus
++ * overestimating the duration of weight raising. But, according to
++ * our measurements, once transferred 110K sectors, these processes
++ * have no right to be weight-raised any longer.
++ *
++ * Basing on the last consideration, BFQ ends weight-raising for a
++ * bfq_queue if the latter happens to have received an amount of
++ * service at least equal to the following constant. The constant is
++ * set to slightly more than 110K, to have a minimum safety margin.
++ *
++ * This early ending of weight-raising reduces the amount of time
++ * during which interactive false positives cause the two problems
++ * described at the beginning of these comments.
++ */
++static const unsigned long max_service_from_wr = 120000;
++
++#define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \
++ { RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 })
++
++#define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
++#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
++
++static void bfq_schedule_dispatch(struct bfq_data *bfqd);
++
++#include "bfq-ioc.c"
++#include "bfq-sched.c"
++#include "bfq-cgroup-included.c"
++
++#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
++#define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
++
++#define bfq_sample_valid(samples) ((samples) > 80)
++
++/*
++ * Scheduler run of queue, if there are requests pending and no one in the
++ * driver that will restart queueing.
++ */
++static void bfq_schedule_dispatch(struct bfq_data *bfqd)
++{
++ if (bfqd->queued != 0) {
++ bfq_log(bfqd, "");
++ kblockd_schedule_work(&bfqd->unplug_work);
++ }
++}
++
++/*
++ * Lifted from AS - choose which of rq1 and rq2 that is best served now.
++ * We choose the request that is closesr to the head right now. Distance
++ * behind the head is penalized and only allowed to a certain extent.
++ */
++static struct request *bfq_choose_req(struct bfq_data *bfqd,
++ struct request *rq1,
++ struct request *rq2,
++ sector_t last)
++{
++ sector_t s1, s2, d1 = 0, d2 = 0;
++ unsigned long back_max;
++#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
++#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
++ unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
++
++ if (!rq1 || rq1 == rq2)
++ return rq2;
++ if (!rq2)
++ return rq1;
++
++ if (rq_is_sync(rq1) && !rq_is_sync(rq2))
++ return rq1;
++ else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
++ return rq2;
++ if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
++ return rq1;
++ else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
++ return rq2;
++
++ s1 = blk_rq_pos(rq1);
++ s2 = blk_rq_pos(rq2);
++
++ /*
++ * By definition, 1KiB is 2 sectors.
++ */
++ back_max = bfqd->bfq_back_max * 2;
++
++ /*
++ * Strict one way elevator _except_ in the case where we allow
++ * short backward seeks which are biased as twice the cost of a
++ * similar forward seek.
++ */
++ if (s1 >= last)
++ d1 = s1 - last;
++ else if (s1 + back_max >= last)
++ d1 = (last - s1) * bfqd->bfq_back_penalty;
++ else
++ wrap |= BFQ_RQ1_WRAP;
++
++ if (s2 >= last)
++ d2 = s2 - last;
++ else if (s2 + back_max >= last)
++ d2 = (last - s2) * bfqd->bfq_back_penalty;
++ else
++ wrap |= BFQ_RQ2_WRAP;
++
++ /* Found required data */
++
++ /*
++ * By doing switch() on the bit mask "wrap" we avoid having to
++ * check two variables for all permutations: --> faster!
++ */
++ switch (wrap) {
++ case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
++ if (d1 < d2)
++ return rq1;
++ else if (d2 < d1)
++ return rq2;
++
++ if (s1 >= s2)
++ return rq1;
++ else
++ return rq2;
++
++ case BFQ_RQ2_WRAP:
++ return rq1;
++ case BFQ_RQ1_WRAP:
++ return rq2;
++ case (BFQ_RQ1_WRAP|BFQ_RQ2_WRAP): /* both rqs wrapped */
++ default:
++ /*
++ * Since both rqs are wrapped,
++ * start with the one that's further behind head
++ * (--> only *one* back seek required),
++ * since back seek takes more time than forward.
++ */
++ if (s1 <= s2)
++ return rq1;
++ else
++ return rq2;
++ }
++}
++
++static struct bfq_queue *
++bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
++ sector_t sector, struct rb_node **ret_parent,
++ struct rb_node ***rb_link)
++{
++ struct rb_node **p, *parent;
++ struct bfq_queue *bfqq = NULL;
++
++ parent = NULL;
++ p = &root->rb_node;
++ while (*p) {
++ struct rb_node **n;
++
++ parent = *p;
++ bfqq = rb_entry(parent, struct bfq_queue, pos_node);
++
++ /*
++ * Sort strictly based on sector. Smallest to the left,
++ * largest to the right.
++ */
++ if (sector > blk_rq_pos(bfqq->next_rq))
++ n = &(*p)->rb_right;
++ else if (sector < blk_rq_pos(bfqq->next_rq))
++ n = &(*p)->rb_left;
++ else
++ break;
++ p = n;
++ bfqq = NULL;
++ }
++
++ *ret_parent = parent;
++ if (rb_link)
++ *rb_link = p;
++
++ bfq_log(bfqd, "%llu: returning %d",
++ (unsigned long long) sector,
++ bfqq ? bfqq->pid : 0);
++
++ return bfqq;
++}
++
++static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
++{
++ return bfqq->service_from_backlogged > 0 &&
++ time_is_before_jiffies(bfqq->first_IO_time +
++ bfq_merge_time_limit);
++}
++
++static void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ struct rb_node **p, *parent;
++ struct bfq_queue *__bfqq;
++
++ if (bfqq->pos_root) {
++ rb_erase(&bfqq->pos_node, bfqq->pos_root);
++ bfqq->pos_root = NULL;
++ }
++
++ /*
++ * bfqq cannot be merged any longer (see comments in
++ * bfq_setup_cooperator): no point in adding bfqq into the
++ * position tree.
++ */
++ if (bfq_too_late_for_merging(bfqq))
++ return;
++
++ if (bfq_class_idle(bfqq))
++ return;
++ if (!bfqq->next_rq)
++ return;
++
++ bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
++ __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
++ blk_rq_pos(bfqq->next_rq), &parent, &p);
++ if (!__bfqq) {
++ rb_link_node(&bfqq->pos_node, parent, p);
++ rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
++ } else
++ bfqq->pos_root = NULL;
++}
++
++/*
++ * The following function returns true if every queue must receive the
++ * same share of the throughput (this condition is used when deciding
++ * whether idling may be disabled, see the comments in the function
++ * bfq_better_to_idle()).
++ *
++ * Such a scenario occurs when:
++ * 1) all active queues have the same weight,
++ * 2) all active queues belong to the same I/O-priority class,
++ * 3) all active groups at the same level in the groups tree have the same
++ * weight,
++ * 4) all active groups at the same level in the groups tree have the same
++ * number of children.
++ *
++ * Unfortunately, keeping the necessary state for evaluating exactly
++ * the last two symmetry sub-conditions above would be quite complex
++ * and time consuming. Therefore this function evaluates, instead,
++ * only the following stronger three sub-conditions, for which it is
++ * much easier to maintain the needed state:
++ * 1) all active queues have the same weight,
++ * 2) all active queues belong to the same I/O-priority class,
++ * 3) there are no active groups.
++ * In particular, the last condition is always true if hierarchical
++ * support or the cgroups interface are not enabled, thus no state
++ * needs to be maintained in this case.
++ */
++static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
++{
++ /*
++ * For queue weights to differ, queue_weights_tree must contain
++ * at least two nodes.
++ */
++ bool varied_queue_weights = !RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
++ (bfqd->queue_weights_tree.rb_node->rb_left ||
++ bfqd->queue_weights_tree.rb_node->rb_right);
++
++ bool multiple_classes_busy =
++ (bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
++ (bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
++ (bfqd->busy_queues[1] && bfqd->busy_queues[2]);
++
++ bfq_log(bfqd, "varied_queue_weights %d mul_classes %d",
++ varied_queue_weights, multiple_classes_busy);
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ bfq_log(bfqd, "num_groups_with_pending_reqs %u",
++ bfqd->num_groups_with_pending_reqs);
++#endif
++
++ return !(varied_queue_weights || multiple_classes_busy
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ || bfqd->num_groups_with_pending_reqs > 0
++#endif
++ );
++}
++
++/*
++ * If the weight-counter tree passed as input contains no counter for
++ * the weight of the input queue, then add that counter; otherwise just
++ * increment the existing counter.
++ *
++ * Note that weight-counter trees contain few nodes in mostly symmetric
++ * scenarios. For example, if all queues have the same weight, then the
++ * weight-counter tree for the queues may contain at most one node.
++ * This holds even if low_latency is on, because weight-raised queues
++ * are not inserted in the tree.
++ * In most scenarios, the rate at which nodes are created/destroyed
++ * should be low too.
++ */
++static void bfq_weights_tree_add(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ struct rb_root *root)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++ struct rb_node **new = &(root->rb_node), *parent = NULL;
++
++ /*
++ * Do not insert if the queue is already associated with a
++ * counter, which happens if:
++ * 1) a request arrival has caused the queue to become both
++ * non-weight-raised, and hence change its weight, and
++ * backlogged; in this respect, each of the two events
++ * causes an invocation of this function,
++ * 2) this is the invocation of this function caused by the
++ * second event. This second invocation is actually useless,
++ * and we handle this fact by exiting immediately. More
++ * efficient or clearer solutions might possibly be adopted.
++ */
++ if (bfqq->weight_counter)
++ return;
++
++ while (*new) {
++ struct bfq_weight_counter *__counter = container_of(*new,
++ struct bfq_weight_counter,
++ weights_node);
++ parent = *new;
++
++ if (entity->weight == __counter->weight) {
++ bfqq->weight_counter = __counter;
++ goto inc_counter;
++ }
++ if (entity->weight < __counter->weight)
++ new = &((*new)->rb_left);
++ else
++ new = &((*new)->rb_right);
++ }
++
++ bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
++ GFP_ATOMIC);
++
++ /*
++ * In the unlucky event of an allocation failure, we just
++ * exit. This will cause the weight of queue to not be
++ * considered in bfq_symmetric_scenario, which, in its turn,
++ * causes the scenario to be deemed wrongly symmetric in case
++ * bfqq's weight would have been the only weight making the
++ * scenario asymmetric. On the bright side, no unbalance will
++ * however occur when bfqq becomes inactive again (the
++ * invocation of this function is triggered by an activation
++ * of queue). In fact, bfq_weights_tree_remove does nothing
++ * if !bfqq->weight_counter.
++ */
++ if (unlikely(!bfqq->weight_counter))
++ return;
++
++ bfqq->weight_counter->weight = entity->weight;
++ rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
++ rb_insert_color(&bfqq->weight_counter->weights_node, root);
++
++inc_counter:
++ bfqq->weight_counter->num_active++;
++ bfqq->ref++;
++
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "refs %d weight %d symmetric %d",
++ bfqq->ref,
++ entity->weight,
++ bfq_symmetric_scenario(bfqd));
++}
++
++/*
++ * Decrement the weight counter associated with the queue, and, if the
++ * counter reaches 0, remove the counter from the tree.
++ * See the comments to the function bfq_weights_tree_add() for considerations
++ * about overhead.
++ */
++static void __bfq_weights_tree_remove(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ struct rb_root *root)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++
++ if (!bfqq->weight_counter)
++ return;
++
++ BUG_ON(RB_EMPTY_ROOT(root));
++ BUG_ON(bfqq->weight_counter->weight != entity->weight);
++
++ BUG_ON(!bfqq->weight_counter->num_active);
++ bfqq->weight_counter->num_active--;
++
++ if (bfqq->weight_counter->num_active > 0)
++ goto reset_entity_pointer;
++
++ rb_erase(&bfqq->weight_counter->weights_node, root);
++ kfree(bfqq->weight_counter);
++
++reset_entity_pointer:
++ bfqq->weight_counter = NULL;
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "refs %d weight %d symmetric %d",
++ bfqq->ref,
++ entity->weight,
++ bfq_symmetric_scenario(bfqd));
++ bfq_put_queue(bfqq);
++}
++
++/*
++ * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
++ * of active groups for each queue's inactive parent entity.
++ */
++static void bfq_weights_tree_remove(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ struct bfq_entity *entity = bfqq->entity.parent;
++
++ for_each_entity(entity) {
++ struct bfq_sched_data *sd = entity->my_sched_data;
++
++ BUG_ON(entity->sched_data == NULL); /*
++ * It would mean
++ * that this is
++ * the root group.
++ */
++
++ if (sd->next_in_service || sd->in_service_entity) {
++ BUG_ON(!entity->in_groups_with_pending_reqs);
++ /*
++ * entity is still active, because either
++ * next_in_service or in_service_entity is not
++ * NULL (see the comments on the definition of
++ * next_in_service for details on why
++ * in_service_entity must be checked too).
++ *
++ * As a consequence, its parent entities are
++ * active as well, and thus this loop must
++ * stop here.
++ */
++ break;
++ }
++
++ BUG_ON(!bfqd->num_groups_with_pending_reqs &&
++ entity->in_groups_with_pending_reqs);
++ /*
++ * The decrement of num_groups_with_pending_reqs is
++ * not performed immediately upon the deactivation of
++ * entity, but it is delayed to when it also happens
++ * that the first leaf descendant bfqq of entity gets
++ * all its pending requests completed. The following
++ * instructions perform this delayed decrement, if
++ * needed. See the comments on
++ * num_groups_with_pending_reqs for details.
++ */
++ if (entity->in_groups_with_pending_reqs) {
++ entity->in_groups_with_pending_reqs = false;
++ bfqd->num_groups_with_pending_reqs--;
++ }
++ bfq_log_bfqq(bfqd, bfqq, "num_groups_with_pending_reqs %u",
++ bfqd->num_groups_with_pending_reqs);
++ }
++
++ /*
++ * Next function is invoked last, because it causes bfqq to be
++ * freed if the following holds: bfqq is not in service and
++ * has no dispatched request. DO NOT use bfqq after the next
++ * function invocation.
++ */
++ __bfq_weights_tree_remove(bfqd, bfqq,
++ &bfqd->queue_weights_tree);
++}
++
++/*
++ * Return expired entry, or NULL to just start from scratch in rbtree.
++ */
++static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
++ struct request *last)
++{
++ struct request *rq;
++
++ if (bfq_bfqq_fifo_expire(bfqq))
++ return NULL;
++
++ bfq_mark_bfqq_fifo_expire(bfqq);
++
++ rq = rq_entry_fifo(bfqq->fifo.next);
++
++ if (rq == last || ktime_get_ns() < rq->fifo_time)
++ return NULL;
++
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "returned %p", rq);
++ BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
++ return rq;
++}
++
++static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ struct request *last)
++{
++ struct rb_node *rbnext = rb_next(&last->rb_node);
++ struct rb_node *rbprev = rb_prev(&last->rb_node);
++ struct request *next, *prev = NULL;
++
++ BUG_ON(list_empty(&bfqq->fifo));
++
++ /* Follow expired path, else get first next available. */
++ next = bfq_check_fifo(bfqq, last);
++ if (next) {
++ BUG_ON(next == last);
++ return next;
++ }
++
++ BUG_ON(RB_EMPTY_NODE(&last->rb_node));
++
++ if (rbprev)
++ prev = rb_entry_rq(rbprev);
++
++ if (rbnext)
++ next = rb_entry_rq(rbnext);
++ else {
++ rbnext = rb_first(&bfqq->sort_list);
++ if (rbnext && rbnext != &last->rb_node)
++ next = rb_entry_rq(rbnext);
++ }
++
++ return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
++}
++
++/* see the definition of bfq_async_charge_factor for details */
++static unsigned long bfq_serv_to_charge(struct request *rq,
++ struct bfq_queue *bfqq)
++{
++ if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
++ !bfq_symmetric_scenario(bfqq->bfqd))
++ return blk_rq_sectors(rq);
++
++ return blk_rq_sectors(rq) * bfq_async_charge_factor;
++}
++
++/**
++ * bfq_updated_next_req - update the queue after a new next_rq selection.
++ * @bfqd: the device data the queue belongs to.
++ * @bfqq: the queue to update.
++ *
++ * If the first request of a queue changes we make sure that the queue
++ * has enough budget to serve at least its first request (if the
++ * request has grown). We do this because if the queue has not enough
++ * budget for its first request, it has to go through two dispatch
++ * rounds to actually get it dispatched.
++ */
++static void bfq_updated_next_req(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
++ struct request *next_rq = bfqq->next_rq;
++ unsigned long new_budget;
++
++ if (!next_rq)
++ return;
++
++ if (bfqq == bfqd->in_service_queue)
++ /*
++ * In order not to break guarantees, budgets cannot be
++ * changed after an entity has been selected.
++ */
++ return;
++
++ BUG_ON(entity->tree != &st->active);
++ BUG_ON(entity == entity->sched_data->in_service_entity);
++
++ new_budget = max_t(unsigned long,
++ max_t(unsigned long, bfqq->max_budget,
++ bfq_serv_to_charge(next_rq, bfqq)),
++ entity->service);
++ if (entity->budget != new_budget) {
++ entity->budget = new_budget;
++ bfq_log_bfqq(bfqd, bfqq, "new budget %lu",
++ new_budget);
++ bfq_requeue_bfqq(bfqd, bfqq, false);
++ }
++}
++
++static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
++{
++ u64 dur;
++
++ if (bfqd->bfq_wr_max_time > 0)
++ return bfqd->bfq_wr_max_time;
++
++ dur = bfqd->rate_dur_prod;
++ do_div(dur, bfqd->peak_rate);
++
++ /*
++ * Limit duration between 3 and 25 seconds. The upper limit
++ * has been conservatively set after the following worst case:
++ * on a QEMU/KVM virtual machine
++ * - running in a slow PC
++ * - with a virtual disk stacked on a slow low-end 5400rpm HDD
++ * - serving a heavy I/O workload, such as the sequential reading
++ * of several files
++ * mplayer took 23 seconds to start, if constantly weight-raised.
++ *
++ * As for higher values than that accomodating the above bad
++ * scenario, tests show that higher values would often yield
++ * the opposite of the desired result, i.e., would worsen
++ * responsiveness by allowing non-interactive applications to
++ * preserve weight raising for too long.
++ *
++ * On the other end, lower values than 3 seconds make it
++ * difficult for most interactive tasks to complete their jobs
++ * before weight-raising finishes.
++ */
++ return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
++}
++
++/* switch back from soft real-time to interactive weight raising */
++static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
++ struct bfq_data *bfqd)
++{
++ bfqq->wr_coeff = bfqd->bfq_wr_coeff;
++ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
++ bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
++}
++
++static void
++bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
++ struct bfq_io_cq *bic, bool bfq_already_existing)
++{
++ unsigned int old_wr_coeff;
++ bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
++
++ if (bic->saved_has_short_ttime)
++ bfq_mark_bfqq_has_short_ttime(bfqq);
++ else
++ bfq_clear_bfqq_has_short_ttime(bfqq);
++
++ if (bic->saved_IO_bound)
++ bfq_mark_bfqq_IO_bound(bfqq);
++ else
++ bfq_clear_bfqq_IO_bound(bfqq);
++
++ if (unlikely(busy))
++ old_wr_coeff = bfqq->wr_coeff;
++
++ bfqq->wr_coeff = bic->saved_wr_coeff;
++ bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
++ BUG_ON(time_is_after_jiffies(bfqq->wr_start_at_switch_to_srt));
++ bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
++ bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
++ BUG_ON(time_is_after_jiffies(bfqq->last_wr_start_finish));
++
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "bic %p wr_coeff %d start_finish %lu max_time %lu",
++ bic, bfqq->wr_coeff, bfqq->last_wr_start_finish,
++ bfqq->wr_cur_max_time);
++
++ if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
++ time_is_before_jiffies(bfqq->last_wr_start_finish +
++ bfqq->wr_cur_max_time))) {
++ if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
++ !bfq_bfqq_in_large_burst(bfqq) &&
++ time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
++ bfq_wr_duration(bfqd))) {
++ switch_back_to_interactive_wr(bfqq, bfqd);
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "switching back to interactive");
++ } else {
++ bfqq->wr_coeff = 1;
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "switching off wr (%lu + %lu < %lu)",
++ bfqq->last_wr_start_finish, bfqq->wr_cur_max_time,
++ jiffies);
++ }
++ }
++
++ /* make sure weight will be updated, however we got here */
++ bfqq->entity.prio_changed = 1;
++
++ if (likely(!busy))
++ return;
++
++ if (old_wr_coeff == 1 && bfqq->wr_coeff > 1) {
++ bfqd->wr_busy_queues++;
++ BUG_ON(bfqd->wr_busy_queues > bfq_tot_busy_queues(bfqd));
++ } else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1) {
++ bfqd->wr_busy_queues--;
++ BUG_ON(bfqd->wr_busy_queues < 0);
++ }
++}
++
++static int bfqq_process_refs(struct bfq_queue *bfqq)
++{
++ int process_refs, io_refs;
++
++ lockdep_assert_held(bfqq->bfqd->queue->queue_lock);
++
++ io_refs = bfqq->allocated[READ] + bfqq->allocated[WRITE];
++ process_refs = bfqq->ref - io_refs - bfqq->entity.on_st -
++ (bfqq->weight_counter != NULL);
++ BUG_ON(process_refs < 0);
++ return process_refs;
++}
++
++/* Empty burst list and add just bfqq (see comments to bfq_handle_burst) */
++static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ struct bfq_queue *item;
++ struct hlist_node *n;
++
++ hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
++ hlist_del_init(&item->burst_list_node);
++ hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
++ bfqd->burst_size = 1;
++ bfqd->burst_parent_entity = bfqq->entity.parent;
++}
++
++/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
++static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ /* Increment burst size to take into account also bfqq */
++ bfqd->burst_size++;
++
++ bfq_log_bfqq(bfqd, bfqq, "%d", bfqd->burst_size);
++
++ BUG_ON(bfqd->burst_size > bfqd->bfq_large_burst_thresh);
++
++ if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
++ struct bfq_queue *pos, *bfqq_item;
++ struct hlist_node *n;
++
++ /*
++ * Enough queues have been activated shortly after each
++ * other to consider this burst as large.
++ */
++ bfqd->large_burst = true;
++ bfq_log_bfqq(bfqd, bfqq, "large burst started");
++
++ /*
++ * We can now mark all queues in the burst list as
++ * belonging to a large burst.
++ */
++ hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
++ burst_list_node) {
++ bfq_mark_bfqq_in_large_burst(bfqq_item);
++ bfq_log_bfqq(bfqd, bfqq_item, "marked in large burst");
++ }
++ bfq_mark_bfqq_in_large_burst(bfqq);
++ bfq_log_bfqq(bfqd, bfqq, "marked in large burst");
++
++ /*
++ * From now on, and until the current burst finishes, any
++ * new queue being activated shortly after the last queue
++ * was inserted in the burst can be immediately marked as
++ * belonging to a large burst. So the burst list is not
++ * needed any more. Remove it.
++ */
++ hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
++ burst_list_node)
++ hlist_del_init(&pos->burst_list_node);
++ } else /*
++ * Burst not yet large: add bfqq to the burst list. Do
++ * not increment the ref counter for bfqq, because bfqq
++ * is removed from the burst list before freeing bfqq
++ * in put_queue.
++ */
++ hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
++}
++
++/*
++ * If many queues belonging to the same group happen to be created
++ * shortly after each other, then the processes associated with these
++ * queues have typically a common goal. In particular, bursts of queue
++ * creations are usually caused by services or applications that spawn
++ * many parallel threads/processes. Examples are systemd during boot,
++ * or git grep. To help these processes get their job done as soon as
++ * possible, it is usually better to not grant either weight-raising
++ * or device idling to their queues.
++ *
++ * In this comment we describe, firstly, the reasons why this fact
++ * holds, and, secondly, the next function, which implements the main
++ * steps needed to properly mark these queues so that they can then be
++ * treated in a different way.
++ *
++ * The above services or applications benefit mostly from a high
++ * throughput: the quicker the requests of the activated queues are
++ * cumulatively served, the sooner the target job of these queues gets
++ * completed. As a consequence, weight-raising any of these queues,
++ * which also implies idling the device for it, is almost always
++ * counterproductive. In most cases it just lowers throughput.
++ *
++ * On the other hand, a burst of queue creations may be caused also by
++ * the start of an application that does not consist of a lot of
++ * parallel I/O-bound threads. In fact, with a complex application,
++ * several short processes may need to be executed to start-up the
++ * application. In this respect, to start an application as quickly as
++ * possible, the best thing to do is in any case to privilege the I/O
++ * related to the application with respect to all other
++ * I/O. Therefore, the best strategy to start as quickly as possible
++ * an application that causes a burst of queue creations is to
++ * weight-raise all the queues created during the burst. This is the
++ * exact opposite of the best strategy for the other type of bursts.
++ *
++ * In the end, to take the best action for each of the two cases, the
++ * two types of bursts need to be distinguished. Fortunately, this
++ * seems relatively easy, by looking at the sizes of the bursts. In
++ * particular, we found a threshold such that only bursts with a
++ * larger size than that threshold are apparently caused by
++ * services or commands such as systemd or git grep. For brevity,
++ * hereafter we call just 'large' these bursts. BFQ *does not*
++ * weight-raise queues whose creation occurs in a large burst. In
++ * addition, for each of these queues BFQ performs or does not perform
++ * idling depending on which choice boosts the throughput more. The
++ * exact choice depends on the device and request pattern at
++ * hand.
++ *
++ * Unfortunately, false positives may occur while an interactive task
++ * is starting (e.g., an application is being started). The
++ * consequence is that the queues associated with the task do not
++ * enjoy weight raising as expected. Fortunately these false positives
++ * are very rare. They typically occur if some service happens to
++ * start doing I/O exactly when the interactive task starts.
++ *
++ * Turning back to the next function, it implements all the steps
++ * needed to detect the occurrence of a large burst and to properly
++ * mark all the queues belonging to it (so that they can then be
++ * treated in a different way). This goal is achieved by maintaining a
++ * "burst list" that holds, temporarily, the queues that belong to the
++ * burst in progress. The list is then used to mark these queues as
++ * belonging to a large burst if the burst does become large. The main
++ * steps are the following.
++ *
++ * . when the very first queue is created, the queue is inserted into the
++ * list (as it could be the first queue in a possible burst)
++ *
++ * . if the current burst has not yet become large, and a queue Q that does
++ * not yet belong to the burst is activated shortly after the last time
++ * at which a new queue entered the burst list, then the function appends
++ * Q to the burst list
++ *
++ * . if, as a consequence of the previous step, the burst size reaches
++ * the large-burst threshold, then
++ *
++ * . all the queues in the burst list are marked as belonging to a
++ * large burst
++ *
++ * . the burst list is deleted; in fact, the burst list already served
++ * its purpose (keeping temporarily track of the queues in a burst,
++ * so as to be able to mark them as belonging to a large burst in the
++ * previous sub-step), and now is not needed any more
++ *
++ * . the device enters a large-burst mode
++ *
++ * . if a queue Q that does not belong to the burst is created while
++ * the device is in large-burst mode and shortly after the last time
++ * at which a queue either entered the burst list or was marked as
++ * belonging to the current large burst, then Q is immediately marked
++ * as belonging to a large burst.
++ *
++ * . if a queue Q that does not belong to the burst is created a while
++ * later, i.e., not shortly after, than the last time at which a queue
++ * either entered the burst list or was marked as belonging to the
++ * current large burst, then the current burst is deemed as finished and:
++ *
++ * . the large-burst mode is reset if set
++ *
++ * . the burst list is emptied
++ *
++ * . Q is inserted in the burst list, as Q may be the first queue
++ * in a possible new burst (then the burst list contains just Q
++ * after this step).
++ */
++static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ /*
++ * If bfqq is already in the burst list or is part of a large
++ * burst, or finally has just been split, then there is
++ * nothing else to do.
++ */
++ if (!hlist_unhashed(&bfqq->burst_list_node) ||
++ bfq_bfqq_in_large_burst(bfqq) ||
++ time_is_after_eq_jiffies(bfqq->split_time +
++ msecs_to_jiffies(10)))
++ return;
++
++ /*
++ * If bfqq's creation happens late enough, or bfqq belongs to
++ * a different group than the burst group, then the current
++ * burst is finished, and related data structures must be
++ * reset.
++ *
++ * In this respect, consider the special case where bfqq is
++ * the very first queue created after BFQ is selected for this
++ * device. In this case, last_ins_in_burst and
++ * burst_parent_entity are not yet significant when we get
++ * here. But it is easy to verify that, whether or not the
++ * following condition is true, bfqq will end up being
++ * inserted into the burst list. In particular the list will
++ * happen to contain only bfqq. And this is exactly what has
++ * to happen, as bfqq may be the first queue of the first
++ * burst.
++ */
++ if (time_is_before_jiffies(bfqd->last_ins_in_burst +
++ bfqd->bfq_burst_interval) ||
++ bfqq->entity.parent != bfqd->burst_parent_entity) {
++ bfqd->large_burst = false;
++ bfq_reset_burst_list(bfqd, bfqq);
++ bfq_log_bfqq(bfqd, bfqq,
++ "late activation or different group");
++ goto end;
++ }
++
++ /*
++ * If we get here, then bfqq is being activated shortly after the
++ * last queue. So, if the current burst is also large, we can mark
++ * bfqq as belonging to this large burst immediately.
++ */
++ if (bfqd->large_burst) {
++ bfq_log_bfqq(bfqd, bfqq, "marked in burst");
++ bfq_mark_bfqq_in_large_burst(bfqq);
++ goto end;
++ }
++
++ /*
++ * If we get here, then a large-burst state has not yet been
++ * reached, but bfqq is being activated shortly after the last
++ * queue. Then we add bfqq to the burst.
++ */
++ bfq_add_to_burst(bfqd, bfqq);
++end:
++ /*
++ * At this point, bfqq either has been added to the current
++ * burst or has caused the current burst to terminate and a
++ * possible new burst to start. In particular, in the second
++ * case, bfqq has become the first queue in the possible new
++ * burst. In both cases last_ins_in_burst needs to be moved
++ * forward.
++ */
++ bfqd->last_ins_in_burst = jiffies;
++
++}
++
++static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++
++ if (entity->budget < entity->service) {
++ pr_crit("budget %d service %d\n",
++ entity->budget, entity->service);
++ BUG();
++ }
++ return entity->budget - entity->service;
++}
++
++/*
++ * If enough samples have been computed, return the current max budget
++ * stored in bfqd, which is dynamically updated according to the
++ * estimated disk peak rate; otherwise return the default max budget
++ */
++static int bfq_max_budget(struct bfq_data *bfqd)
++{
++ if (bfqd->budgets_assigned < bfq_stats_min_budgets)
++ return bfq_default_max_budget;
++ else
++ return bfqd->bfq_max_budget;
++}
++
++/*
++ * Return min budget, which is a fraction of the current or default
++ * max budget (trying with 1/32)
++ */
++static int bfq_min_budget(struct bfq_data *bfqd)
++{
++ if (bfqd->budgets_assigned < bfq_stats_min_budgets)
++ return bfq_default_max_budget / 32;
++ else
++ return bfqd->bfq_max_budget / 32;
++}
++
++static void bfq_bfqq_expire(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ bool compensate,
++ enum bfqq_expiration reason);
++
++/*
++ * The next function, invoked after the input queue bfqq switches from
++ * idle to busy, updates the budget of bfqq. The function also tells
++ * whether the in-service queue should be expired, by returning
++ * true. The purpose of expiring the in-service queue is to give bfqq
++ * the chance to possibly preempt the in-service queue, and the reason
++ * for preempting the in-service queue is to achieve one of the two
++ * goals below.
++ *
++ * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
++ * expired because it has remained idle. In particular, bfqq may have
++ * expired for one of the following two reasons:
++ *
++ * - BFQ_BFQQ_NO_MORE_REQUEST bfqq did not enjoy any device idling and
++ * did not make it to issue a new request before its last request
++ * was served;
++ *
++ * - BFQ_BFQQ_TOO_IDLE bfqq did enjoy device idling, but did not issue
++ * a new request before the expiration of the idling-time.
++ *
++ * Even if bfqq has expired for one of the above reasons, the process
++ * associated with the queue may be however issuing requests greedily,
++ * and thus be sensitive to the bandwidth it receives (bfqq may have
++ * remained idle for other reasons: CPU high load, bfqq not enjoying
++ * idling, I/O throttling somewhere in the path from the process to
++ * the I/O scheduler, ...). But if, after every expiration for one of
++ * the above two reasons, bfqq has to wait for the service of at least
++ * one full budget of another queue before being served again, then
++ * bfqq is likely to get a much lower bandwidth or resource time than
++ * its reserved ones. To address this issue, two countermeasures need
++ * to be taken.
++ *
++ * First, the budget and the timestamps of bfqq need to be updated in
++ * a special way on bfqq reactivation: they need to be updated as if
++ * bfqq did not remain idle and did not expire. In fact, if they are
++ * computed as if bfqq expired and remained idle until reactivation,
++ * then the process associated with bfqq is treated as if, instead of
++ * being greedy, it stopped issuing requests when bfqq remained idle,
++ * and restarts issuing requests only on this reactivation. In other
++ * words, the scheduler does not help the process recover the "service
++ * hole" between bfqq expiration and reactivation. As a consequence,
++ * the process receives a lower bandwidth than its reserved one. In
++ * contrast, to recover this hole, the budget must be updated as if
++ * bfqq was not expired at all before this reactivation, i.e., it must
++ * be set to the value of the remaining budget when bfqq was
++ * expired. Along the same line, timestamps need to be assigned the
++ * value they had the last time bfqq was selected for service, i.e.,
++ * before last expiration. Thus timestamps need to be back-shifted
++ * with respect to their normal computation (see [1] for more details
++ * on this tricky aspect).
++ *
++ * Secondly, to allow the process to recover the hole, the in-service
++ * queue must be expired too, to give bfqq the chance to preempt it
++ * immediately. In fact, if bfqq has to wait for a full budget of the
++ * in-service queue to be completed, then it may become impossible to
++ * let the process recover the hole, even if the back-shifted
++ * timestamps of bfqq are lower than those of the in-service queue. If
++ * this happens for most or all of the holes, then the process may not
++ * receive its reserved bandwidth. In this respect, it is worth noting
++ * that, being the service of outstanding requests unpreemptible, a
++ * little fraction of the holes may however be unrecoverable, thereby
++ * causing a little loss of bandwidth.
++ *
++ * The last important point is detecting whether bfqq does need this
++ * bandwidth recovery. In this respect, the next function deems the
++ * process associated with bfqq greedy, and thus allows it to recover
++ * the hole, if: 1) the process is waiting for the arrival of a new
++ * request (which implies that bfqq expired for one of the above two
++ * reasons), and 2) such a request has arrived soon. The first
++ * condition is controlled through the flag non_blocking_wait_rq,
++ * while the second through the flag arrived_in_time. If both
++ * conditions hold, then the function computes the budget in the
++ * above-described special way, and signals that the in-service queue
++ * should be expired. Timestamp back-shifting is done later in
++ * __bfq_activate_entity.
++ *
++ * 2. Reduce latency. Even if timestamps are not backshifted to let
++ * the process associated with bfqq recover a service hole, bfqq may
++ * however happen to have, after being (re)activated, a lower finish
++ * timestamp than the in-service queue. That is, the next budget of
++ * bfqq may have to be completed before the one of the in-service
++ * queue. If this is the case, then preempting the in-service queue
++ * allows this goal to be achieved, apart from the unpreemptible,
++ * outstanding requests mentioned above.
++ *
++ * Unfortunately, regardless of which of the above two goals one wants
++ * to achieve, service trees need first to be updated to know whether
++ * the in-service queue must be preempted. To have service trees
++ * correctly updated, the in-service queue must be expired and
++ * rescheduled, and bfqq must be scheduled too. This is one of the
++ * most costly operations (in future versions, the scheduling
++ * mechanism may be re-designed in such a way to make it possible to
++ * know whether preemption is needed without needing to update service
++ * trees). In addition, queue preemptions almost always cause random
++ * I/O, and thus loss of throughput. Because of these facts, the next
++ * function adopts the following simple scheme to avoid both costly
++ * operations and too frequent preemptions: it requests the expiration
++ * of the in-service queue (unconditionally) only for queues that need
++ * to recover a hole, or that either are weight-raised or deserve to
++ * be weight-raised.
++ */
++static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ bool arrived_in_time,
++ bool wr_or_deserves_wr)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++
++ /*
++ * In the next compound condition, we check also whether there
++ * is some budget left, because otherwise there is no point in
++ * trying to go on serving bfqq with this same budget: bfqq
++ * would be expired immediately after being selected for
++ * service. This would only cause useless overhead.
++ */
++ if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
++ bfq_bfqq_budget_left(bfqq) > 0) {
++ /*
++ * We do not clear the flag non_blocking_wait_rq here, as
++ * the latter is used in bfq_activate_bfqq to signal
++ * that timestamps need to be back-shifted (and is
++ * cleared right after).
++ */
++
++ /*
++ * In next assignment we rely on that either
++ * entity->service or entity->budget are not updated
++ * on expiration if bfqq is empty (see
++ * __bfq_bfqq_recalc_budget). Thus both quantities
++ * remain unchanged after such an expiration, and the
++ * following statement therefore assigns to
++ * entity->budget the remaining budget on such an
++ * expiration.
++ */
++ BUG_ON(bfqq->max_budget < 0);
++ entity->budget = min_t(unsigned long,
++ bfq_bfqq_budget_left(bfqq),
++ bfqq->max_budget);
++
++ BUG_ON(entity->budget < 0);
++
++ /*
++ * At this point, we have used entity->service to get
++ * the budget left (needed for updating
++ * entity->budget). Thus we finally can, and have to,
++ * reset entity->service. The latter must be reset
++ * because bfqq would otherwise be charged again for
++ * the service it has received during its previous
++ * service slot(s).
++ */
++ entity->service = 0;
++
++ return true;
++ }
++
++ /*
++ * We can finally complete expiration, by setting service to 0.
++ */
++ entity->service = 0;
++ BUG_ON(bfqq->max_budget < 0);
++ entity->budget = max_t(unsigned long, bfqq->max_budget,
++ bfq_serv_to_charge(bfqq->next_rq, bfqq));
++ BUG_ON(entity->budget < 0);
++
++ bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
++ return wr_or_deserves_wr;
++}
++
++/*
++ * Return the farthest past time instant according to jiffies
++ * macros.
++ */
++static unsigned long bfq_smallest_from_now(void)
++{
++ return jiffies - MAX_JIFFY_OFFSET;
++}
++
++static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ unsigned int old_wr_coeff,
++ bool wr_or_deserves_wr,
++ bool interactive,
++ bool in_burst,
++ bool soft_rt)
++{
++ if (old_wr_coeff == 1 && wr_or_deserves_wr) {
++ /* start a weight-raising period */
++ if (interactive) {
++ bfqq->service_from_wr = 0;
++ bfqq->wr_coeff = bfqd->bfq_wr_coeff;
++ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
++ } else {
++ /*
++ * No interactive weight raising in progress
++ * here: assign minus infinity to
++ * wr_start_at_switch_to_srt, to make sure
++ * that, at the end of the soft-real-time
++ * weight raising periods that is starting
++ * now, no interactive weight-raising period
++ * may be wrongly considered as still in
++ * progress (and thus actually started by
++ * mistake).
++ */
++ bfqq->wr_start_at_switch_to_srt =
++ bfq_smallest_from_now();
++ bfqq->wr_coeff = bfqd->bfq_wr_coeff *
++ BFQ_SOFTRT_WEIGHT_FACTOR;
++ bfqq->wr_cur_max_time =
++ bfqd->bfq_wr_rt_max_time;
++ }
++ /*
++ * If needed, further reduce budget to make sure it is
++ * close to bfqq's backlog, so as to reduce the
++ * scheduling-error component due to a too large
++ * budget. Do not care about throughput consequences,
++ * but only about latency. Finally, do not assign a
++ * too small budget either, to avoid increasing
++ * latency by causing too frequent expirations.
++ */
++ bfqq->entity.budget = min_t(unsigned long,
++ bfqq->entity.budget,
++ 2 * bfq_min_budget(bfqd));
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "wrais starting at %lu, rais_max_time %u",
++ jiffies,
++ jiffies_to_msecs(bfqq->wr_cur_max_time));
++ } else if (old_wr_coeff > 1) {
++ if (interactive) { /* update wr coeff and duration */
++ bfqq->wr_coeff = bfqd->bfq_wr_coeff;
++ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
++ } else if (in_burst) {
++ bfqq->wr_coeff = 1;
++ bfq_log_bfqq(bfqd, bfqq,
++ "wrais ending at %lu, rais_max_time %u",
++ jiffies,
++ jiffies_to_msecs(bfqq->
++ wr_cur_max_time));
++ } else if (soft_rt) {
++ /*
++ * The application is now or still meeting the
++ * requirements for being deemed soft rt. We
++ * can then correctly and safely (re)charge
++ * the weight-raising duration for the
++ * application with the weight-raising
++ * duration for soft rt applications.
++ *
++ * In particular, doing this recharge now, i.e.,
++ * before the weight-raising period for the
++ * application finishes, reduces the probability
++ * of the following negative scenario:
++ * 1) the weight of a soft rt application is
++ * raised at startup (as for any newly
++ * created application),
++ * 2) since the application is not interactive,
++ * at a certain time weight-raising is
++ * stopped for the application,
++ * 3) at that time the application happens to
++ * still have pending requests, and hence
++ * is destined to not have a chance to be
++ * deemed soft rt before these requests are
++ * completed (see the comments to the
++ * function bfq_bfqq_softrt_next_start()
++ * for details on soft rt detection),
++ * 4) these pending requests experience a high
++ * latency because the application is not
++ * weight-raised while they are pending.
++ */
++ if (bfqq->wr_cur_max_time !=
++ bfqd->bfq_wr_rt_max_time) {
++ bfqq->wr_start_at_switch_to_srt =
++ bfqq->last_wr_start_finish;
++ BUG_ON(time_is_after_jiffies(bfqq->last_wr_start_finish));
++
++ bfqq->wr_cur_max_time =
++ bfqd->bfq_wr_rt_max_time;
++ bfqq->wr_coeff = bfqd->bfq_wr_coeff *
++ BFQ_SOFTRT_WEIGHT_FACTOR;
++ bfq_log_bfqq(bfqd, bfqq,
++ "switching to soft_rt wr");
++ } else
++ bfq_log_bfqq(bfqd, bfqq,
++ "moving forward soft_rt wr duration");
++ bfqq->last_wr_start_finish = jiffies;
++ }
++ }
++}
++
++static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ return bfqq->dispatched == 0 &&
++ time_is_before_jiffies(
++ bfqq->budget_timeout +
++ bfqd->bfq_wr_min_idle_time);
++}
++
++static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ int old_wr_coeff,
++ struct request *rq,
++ bool *interactive)
++{
++ bool soft_rt, in_burst, wr_or_deserves_wr,
++ bfqq_wants_to_preempt,
++ idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
++ /*
++ * See the comments on
++ * bfq_bfqq_update_budg_for_activation for
++ * details on the usage of the next variable.
++ */
++ arrived_in_time = ktime_get_ns() <=
++ RQ_BIC(rq)->ttime.last_end_request +
++ bfqd->bfq_slice_idle * 3;
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "bfq_add_request non-busy: "
++ "jiffies %lu, in_time %d, idle_long %d busyw %d "
++ "wr_coeff %u",
++ jiffies, arrived_in_time,
++ idle_for_long_time,
++ bfq_bfqq_non_blocking_wait_rq(bfqq),
++ old_wr_coeff);
++
++ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
++
++ BUG_ON(bfqq == bfqd->in_service_queue);
++ bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq, rq->cmd_flags);
++
++ /*
++ * bfqq deserves to be weight-raised if:
++ * - it is sync,
++ * - it does not belong to a large burst,
++ * - it has been idle for enough time or is soft real-time,
++ * - is linked to a bfq_io_cq (it is not shared in any sense)
++ */
++ in_burst = bfq_bfqq_in_large_burst(bfqq);
++ soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
++ !in_burst &&
++ time_is_before_jiffies(bfqq->soft_rt_next_start) &&
++ bfqq->dispatched == 0;
++ *interactive =
++ !in_burst &&
++ idle_for_long_time;
++ wr_or_deserves_wr = bfqd->low_latency &&
++ (bfqq->wr_coeff > 1 ||
++ (bfq_bfqq_sync(bfqq) &&
++ bfqq->bic && (*interactive || soft_rt)));
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "bfq_add_request: "
++ "in_burst %d, "
++ "soft_rt %d (next %lu), inter %d, bic %p",
++ bfq_bfqq_in_large_burst(bfqq), soft_rt,
++ bfqq->soft_rt_next_start,
++ *interactive,
++ bfqq->bic);
++
++ /*
++ * Using the last flag, update budget and check whether bfqq
++ * may want to preempt the in-service queue.
++ */
++ bfqq_wants_to_preempt =
++ bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
++ arrived_in_time,
++ wr_or_deserves_wr);
++
++ /*
++ * If bfqq happened to be activated in a burst, but has been
++ * idle for much more than an interactive queue, then we
++ * assume that, in the overall I/O initiated in the burst, the
++ * I/O associated with bfqq is finished. So bfqq does not need
++ * to be treated as a queue belonging to a burst
++ * anymore. Accordingly, we reset bfqq's in_large_burst flag
++ * if set, and remove bfqq from the burst list if it's
++ * there. We do not decrement burst_size, because the fact
++ * that bfqq does not need to belong to the burst list any
++ * more does not invalidate the fact that bfqq was created in
++ * a burst.
++ */
++ if (likely(!bfq_bfqq_just_created(bfqq)) &&
++ idle_for_long_time &&
++ time_is_before_jiffies(
++ bfqq->budget_timeout +
++ msecs_to_jiffies(10000))) {
++ hlist_del_init(&bfqq->burst_list_node);
++ bfq_clear_bfqq_in_large_burst(bfqq);
++ }
++
++ bfq_clear_bfqq_just_created(bfqq);
++
++ if (!bfq_bfqq_IO_bound(bfqq)) {
++ if (arrived_in_time) {
++ bfqq->requests_within_timer++;
++ if (bfqq->requests_within_timer >=
++ bfqd->bfq_requests_within_timer)
++ bfq_mark_bfqq_IO_bound(bfqq);
++ } else
++ bfqq->requests_within_timer = 0;
++ bfq_log_bfqq(bfqd, bfqq, "requests in time %d",
++ bfqq->requests_within_timer);
++ }
++
++ if (bfqd->low_latency) {
++ if (unlikely(time_is_after_jiffies(bfqq->split_time)))
++ /* wraparound */
++ bfqq->split_time =
++ jiffies - bfqd->bfq_wr_min_idle_time - 1;
++
++ if (time_is_before_jiffies(bfqq->split_time +
++ bfqd->bfq_wr_min_idle_time)) {
++ bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
++ old_wr_coeff,
++ wr_or_deserves_wr,
++ *interactive,
++ in_burst,
++ soft_rt);
++
++ if (old_wr_coeff != bfqq->wr_coeff)
++ bfqq->entity.prio_changed = 1;
++ }
++ }
++
++ bfqq->last_idle_bklogged = jiffies;
++ bfqq->service_from_backlogged = 0;
++ bfq_clear_bfqq_softrt_update(bfqq);
++
++ bfq_add_bfqq_busy(bfqd, bfqq);
++
++ /*
++ * Expire in-service queue only if preemption may be needed
++ * for guarantees. In this respect, the function
++ * next_queue_may_preempt just checks a simple, necessary
++ * condition, and not a sufficient condition based on
++ * timestamps. In fact, for the latter condition to be
++ * evaluated, timestamps would need first to be updated, and
++ * this operation is quite costly (see the comments on the
++ * function bfq_bfqq_update_budg_for_activation).
++ */
++ if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
++ bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
++ next_queue_may_preempt(bfqd)) {
++ struct bfq_queue *in_serv =
++ bfqd->in_service_queue;
++ BUG_ON(in_serv == bfqq);
++
++ bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
++ false, BFQ_BFQQ_PREEMPTED);
++ }
++}
++
++static void bfq_add_request(struct request *rq)
++{
++ struct bfq_queue *bfqq = RQ_BFQQ(rq);
++ struct bfq_data *bfqd = bfqq->bfqd;
++ struct request *next_rq, *prev;
++ unsigned int old_wr_coeff = bfqq->wr_coeff;
++ bool interactive = false;
++
++ bfq_log_bfqq(bfqd, bfqq, "size %u %s",
++ blk_rq_sectors(rq), rq_is_sync(rq) ? "S" : "A");
++
++ if (bfqq->wr_coeff > 1) /* queue is being weight-raised */
++ bfq_log_bfqq(bfqd, bfqq,
++ "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
++ jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
++ jiffies_to_msecs(bfqq->wr_cur_max_time),
++ bfqq->wr_coeff,
++ bfqq->entity.weight, bfqq->entity.orig_weight);
++
++ bfqq->queued[rq_is_sync(rq)]++;
++ bfqd->queued++;
++
++ elv_rb_add(&bfqq->sort_list, rq);
++
++ /*
++ * Check if this request is a better next-to-serve candidate.
++ */
++ prev = bfqq->next_rq;
++ next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
++ BUG_ON(!next_rq);
++ bfqq->next_rq = next_rq;
++
++ /*
++ * Adjust priority tree position, if next_rq changes.
++ */
++ if (prev != bfqq->next_rq)
++ bfq_pos_tree_add_move(bfqd, bfqq);
++
++ if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
++ bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
++ rq, &interactive);
++ else {
++ if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
++ time_is_before_jiffies(
++ bfqq->last_wr_start_finish +
++ bfqd->bfq_wr_min_inter_arr_async)) {
++ bfqq->wr_coeff = bfqd->bfq_wr_coeff;
++ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
++
++ bfqd->wr_busy_queues++;
++ BUG_ON(bfqd->wr_busy_queues > bfq_tot_busy_queues(bfqd));
++ bfqq->entity.prio_changed = 1;
++ bfq_log_bfqq(bfqd, bfqq,
++ "non-idle wrais starting, "
++ "wr_max_time %u wr_busy %d",
++ jiffies_to_msecs(bfqq->wr_cur_max_time),
++ bfqd->wr_busy_queues);
++ }
++ if (prev != bfqq->next_rq)
++ bfq_updated_next_req(bfqd, bfqq);
++ }
++
++ /*
++ * Assign jiffies to last_wr_start_finish in the following
++ * cases:
++ *
++ * . if bfqq is not going to be weight-raised, because, for
++ * non weight-raised queues, last_wr_start_finish stores the
++ * arrival time of the last request; as of now, this piece
++ * of information is used only for deciding whether to
++ * weight-raise async queues
++ *
++ * . if bfqq is not weight-raised, because, if bfqq is now
++ * switching to weight-raised, then last_wr_start_finish
++ * stores the time when weight-raising starts
++ *
++ * . if bfqq is interactive, because, regardless of whether
++ * bfqq is currently weight-raised, the weight-raising
++ * period must start or restart (this case is considered
++ * separately because it is not detected by the above
++ * conditions, if bfqq is already weight-raised)
++ *
++ * last_wr_start_finish has to be updated also if bfqq is soft
++ * real-time, because the weight-raising period is constantly
++ * restarted on idle-to-busy transitions for these queues, but
++ * this is already done in bfq_bfqq_handle_idle_busy_switch if
++ * needed.
++ */
++ if (bfqd->low_latency &&
++ (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
++ bfqq->last_wr_start_finish = jiffies;
++}
++
++static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
++ struct bio *bio)
++{
++ struct task_struct *tsk = current;
++ struct bfq_io_cq *bic;
++ struct bfq_queue *bfqq;
++
++ bic = bfq_bic_lookup(bfqd, tsk->io_context);
++ if (!bic)
++ return NULL;
++
++ bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
++ if (bfqq)
++ return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
++
++ return NULL;
++}
++
++static sector_t get_sdist(sector_t last_pos, struct request *rq)
++{
++ sector_t sdist = 0;
++
++ if (last_pos) {
++ if (last_pos < blk_rq_pos(rq))
++ sdist = blk_rq_pos(rq) - last_pos;
++ else
++ sdist = last_pos - blk_rq_pos(rq);
++ }
++
++ return sdist;
++}
++
++static void bfq_activate_request(struct request_queue *q, struct request *rq)
++{
++ struct bfq_data *bfqd = q->elevator->elevator_data;
++ bfqd->rq_in_driver++;
++}
++
++static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
++{
++ struct bfq_data *bfqd = q->elevator->elevator_data;
++
++ BUG_ON(bfqd->rq_in_driver == 0);
++ bfqd->rq_in_driver--;
++}
++
++static void bfq_remove_request(struct request *rq)
++{
++ struct bfq_queue *bfqq = RQ_BFQQ(rq);
++ struct bfq_data *bfqd = bfqq->bfqd;
++ const int sync = rq_is_sync(rq);
++
++ /*
++ * NOTE:
++ * (bfqq->entity.service > bfqq->entity.budget) may hold here,
++ * in case of forced dispatches.
++ */
++
++ if (bfqq->next_rq == rq) {
++ bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
++ bfq_updated_next_req(bfqd, bfqq);
++ }
++
++ if (rq->queuelist.prev != &rq->queuelist)
++ list_del_init(&rq->queuelist);
++ BUG_ON(bfqq->queued[sync] == 0);
++ bfqq->queued[sync]--;
++ bfqd->queued--;
++ elv_rb_del(&bfqq->sort_list, rq);
++
++ if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
++ bfqq->next_rq = NULL;
++
++ BUG_ON(bfqq->entity.budget < 0);
++
++ if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
++ BUG_ON(bfqq->ref < 2); /* referred by rq and on tree */
++ bfq_del_bfqq_busy(bfqd, bfqq, false);
++ /*
++ * bfqq emptied. In normal operation, when
++ * bfqq is empty, bfqq->entity.service and
++ * bfqq->entity.budget must contain,
++ * respectively, the service received and the
++ * budget used last time bfqq emptied. These
++ * facts do not hold in this case, as at least
++ * this last removal occurred while bfqq is
++ * not in service. To avoid inconsistencies,
++ * reset both bfqq->entity.service and
++ * bfqq->entity.budget, if bfqq has still a
++ * process that may issue I/O requests to it.
++ */
++ bfqq->entity.budget = bfqq->entity.service = 0;
++ }
++
++ /*
++ * Remove queue from request-position tree as it is empty.
++ */
++ if (bfqq->pos_root) {
++ rb_erase(&bfqq->pos_node, bfqq->pos_root);
++ bfqq->pos_root = NULL;
++ }
++ } else {
++ BUG_ON(!bfqq->next_rq);
++ bfq_pos_tree_add_move(bfqd, bfqq);
++ }
++
++ if (rq->cmd_flags & REQ_META) {
++ BUG_ON(bfqq->meta_pending == 0);
++ bfqq->meta_pending--;
++ }
++ bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags);
++}
++
++static enum elv_merge bfq_merge(struct request_queue *q, struct request **req,
++ struct bio *bio)
++{
++ struct bfq_data *bfqd = q->elevator->elevator_data;
++ struct request *__rq;
++
++ __rq = bfq_find_rq_fmerge(bfqd, bio);
++ if (__rq && elv_bio_merge_ok(__rq, bio)) {
++ *req = __rq;
++ return ELEVATOR_FRONT_MERGE;
++ }
++
++ return ELEVATOR_NO_MERGE;
++}
++
++static void bfq_merged_request(struct request_queue *q, struct request *req,
++ enum elv_merge type)
++{
++ if (type == ELEVATOR_FRONT_MERGE &&
++ rb_prev(&req->rb_node) &&
++ blk_rq_pos(req) <
++ blk_rq_pos(container_of(rb_prev(&req->rb_node),
++ struct request, rb_node))) {
++ struct bfq_queue *bfqq = RQ_BFQQ(req);
++ struct bfq_data *bfqd = bfqq->bfqd;
++ struct request *prev, *next_rq;
++
++ /* Reposition request in its sort_list */
++ elv_rb_del(&bfqq->sort_list, req);
++ elv_rb_add(&bfqq->sort_list, req);
++ /* Choose next request to be served for bfqq */
++ prev = bfqq->next_rq;
++ next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
++ bfqd->last_position);
++ BUG_ON(!next_rq);
++ bfqq->next_rq = next_rq;
++ /*
++ * If next_rq changes, update both the queue's budget to
++ * fit the new request and the queue's position in its
++ * rq_pos_tree.
++ */
++ if (prev != bfqq->next_rq) {
++ bfq_updated_next_req(bfqd, bfqq);
++ bfq_pos_tree_add_move(bfqd, bfqq);
++ }
++ }
++}
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++static void bfq_bio_merged(struct request_queue *q, struct request *req,
++ struct bio *bio)
++{
++ bfqg_stats_update_io_merged(bfqq_group(RQ_BFQQ(req)), bio->bi_opf);
++}
++#endif
++
++static void bfq_merged_requests(struct request_queue *q, struct request *rq,
++ struct request *next)
++{
++ struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next);
++
++ /*
++ * If next and rq belong to the same bfq_queue and next is older
++ * than rq, then reposition rq in the fifo (by substituting next
++ * with rq). Otherwise, if next and rq belong to different
++ * bfq_queues, never reposition rq: in fact, we would have to
++ * reposition it with respect to next's position in its own fifo,
++ * which would most certainly be too expensive with respect to
++ * the benefits.
++ */
++ if (bfqq == next_bfqq &&
++ !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
++ next->fifo_time < rq->fifo_time) {
++ list_del_init(&rq->queuelist);
++ list_replace_init(&next->queuelist, &rq->queuelist);
++ rq->fifo_time = next->fifo_time;
++ }
++
++ if (bfqq->next_rq == next)
++ bfqq->next_rq = rq;
++
++ bfq_remove_request(next);
++ bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
++}
++
++/* Must be called with bfqq != NULL */
++static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
++{
++ BUG_ON(!bfqq);
++
++ if (bfq_bfqq_busy(bfqq)) {
++ bfqq->bfqd->wr_busy_queues--;
++ BUG_ON(bfqq->bfqd->wr_busy_queues < 0);
++ }
++ bfqq->wr_coeff = 1;
++ bfqq->wr_cur_max_time = 0;
++ bfqq->last_wr_start_finish = jiffies;
++ /*
++ * Trigger a weight change on the next invocation of
++ * __bfq_entity_update_weight_prio.
++ */
++ bfqq->entity.prio_changed = 1;
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "wrais ending at %lu, rais_max_time %u",
++ bfqq->last_wr_start_finish,
++ jiffies_to_msecs(bfqq->wr_cur_max_time));
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "wr_busy %d",
++ bfqq->bfqd->wr_busy_queues);
++}
++
++static void bfq_end_wr_async_queues(struct bfq_data *bfqd,
++ struct bfq_group *bfqg)
++{
++ int i, j;
++
++ for (i = 0; i < 2; i++)
++ for (j = 0; j < IOPRIO_BE_NR; j++)
++ if (bfqg->async_bfqq[i][j])
++ bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
++ if (bfqg->async_idle_bfqq)
++ bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
++}
++
++static void bfq_end_wr(struct bfq_data *bfqd)
++{
++ struct bfq_queue *bfqq;
++
++ spin_lock_irq(bfqd->queue->queue_lock);
++
++ list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
++ bfq_bfqq_end_wr(bfqq);
++ list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
++ bfq_bfqq_end_wr(bfqq);
++ bfq_end_wr_async(bfqd);
++
++ spin_unlock_irq(bfqd->queue->queue_lock);
++}
++
++static sector_t bfq_io_struct_pos(void *io_struct, bool request)
++{
++ if (request)
++ return blk_rq_pos(io_struct);
++ else
++ return ((struct bio *)io_struct)->bi_iter.bi_sector;
++}
++
++static int bfq_rq_close_to_sector(void *io_struct, bool request,
++ sector_t sector)
++{
++ return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
++ BFQQ_CLOSE_THR;
++}
++
++static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ sector_t sector)
++{
++ struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
++ struct rb_node *parent, *node;
++ struct bfq_queue *__bfqq;
++
++ if (RB_EMPTY_ROOT(root))
++ return NULL;
++
++ /*
++ * First, if we find a request starting at the end of the last
++ * request, choose it.
++ */
++ __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
++ if (__bfqq)
++ return __bfqq;
++
++ /*
++ * If the exact sector wasn't found, the parent of the NULL leaf
++ * will contain the closest sector (rq_pos_tree sorted by
++ * next_request position).
++ */
++ __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
++ if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
++ return __bfqq;
++
++ if (blk_rq_pos(__bfqq->next_rq) < sector)
++ node = rb_next(&__bfqq->pos_node);
++ else
++ node = rb_prev(&__bfqq->pos_node);
++ if (!node)
++ return NULL;
++
++ __bfqq = rb_entry(node, struct bfq_queue, pos_node);
++ if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
++ return __bfqq;
++
++ return NULL;
++}
++
++static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
++ struct bfq_queue *cur_bfqq,
++ sector_t sector)
++{
++ struct bfq_queue *bfqq;
++
++ /*
++ * We shall notice if some of the queues are cooperating,
++ * e.g., working closely on the same area of the device. In
++ * that case, we can group them together and: 1) don't waste
++ * time idling, and 2) serve the union of their requests in
++ * the best possible order for throughput.
++ */
++ bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
++ if (!bfqq || bfqq == cur_bfqq)
++ return NULL;
++
++ return bfqq;
++}
++
++static struct bfq_queue *
++bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
++{
++ int process_refs, new_process_refs;
++ struct bfq_queue *__bfqq;
++
++ /*
++ * If there are no process references on the new_bfqq, then it is
++ * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
++ * may have dropped their last reference (not just their last process
++ * reference).
++ */
++ if (!bfqq_process_refs(new_bfqq))
++ return NULL;
++
++ /* Avoid a circular list and skip interim queue merges. */
++ while ((__bfqq = new_bfqq->new_bfqq)) {
++ if (__bfqq == bfqq)
++ return NULL;
++ new_bfqq = __bfqq;
++ }
++
++ process_refs = bfqq_process_refs(bfqq);
++ new_process_refs = bfqq_process_refs(new_bfqq);
++ /*
++ * If the process for the bfqq has gone away, there is no
++ * sense in merging the queues.
++ */
++ if (process_refs == 0 || new_process_refs == 0)
++ return NULL;
++
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
++ new_bfqq->pid);
++
++ /*
++ * Merging is just a redirection: the requests of the process
++ * owning one of the two queues are redirected to the other queue.
++ * The latter queue, in its turn, is set as shared if this is the
++ * first time that the requests of some process are redirected to
++ * it.
++ *
++ * We redirect bfqq to new_bfqq and not the opposite, because we
++ * are in the context of the process owning bfqq, hence we have
++ * the io_cq of this process. So we can immediately configure this
++ * io_cq to redirect the requests of the process to new_bfqq.
++ *
++ * NOTE, even if new_bfqq coincides with the in-service queue, the
++ * io_cq of new_bfqq is not available, because, if the in-service
++ * queue is shared, bfqd->in_service_bic may not point to the
++ * io_cq of the in-service queue.
++ * Redirecting the requests of the process owning bfqq to the
++ * currently in-service queue is in any case the best option, as
++ * we feed the in-service queue with new requests close to the
++ * last request served and, by doing so, hopefully increase the
++ * throughput.
++ */
++ bfqq->new_bfqq = new_bfqq;
++ new_bfqq->ref += process_refs;
++ return new_bfqq;
++}
++
++static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
++ struct bfq_queue *new_bfqq)
++{
++ if (bfq_too_late_for_merging(new_bfqq)) {
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "too late for bfq%d to be merged",
++ new_bfqq->pid);
++ return false;
++ }
++
++ if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
++ (bfqq->ioprio_class != new_bfqq->ioprio_class))
++ return false;
++
++ /*
++ * If either of the queues has already been detected as seeky,
++ * then merging it with the other queue is unlikely to lead to
++ * sequential I/O.
++ */
++ if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
++ return false;
++
++ /*
++ * Interleaved I/O is known to be done by (some) applications
++ * only for reads, so it does not make sense to merge async
++ * queues.
++ */
++ if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
++ return false;
++
++ return true;
++}
++
++/*
++ * Attempt to schedule a merge of bfqq with the currently in-service
++ * queue or with a close queue among the scheduled queues. Return
++ * NULL if no merge was scheduled, a pointer to the shared bfq_queue
++ * structure otherwise.
++ *
++ * The OOM queue is not allowed to participate to cooperation: in fact, since
++ * the requests temporarily redirected to the OOM queue could be redirected
++ * again to dedicated queues at any time, the state needed to correctly
++ * handle merging with the OOM queue would be quite complex and expensive
++ * to maintain. Besides, in such a critical condition as an out of memory,
++ * the benefits of queue merging may be little relevant, or even negligible.
++ *
++ * WARNING: queue merging may impair fairness among non-weight raised
++ * queues, for at least two reasons: 1) the original weight of a
++ * merged queue may change during the merged state, 2) even being the
++ * weight the same, a merged queue may be bloated with many more
++ * requests than the ones produced by its originally-associated
++ * process.
++ */
++static struct bfq_queue *
++bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ void *io_struct, bool request)
++{
++ struct bfq_queue *in_service_bfqq, *new_bfqq;
++
++ /*
++ * Prevent bfqq from being merged if it has been created too
++ * long ago. The idea is that true cooperating processes, and
++ * thus their associated bfq_queues, are supposed to be
++ * created shortly after each other. This is the case, e.g.,
++ * for KVM/QEMU and dump I/O threads. Basing on this
++ * assumption, the following filtering greatly reduces the
++ * probability that two non-cooperating processes, which just
++ * happen to do close I/O for some short time interval, have
++ * their queues merged by mistake.
++ */
++ if (bfq_too_late_for_merging(bfqq)) {
++ bfq_log_bfqq(bfqd, bfqq,
++ "would have looked for coop, but too late");
++ return NULL;
++ }
++
++ if (bfqq->new_bfqq)
++ return bfqq->new_bfqq;
++
++ if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
++ return NULL;
++
++ /* If there is only one backlogged queue, don't search. */
++ if (bfq_tot_busy_queues(bfqd) == 1)
++ return NULL;
++
++ in_service_bfqq = bfqd->in_service_queue;
++
++ if (in_service_bfqq && in_service_bfqq != bfqq &&
++ likely(in_service_bfqq != &bfqd->oom_bfqq) &&
++ bfq_rq_close_to_sector(io_struct, request, bfqd->in_serv_last_pos) &&
++ bfqq->entity.parent == in_service_bfqq->entity.parent &&
++ bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
++ new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
++ if (new_bfqq)
++ return new_bfqq;
++ }
++ /*
++ * Check whether there is a cooperator among currently scheduled
++ * queues. The only thing we need is that the bio/request is not
++ * NULL, as we need it to establish whether a cooperator exists.
++ */
++ new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
++ bfq_io_struct_pos(io_struct, request));
++
++ BUG_ON(new_bfqq && bfqq->entity.parent != new_bfqq->entity.parent);
++
++ if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
++ bfq_may_be_close_cooperator(bfqq, new_bfqq))
++ return bfq_setup_merge(bfqq, new_bfqq);
++
++ return NULL;
++}
++
++static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
++{
++ struct bfq_io_cq *bic = bfqq->bic;
++
++ /*
++ * If !bfqq->bic, the queue is already shared or its requests
++ * have already been redirected to a shared queue; both idle window
++ * and weight raising state have already been saved. Do nothing.
++ */
++ if (!bic)
++ return;
++
++ bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
++ bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
++ bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
++ bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
++ if (unlikely(bfq_bfqq_just_created(bfqq) &&
++ !bfq_bfqq_in_large_burst(bfqq) &&
++ bfqq->bfqd->low_latency)) {
++ /*
++ * bfqq being merged ritgh after being created: bfqq
++ * would have deserved interactive weight raising, but
++ * did not make it to be set in a weight-raised state,
++ * because of this early merge. Store directly the
++ * weight-raising state that would have been assigned
++ * to bfqq, so that to avoid that bfqq unjustly fails
++ * to enjoy weight raising if split soon.
++ */
++ bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
++ bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
++ bic->saved_last_wr_start_finish = jiffies;
++ } else {
++ bic->saved_wr_coeff = bfqq->wr_coeff;
++ bic->saved_wr_start_at_switch_to_srt =
++ bfqq->wr_start_at_switch_to_srt;
++ bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
++ bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
++ }
++ BUG_ON(time_is_after_jiffies(bfqq->last_wr_start_finish));
++}
++
++static void bfq_get_bic_reference(struct bfq_queue *bfqq)
++{
++ /*
++ * If bfqq->bic has a non-NULL value, the bic to which it belongs
++ * is about to begin using a shared bfq_queue.
++ */
++ if (bfqq->bic)
++ atomic_long_inc(&bfqq->bic->icq.ioc->refcount);
++}
++
++static void
++bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
++ struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
++{
++ bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
++ (unsigned long) new_bfqq->pid);
++ /* Save weight raising and idle window of the merged queues */
++ bfq_bfqq_save_state(bfqq);
++ bfq_bfqq_save_state(new_bfqq);
++ if (bfq_bfqq_IO_bound(bfqq))
++ bfq_mark_bfqq_IO_bound(new_bfqq);
++ bfq_clear_bfqq_IO_bound(bfqq);
++
++ /*
++ * If bfqq is weight-raised, then let new_bfqq inherit
++ * weight-raising. To reduce false positives, neglect the case
++ * where bfqq has just been created, but has not yet made it
++ * to be weight-raised (which may happen because EQM may merge
++ * bfqq even before bfq_add_request is executed for the first
++ * time for bfqq). Handling this case would however be very
++ * easy, thanks to the flag just_created.
++ */
++ if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
++ new_bfqq->wr_coeff = bfqq->wr_coeff;
++ new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
++ new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
++ new_bfqq->wr_start_at_switch_to_srt =
++ bfqq->wr_start_at_switch_to_srt;
++ if (bfq_bfqq_busy(new_bfqq)) {
++ bfqd->wr_busy_queues++;
++ BUG_ON(bfqd->wr_busy_queues >
++ bfq_tot_busy_queues(bfqd));
++ }
++
++ new_bfqq->entity.prio_changed = 1;
++ bfq_log_bfqq(bfqd, new_bfqq,
++ "wr start after merge with %d, rais_max_time %u",
++ bfqq->pid,
++ jiffies_to_msecs(bfqq->wr_cur_max_time));
++ }
++
++ if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
++ bfqq->wr_coeff = 1;
++ bfqq->entity.prio_changed = 1;
++ if (bfq_bfqq_busy(bfqq)) {
++ bfqd->wr_busy_queues--;
++ BUG_ON(bfqd->wr_busy_queues < 0);
++ }
++
++ }
++
++ bfq_log_bfqq(bfqd, new_bfqq, "wr_busy %d",
++ bfqd->wr_busy_queues);
++
++ /*
++ * Grab a reference to the bic, to prevent it from being destroyed
++ * before being possibly touched by a bfq_split_bfqq().
++ */
++ bfq_get_bic_reference(bfqq);
++ bfq_get_bic_reference(new_bfqq);
++ /*
++ * Merge queues (that is, let bic redirect its requests to new_bfqq)
++ */
++ bic_set_bfqq(bic, new_bfqq, 1);
++ bfq_mark_bfqq_coop(new_bfqq);
++ /*
++ * new_bfqq now belongs to at least two bics (it is a shared queue):
++ * set new_bfqq->bic to NULL. bfqq either:
++ * - does not belong to any bic any more, and hence bfqq->bic must
++ * be set to NULL, or
++ * - is a queue whose owning bics have already been redirected to a
++ * different queue, hence the queue is destined to not belong to
++ * any bic soon and bfqq->bic is already NULL (therefore the next
++ * assignment causes no harm).
++ */
++ new_bfqq->bic = NULL;
++ bfqq->bic = NULL;
++ /* release process reference to bfqq */
++ bfq_put_queue(bfqq);
++}
++
++static int bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
++ struct bio *bio)
++{
++ struct bfq_data *bfqd = q->elevator->elevator_data;
++ bool is_sync = op_is_sync(bio->bi_opf);
++ struct bfq_io_cq *bic;
++ struct bfq_queue *bfqq, *new_bfqq;
++
++ /*
++ * Disallow merge of a sync bio into an async request.
++ */
++ if (is_sync && !rq_is_sync(rq))
++ return false;
++
++ /*
++ * Lookup the bfqq that this bio will be queued with. Allow
++ * merge only if rq is queued there.
++ * Queue lock is held here.
++ */
++ bic = bfq_bic_lookup(bfqd, current->io_context);
++ if (!bic)
++ return false;
++
++ bfqq = bic_to_bfqq(bic, is_sync);
++ /*
++ * We take advantage of this function to perform an early merge
++ * of the queues of possible cooperating processes.
++ */
++ if (bfqq) {
++ new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
++ if (new_bfqq) {
++ bfq_merge_bfqqs(bfqd, bic, bfqq, new_bfqq);
++ /*
++ * If we get here, the bio will be queued in the
++ * shared queue, i.e., new_bfqq, so use new_bfqq
++ * to decide whether bio and rq can be merged.
++ */
++ bfqq = new_bfqq;
++ }
++ }
++
++ return bfqq == RQ_BFQQ(rq);
++}
++
++static int bfq_allow_rq_merge(struct request_queue *q, struct request *rq,
++ struct request *next)
++{
++ return RQ_BFQQ(rq) == RQ_BFQQ(next);
++}
++
++/*
++ * Set the maximum time for the in-service queue to consume its
++ * budget. This prevents seeky processes from lowering the throughput.
++ * In practice, a time-slice service scheme is used with seeky
++ * processes.
++ */
++static void bfq_set_budget_timeout(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ unsigned int timeout_coeff;
++
++ if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
++ timeout_coeff = 1;
++ else
++ timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
++
++ bfqd->last_budget_start = ktime_get();
++
++ bfqq->budget_timeout = jiffies +
++ bfqd->bfq_timeout * timeout_coeff;
++
++ bfq_log_bfqq(bfqd, bfqq, "%u",
++ jiffies_to_msecs(bfqd->bfq_timeout * timeout_coeff));
++}
++
++static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ if (bfqq) {
++ bfqg_stats_update_avg_queue_size(bfqq_group(bfqq));
++ bfq_mark_bfqq_must_alloc(bfqq);
++ bfq_clear_bfqq_fifo_expire(bfqq);
++
++ bfqd->budgets_assigned = (bfqd->budgets_assigned*7 + 256) / 8;
++
++ BUG_ON(bfqq == bfqd->in_service_queue);
++ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
++
++ if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
++ bfqq->wr_coeff > 1 &&
++ bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
++ time_is_before_jiffies(bfqq->budget_timeout)) {
++ /*
++ * For soft real-time queues, move the start
++ * of the weight-raising period forward by the
++ * time the queue has not received any
++ * service. Otherwise, a relatively long
++ * service delay is likely to cause the
++ * weight-raising period of the queue to end,
++ * because of the short duration of the
++ * weight-raising period of a soft real-time
++ * queue. It is worth noting that this move
++ * is not so dangerous for the other queues,
++ * because soft real-time queues are not
++ * greedy.
++ *
++ * To not add a further variable, we use the
++ * overloaded field budget_timeout to
++ * determine for how long the queue has not
++ * received service, i.e., how much time has
++ * elapsed since the queue expired. However,
++ * this is a little imprecise, because
++ * budget_timeout is set to jiffies if bfqq
++ * not only expires, but also remains with no
++ * request.
++ */
++ if (time_after(bfqq->budget_timeout,
++ bfqq->last_wr_start_finish))
++ bfqq->last_wr_start_finish +=
++ jiffies - bfqq->budget_timeout;
++ else
++ bfqq->last_wr_start_finish = jiffies;
++
++ if (time_is_after_jiffies(bfqq->last_wr_start_finish)) {
++ pr_crit(
++ "BFQ WARNING:last %lu budget %lu jiffies %lu",
++ bfqq->last_wr_start_finish,
++ bfqq->budget_timeout,
++ jiffies);
++ pr_crit("diff %lu", jiffies -
++ max_t(unsigned long,
++ bfqq->last_wr_start_finish,
++ bfqq->budget_timeout));
++ bfqq->last_wr_start_finish = jiffies;
++ }
++ }
++
++ bfq_set_budget_timeout(bfqd, bfqq);
++ bfq_log_bfqq(bfqd, bfqq,
++ "cur-budget = %d prio_class %d",
++ bfqq->entity.budget, bfqq->ioprio_class);
++ } else
++ bfq_log(bfqd, "NULL");
++
++ bfqd->in_service_queue = bfqq;
++}
++
++/*
++ * Get and set a new queue for service.
++ */
++static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
++{
++ struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
++
++ __bfq_set_in_service_queue(bfqd, bfqq);
++ return bfqq;
++}
++
++static void bfq_arm_slice_timer(struct bfq_data *bfqd)
++{
++ struct bfq_queue *bfqq = bfqd->in_service_queue;
++ struct bfq_io_cq *bic;
++ u32 sl;
++
++ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
++
++ /* Processes have exited, don't wait. */
++ bic = bfqd->in_service_bic;
++ if (!bic || atomic_read(&bic->icq.ioc->active_ref) == 0)
++ return;
++
++ bfq_mark_bfqq_wait_request(bfqq);
++
++ /*
++ * We don't want to idle for seeks, but we do want to allow
++ * fair distribution of slice time for a process doing back-to-back
++ * seeks. So allow a little bit of time for him to submit a new rq.
++ *
++ * To prevent processes with (partly) seeky workloads from
++ * being too ill-treated, grant them a small fraction of the
++ * assigned budget before reducing the waiting time to
++ * BFQ_MIN_TT. This happened to help reduce latency.
++ */
++ sl = bfqd->bfq_slice_idle;
++ /*
++ * Unless the queue is being weight-raised or the scenario is
++ * asymmetric, grant only minimum idle time if the queue
++ * is seeky. A long idling is preserved for a weight-raised
++ * queue, or, more in general, in an asymemtric scenario,
++ * because a long idling is needed for guaranteeing to a queue
++ * its reserved share of the throughput (in particular, it is
++ * needed if the queue has a higher weight than some other
++ * queue).
++ */
++ if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
++ bfq_symmetric_scenario(bfqd))
++ sl = min_t(u32, sl, BFQ_MIN_TT);
++
++ bfqd->last_idling_start = ktime_get();
++ hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
++ HRTIMER_MODE_REL);
++ bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
++ bfq_log(bfqd, "arm idle: %ld/%ld ms",
++ sl / NSEC_PER_MSEC, bfqd->bfq_slice_idle / NSEC_PER_MSEC);
++}
++
++/*
++ * In autotuning mode, max_budget is dynamically recomputed as the
++ * amount of sectors transferred in timeout at the estimated peak
++ * rate. This enables BFQ to utilize a full timeslice with a full
++ * budget, even if the in-service queue is served at peak rate. And
++ * this maximises throughput with sequential workloads.
++ */
++static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
++{
++ return (u64)bfqd->peak_rate * USEC_PER_MSEC *
++ jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
++}
++
++/*
++ * Update parameters related to throughput and responsiveness, as a
++ * function of the estimated peak rate. See comments on
++ * bfq_calc_max_budget(), and on the ref_wr_duration array.
++ */
++static void update_thr_responsiveness_params(struct bfq_data *bfqd)
++{
++ if (bfqd->bfq_user_max_budget == 0) {
++ bfqd->bfq_max_budget =
++ bfq_calc_max_budget(bfqd);
++ BUG_ON(bfqd->bfq_max_budget < 0);
++ bfq_log(bfqd, "new max_budget = %d",
++ bfqd->bfq_max_budget);
++ }
++}
++
++static void bfq_reset_rate_computation(struct bfq_data *bfqd, struct request *rq)
++{
++ if (rq != NULL) { /* new rq dispatch now, reset accordingly */
++ bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns() ;
++ bfqd->peak_rate_samples = 1;
++ bfqd->sequential_samples = 0;
++ bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
++ blk_rq_sectors(rq);
++ } else /* no new rq dispatched, just reset the number of samples */
++ bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
++
++ bfq_log(bfqd,
++ "at end, sample %u/%u tot_sects %llu",
++ bfqd->peak_rate_samples, bfqd->sequential_samples,
++ bfqd->tot_sectors_dispatched);
++}
++
++static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
++{
++ u32 rate, weight, divisor;
++
++ /*
++ * For the convergence property to hold (see comments on
++ * bfq_update_peak_rate()) and for the assessment to be
++ * reliable, a minimum number of samples must be present, and
++ * a minimum amount of time must have elapsed. If not so, do
++ * not compute new rate. Just reset parameters, to get ready
++ * for a new evaluation attempt.
++ */
++ if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
++ bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL) {
++ bfq_log(bfqd,
++ "only resetting, delta_first %lluus samples %d",
++ bfqd->delta_from_first>>10, bfqd->peak_rate_samples);
++ goto reset_computation;
++ }
++
++ /*
++ * If a new request completion has occurred after last
++ * dispatch, then, to approximate the rate at which requests
++ * have been served by the device, it is more precise to
++ * extend the observation interval to the last completion.
++ */
++ bfqd->delta_from_first =
++ max_t(u64, bfqd->delta_from_first,
++ bfqd->last_completion - bfqd->first_dispatch);
++
++ BUG_ON(bfqd->delta_from_first == 0);
++ /*
++ * Rate computed in sects/usec, and not sects/nsec, for
++ * precision issues.
++ */
++ rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
++ div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
++
++ bfq_log(bfqd,
++"tot_sects %llu delta_first %lluus rate %llu sects/s (%d)",
++ bfqd->tot_sectors_dispatched, bfqd->delta_from_first>>10,
++ ((USEC_PER_SEC*(u64)rate)>>BFQ_RATE_SHIFT),
++ rate > 20<<BFQ_RATE_SHIFT);
++
++ /*
++ * Peak rate not updated if:
++ * - the percentage of sequential dispatches is below 3/4 of the
++ * total, and rate is below the current estimated peak rate
++ * - rate is unreasonably high (> 20M sectors/sec)
++ */
++ if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
++ rate <= bfqd->peak_rate) ||
++ rate > 20<<BFQ_RATE_SHIFT) {
++ bfq_log(bfqd,
++ "goto reset, samples %u/%u rate/peak %llu/%llu",
++ bfqd->peak_rate_samples, bfqd->sequential_samples,
++ ((USEC_PER_SEC*(u64)rate)>>BFQ_RATE_SHIFT),
++ ((USEC_PER_SEC*(u64)bfqd->peak_rate)>>BFQ_RATE_SHIFT));
++ goto reset_computation;
++ } else {
++ bfq_log(bfqd,
++ "do update, samples %u/%u rate/peak %llu/%llu",
++ bfqd->peak_rate_samples, bfqd->sequential_samples,
++ ((USEC_PER_SEC*(u64)rate)>>BFQ_RATE_SHIFT),
++ ((USEC_PER_SEC*(u64)bfqd->peak_rate)>>BFQ_RATE_SHIFT));
++ }
++
++ /*
++ * We have to update the peak rate, at last! To this purpose,
++ * we use a low-pass filter. We compute the smoothing constant
++ * of the filter as a function of the 'weight' of the new
++ * measured rate.
++ *
++ * As can be seen in next formulas, we define this weight as a
++ * quantity proportional to how sequential the workload is,
++ * and to how long the observation time interval is.
++ *
++ * The weight runs from 0 to 8. The maximum value of the
++ * weight, 8, yields the minimum value for the smoothing
++ * constant. At this minimum value for the smoothing constant,
++ * the measured rate contributes for half of the next value of
++ * the estimated peak rate.
++ *
++ * So, the first step is to compute the weight as a function
++ * of how sequential the workload is. Note that the weight
++ * cannot reach 9, because bfqd->sequential_samples cannot
++ * become equal to bfqd->peak_rate_samples, which, in its
++ * turn, holds true because bfqd->sequential_samples is not
++ * incremented for the first sample.
++ */
++ weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
++
++ /*
++ * Second step: further refine the weight as a function of the
++ * duration of the observation interval.
++ */
++ weight = min_t(u32, 8,
++ div_u64(weight * bfqd->delta_from_first,
++ BFQ_RATE_REF_INTERVAL));
++
++ /*
++ * Divisor ranging from 10, for minimum weight, to 2, for
++ * maximum weight.
++ */
++ divisor = 10 - weight;
++ BUG_ON(divisor == 0);
++
++ /*
++ * Finally, update peak rate:
++ *
++ * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
++ */
++ bfqd->peak_rate *= divisor-1;
++ bfqd->peak_rate /= divisor;
++ rate /= divisor; /* smoothing constant alpha = 1/divisor */
++
++ bfq_log(bfqd,
++ "divisor %d tmp_peak_rate %llu tmp_rate %u",
++ divisor,
++ ((USEC_PER_SEC*(u64)bfqd->peak_rate)>>BFQ_RATE_SHIFT),
++ (u32)((USEC_PER_SEC*(u64)rate)>>BFQ_RATE_SHIFT));
++
++ BUG_ON(bfqd->peak_rate == 0);
++ BUG_ON(bfqd->peak_rate > 20<<BFQ_RATE_SHIFT);
++
++ bfqd->peak_rate += rate;
++
++ /*
++ * For a very slow device, bfqd->peak_rate can reach 0 (see
++ * the minimum representable values reported in the comments
++ * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
++ * divisions by zero where bfqd->peak_rate is used as a
++ * divisor.
++ */
++ bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
++
++ update_thr_responsiveness_params(bfqd);
++ BUG_ON(bfqd->peak_rate > 20<<BFQ_RATE_SHIFT);
++
++reset_computation:
++ bfq_reset_rate_computation(bfqd, rq);
++}
++
++/*
++ * Update the read/write peak rate (the main quantity used for
++ * auto-tuning, see update_thr_responsiveness_params()).
++ *
++ * It is not trivial to estimate the peak rate (correctly): because of
++ * the presence of sw and hw queues between the scheduler and the
++ * device components that finally serve I/O requests, it is hard to
++ * say exactly when a given dispatched request is served inside the
++ * device, and for how long. As a consequence, it is hard to know
++ * precisely at what rate a given set of requests is actually served
++ * by the device.
++ *
++ * On the opposite end, the dispatch time of any request is trivially
++ * available, and, from this piece of information, the "dispatch rate"
++ * of requests can be immediately computed. So, the idea in the next
++ * function is to use what is known, namely request dispatch times
++ * (plus, when useful, request completion times), to estimate what is
++ * unknown, namely in-device request service rate.
++ *
++ * The main issue is that, because of the above facts, the rate at
++ * which a certain set of requests is dispatched over a certain time
++ * interval can vary greatly with respect to the rate at which the
++ * same requests are then served. But, since the size of any
++ * intermediate queue is limited, and the service scheme is lossless
++ * (no request is silently dropped), the following obvious convergence
++ * property holds: the number of requests dispatched MUST become
++ * closer and closer to the number of requests completed as the
++ * observation interval grows. This is the key property used in
++ * the next function to estimate the peak service rate as a function
++ * of the observed dispatch rate. The function assumes to be invoked
++ * on every request dispatch.
++ */
++static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
++{
++ u64 now_ns = ktime_get_ns();
++
++ if (bfqd->peak_rate_samples == 0) { /* first dispatch */
++ bfq_log(bfqd,
++ "goto reset, samples %d",
++ bfqd->peak_rate_samples) ;
++ bfq_reset_rate_computation(bfqd, rq);
++ goto update_last_values; /* will add one sample */
++ }
++
++ /*
++ * Device idle for very long: the observation interval lasting
++ * up to this dispatch cannot be a valid observation interval
++ * for computing a new peak rate (similarly to the late-
++ * completion event in bfq_completed_request()). Go to
++ * update_rate_and_reset to have the following three steps
++ * taken:
++ * - close the observation interval at the last (previous)
++ * request dispatch or completion
++ * - compute rate, if possible, for that observation interval
++ * - start a new observation interval with this dispatch
++ */
++ if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
++ bfqd->rq_in_driver == 0) {
++ bfq_log(bfqd,
++"jumping to updating&resetting delta_last %lluus samples %d",
++ (now_ns - bfqd->last_dispatch)>>10,
++ bfqd->peak_rate_samples) ;
++ goto update_rate_and_reset;
++ }
++
++ /* Update sampling information */
++ bfqd->peak_rate_samples++;
++
++ if ((bfqd->rq_in_driver > 0 ||
++ now_ns - bfqd->last_completion < BFQ_MIN_TT)
++ && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
++ bfqd->sequential_samples++;
++
++ bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
++
++ /* Reset max observed rq size every 32 dispatches */
++ if (likely(bfqd->peak_rate_samples % 32))
++ bfqd->last_rq_max_size =
++ max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
++ else
++ bfqd->last_rq_max_size = blk_rq_sectors(rq);
++
++ bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
++
++ bfq_log(bfqd,
++ "added samples %u/%u tot_sects %llu delta_first %lluus",
++ bfqd->peak_rate_samples, bfqd->sequential_samples,
++ bfqd->tot_sectors_dispatched,
++ bfqd->delta_from_first>>10);
++
++ /* Target observation interval not yet reached, go on sampling */
++ if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
++ goto update_last_values;
++
++update_rate_and_reset:
++ bfq_update_rate_reset(bfqd, rq);
++update_last_values:
++ bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
++ if (RQ_BFQQ(rq) == bfqd->in_service_queue)
++ bfqd->in_serv_last_pos = bfqd->last_position;
++ bfqd->last_dispatch = now_ns;
++
++ bfq_log(bfqd,
++ "delta_first %lluus last_pos %llu peak_rate %llu",
++ (now_ns - bfqd->first_dispatch)>>10,
++ (unsigned long long) bfqd->last_position,
++ ((USEC_PER_SEC*(u64)bfqd->peak_rate)>>BFQ_RATE_SHIFT));
++ bfq_log(bfqd,
++ "samples at end %d", bfqd->peak_rate_samples);
++}
++
++/*
++ * Move request from internal lists to the dispatch list of the request queue
++ */
++static void bfq_dispatch_insert(struct request_queue *q, struct request *rq)
++{
++ struct bfq_queue *bfqq = RQ_BFQQ(rq);
++
++ /*
++ * For consistency, the next instruction should have been executed
++ * after removing the request from the queue and dispatching it.
++ * We execute instead this instruction before bfq_remove_request()
++ * (and hence introduce a temporary inconsistency), for efficiency.
++ * In fact, in a forced_dispatch, this prevents two counters related
++ * to bfqq->dispatched to risk to be uselessly decremented if bfqq
++ * is not in service, and then to be incremented again after
++ * incrementing bfqq->dispatched.
++ */
++ bfqq->dispatched++;
++ bfq_update_peak_rate(q->elevator->elevator_data, rq);
++
++ bfq_remove_request(rq);
++ elv_dispatch_sort(q, rq);
++}
++
++static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ BUG_ON(bfqq != bfqd->in_service_queue);
++
++ /*
++ * If this bfqq is shared between multiple processes, check
++ * to make sure that those processes are still issuing I/Os
++ * within the mean seek distance. If not, it may be time to
++ * break the queues apart again.
++ */
++ if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
++ bfq_mark_bfqq_split_coop(bfqq);
++
++ if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
++ if (bfqq->dispatched == 0)
++ /*
++ * Overloading budget_timeout field to store
++ * the time at which the queue remains with no
++ * backlog and no outstanding request; used by
++ * the weight-raising mechanism.
++ */
++ bfqq->budget_timeout = jiffies;
++
++ bfq_del_bfqq_busy(bfqd, bfqq, true);
++ } else {
++ bfq_requeue_bfqq(bfqd, bfqq, true);
++ /*
++ * Resort priority tree of potential close cooperators.
++ */
++ bfq_pos_tree_add_move(bfqd, bfqq);
++ }
++
++ /*
++ * All in-service entities must have been properly deactivated
++ * or requeued before executing the next function, which
++ * resets all in-service entites as no more in service.
++ */
++ __bfq_bfqd_reset_in_service(bfqd);
++}
++
++/**
++ * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
++ * @bfqd: device data.
++ * @bfqq: queue to update.
++ * @reason: reason for expiration.
++ *
++ * Handle the feedback on @bfqq budget at queue expiration.
++ * See the body for detailed comments.
++ */
++static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ enum bfqq_expiration reason)
++{
++ struct request *next_rq;
++ int budget, min_budget;
++
++ BUG_ON(bfqq != bfqd->in_service_queue);
++
++ min_budget = bfq_min_budget(bfqd);
++
++ if (bfqq->wr_coeff == 1)
++ budget = bfqq->max_budget;
++ else /*
++ * Use a constant, low budget for weight-raised queues,
++ * to help achieve a low latency. Keep it slightly higher
++ * than the minimum possible budget, to cause a little
++ * bit fewer expirations.
++ */
++ budget = 2 * min_budget;
++
++ bfq_log_bfqq(bfqd, bfqq, "last budg %d, budg left %d",
++ bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
++ bfq_log_bfqq(bfqd, bfqq, "last max_budg %d, min budg %d",
++ budget, bfq_min_budget(bfqd));
++ bfq_log_bfqq(bfqd, bfqq, "sync %d, seeky %d",
++ bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
++
++ if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
++ switch (reason) {
++ /*
++ * Caveat: in all the following cases we trade latency
++ * for throughput.
++ */
++ case BFQ_BFQQ_TOO_IDLE:
++ /*
++ * This is the only case where we may reduce
++ * the budget: if there is no request of the
++ * process still waiting for completion, then
++ * we assume (tentatively) that the timer has
++ * expired because the batch of requests of
++ * the process could have been served with a
++ * smaller budget. Hence, betting that
++ * process will behave in the same way when it
++ * becomes backlogged again, we reduce its
++ * next budget. As long as we guess right,
++ * this budget cut reduces the latency
++ * experienced by the process.
++ *
++ * However, if there are still outstanding
++ * requests, then the process may have not yet
++ * issued its next request just because it is
++ * still waiting for the completion of some of
++ * the still outstanding ones. So in this
++ * subcase we do not reduce its budget, on the
++ * contrary we increase it to possibly boost
++ * the throughput, as discussed in the
++ * comments to the BUDGET_TIMEOUT case.
++ */
++ if (bfqq->dispatched > 0) /* still outstanding reqs */
++ budget = min(budget * 2, bfqd->bfq_max_budget);
++ else {
++ if (budget > 5 * min_budget)
++ budget -= 4 * min_budget;
++ else
++ budget = min_budget;
++ }
++ break;
++ case BFQ_BFQQ_BUDGET_TIMEOUT:
++ /*
++ * We double the budget here because it gives
++ * the chance to boost the throughput if this
++ * is not a seeky process (and has bumped into
++ * this timeout because of, e.g., ZBR).
++ */
++ budget = min(budget * 2, bfqd->bfq_max_budget);
++ break;
++ case BFQ_BFQQ_BUDGET_EXHAUSTED:
++ /*
++ * The process still has backlog, and did not
++ * let either the budget timeout or the disk
++ * idling timeout expire. Hence it is not
++ * seeky, has a short thinktime and may be
++ * happy with a higher budget too. So
++ * definitely increase the budget of this good
++ * candidate to boost the disk throughput.
++ */
++ budget = min(budget * 4, bfqd->bfq_max_budget);
++ break;
++ case BFQ_BFQQ_NO_MORE_REQUESTS:
++ /*
++ * For queues that expire for this reason, it
++ * is particularly important to keep the
++ * budget close to the actual service they
++ * need. Doing so reduces the timestamp
++ * misalignment problem described in the
++ * comments in the body of
++ * __bfq_activate_entity. In fact, suppose
++ * that a queue systematically expires for
++ * BFQ_BFQQ_NO_MORE_REQUESTS and presents a
++ * new request in time to enjoy timestamp
++ * back-shifting. The larger the budget of the
++ * queue is with respect to the service the
++ * queue actually requests in each service
++ * slot, the more times the queue can be
++ * reactivated with the same virtual finish
++ * time. It follows that, even if this finish
++ * time is pushed to the system virtual time
++ * to reduce the consequent timestamp
++ * misalignment, the queue unjustly enjoys for
++ * many re-activations a lower finish time
++ * than all newly activated queues.
++ *
++ * The service needed by bfqq is measured
++ * quite precisely by bfqq->entity.service.
++ * Since bfqq does not enjoy device idling,
++ * bfqq->entity.service is equal to the number
++ * of sectors that the process associated with
++ * bfqq requested to read/write before waiting
++ * for request completions, or blocking for
++ * other reasons.
++ */
++ budget = max_t(int, bfqq->entity.service, min_budget);
++ break;
++ default:
++ return;
++ }
++ } else if (!bfq_bfqq_sync(bfqq))
++ /*
++ * Async queues get always the maximum possible
++ * budget, as for them we do not care about latency
++ * (in addition, their ability to dispatch is limited
++ * by the charging factor).
++ */
++ budget = bfqd->bfq_max_budget;
++
++ bfqq->max_budget = budget;
++
++ if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
++ !bfqd->bfq_user_max_budget)
++ bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
++
++ /*
++ * If there is still backlog, then assign a new budget, making
++ * sure that it is large enough for the next request. Since
++ * the finish time of bfqq must be kept in sync with the
++ * budget, be sure to call __bfq_bfqq_expire() *after* this
++ * update.
++ *
++ * If there is no backlog, then no need to update the budget;
++ * it will be updated on the arrival of a new request.
++ */
++ next_rq = bfqq->next_rq;
++ if (next_rq) {
++ BUG_ON(reason == BFQ_BFQQ_TOO_IDLE ||
++ reason == BFQ_BFQQ_NO_MORE_REQUESTS);
++ bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
++ bfq_serv_to_charge(next_rq, bfqq));
++ BUG_ON(!bfq_bfqq_busy(bfqq));
++ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
++ }
++
++ bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
++ next_rq ? blk_rq_sectors(next_rq) : 0,
++ bfqq->entity.budget);
++}
++
++/*
++ * Return true if the process associated with bfqq is "slow". The slow
++ * flag is used, in addition to the budget timeout, to reduce the
++ * amount of service provided to seeky processes, and thus reduce
++ * their chances to lower the throughput. More details in the comments
++ * on the function bfq_bfqq_expire().
++ *
++ * An important observation is in order: as discussed in the comments
++ * on the function bfq_update_peak_rate(), with devices with internal
++ * queues, it is hard if ever possible to know when and for how long
++ * an I/O request is processed by the device (apart from the trivial
++ * I/O pattern where a new request is dispatched only after the
++ * previous one has been completed). This makes it hard to evaluate
++ * the real rate at which the I/O requests of each bfq_queue are
++ * served. In fact, for an I/O scheduler like BFQ, serving a
++ * bfq_queue means just dispatching its requests during its service
++ * slot (i.e., until the budget of the queue is exhausted, or the
++ * queue remains idle, or, finally, a timeout fires). But, during the
++ * service slot of a bfq_queue, around 100 ms at most, the device may
++ * be even still processing requests of bfq_queues served in previous
++ * service slots. On the opposite end, the requests of the in-service
++ * bfq_queue may be completed after the service slot of the queue
++ * finishes.
++ *
++ * Anyway, unless more sophisticated solutions are used
++ * (where possible), the sum of the sizes of the requests dispatched
++ * during the service slot of a bfq_queue is probably the only
++ * approximation available for the service received by the bfq_queue
++ * during its service slot. And this sum is the quantity used in this
++ * function to evaluate the I/O speed of a process.
++ */
++static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ bool compensate, enum bfqq_expiration reason,
++ unsigned long *delta_ms)
++{
++ ktime_t delta_ktime;
++ u32 delta_usecs;
++ bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
++
++ if (!bfq_bfqq_sync(bfqq))
++ return false;
++
++ if (compensate)
++ delta_ktime = bfqd->last_idling_start;
++ else
++ delta_ktime = ktime_get();
++ delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
++ delta_usecs = ktime_to_us(delta_ktime);
++
++ /* don't use too short time intervals */
++ if (delta_usecs < 1000) {
++ if (blk_queue_nonrot(bfqd->queue))
++ /*
++ * give same worst-case guarantees as idling
++ * for seeky
++ */
++ *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
++ else /* charge at least one seek */
++ *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
++
++ bfq_log(bfqd, "too short %u", delta_usecs);
++
++ return slow;
++ }
++
++ *delta_ms = delta_usecs / USEC_PER_MSEC;
++
++ /*
++ * Use only long (> 20ms) intervals to filter out excessive
++ * spikes in service rate estimation.
++ */
++ if (delta_usecs > 20000) {
++ /*
++ * Caveat for rotational devices: processes doing I/O
++ * in the slower disk zones tend to be slow(er) even
++ * if not seeky. In this respect, the estimated peak
++ * rate is likely to be an average over the disk
++ * surface. Accordingly, to not be too harsh with
++ * unlucky processes, a process is deemed slow only if
++ * its rate has been lower than half of the estimated
++ * peak rate.
++ */
++ slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
++ bfq_log(bfqd, "relative rate %d/%d",
++ bfqq->entity.service, bfqd->bfq_max_budget);
++ }
++
++ bfq_log_bfqq(bfqd, bfqq, "slow %d", slow);
++
++ return slow;
++}
++
++/*
++ * To be deemed as soft real-time, an application must meet two
++ * requirements. First, the application must not require an average
++ * bandwidth higher than the approximate bandwidth required to playback or
++ * record a compressed high-definition video.
++ * The next function is invoked on the completion of the last request of a
++ * batch, to compute the next-start time instant, soft_rt_next_start, such
++ * that, if the next request of the application does not arrive before
++ * soft_rt_next_start, then the above requirement on the bandwidth is met.
++ *
++ * The second requirement is that the request pattern of the application is
++ * isochronous, i.e., that, after issuing a request or a batch of requests,
++ * the application stops issuing new requests until all its pending requests
++ * have been completed. After that, the application may issue a new batch,
++ * and so on.
++ * For this reason the next function is invoked to compute
++ * soft_rt_next_start only for applications that meet this requirement,
++ * whereas soft_rt_next_start is set to infinity for applications that do
++ * not.
++ *
++ * Unfortunately, even a greedy (i.e., I/O-bound) application may
++ * happen to meet, occasionally or systematically, both the above
++ * bandwidth and isochrony requirements. This may happen at least in
++ * the following circumstances. First, if the CPU load is high. The
++ * application may stop issuing requests while the CPUs are busy
++ * serving other processes, then restart, then stop again for a while,
++ * and so on. The other circumstances are related to the storage
++ * device: the storage device is highly loaded or reaches a low-enough
++ * throughput with the I/O of the application (e.g., because the I/O
++ * is random and/or the device is slow). In all these cases, the
++ * I/O of the application may be simply slowed down enough to meet
++ * the bandwidth and isochrony requirements. To reduce the probability
++ * that greedy applications are deemed as soft real-time in these
++ * corner cases, a further rule is used in the computation of
++ * soft_rt_next_start: the return value of this function is forced to
++ * be higher than the maximum between the following two quantities.
++ *
++ * (a) Current time plus: (1) the maximum time for which the arrival
++ * of a request is waited for when a sync queue becomes idle,
++ * namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
++ * postpone for a moment the reason for adding a few extra
++ * jiffies; we get back to it after next item (b). Lower-bounding
++ * the return value of this function with the current time plus
++ * bfqd->bfq_slice_idle tends to filter out greedy applications,
++ * because the latter issue their next request as soon as possible
++ * after the last one has been completed. In contrast, a soft
++ * real-time application spends some time processing data, after a
++ * batch of its requests has been completed.
++ *
++ * (b) Current value of bfqq->soft_rt_next_start. As pointed out
++ * above, greedy applications may happen to meet both the
++ * bandwidth and isochrony requirements under heavy CPU or
++ * storage-device load. In more detail, in these scenarios, these
++ * applications happen, only for limited time periods, to do I/O
++ * slowly enough to meet all the requirements described so far,
++ * including the filtering in above item (a). These slow-speed
++ * time intervals are usually interspersed between other time
++ * intervals during which these applications do I/O at a very high
++ * speed. Fortunately, exactly because of the high speed of the
++ * I/O in the high-speed intervals, the values returned by this
++ * function happen to be so high, near the end of any such
++ * high-speed interval, to be likely to fall *after* the end of
++ * the low-speed time interval that follows. These high values are
++ * stored in bfqq->soft_rt_next_start after each invocation of
++ * this function. As a consequence, if the last value of
++ * bfqq->soft_rt_next_start is constantly used to lower-bound the
++ * next value that this function may return, then, from the very
++ * beginning of a low-speed interval, bfqq->soft_rt_next_start is
++ * likely to be constantly kept so high that any I/O request
++ * issued during the low-speed interval is considered as arriving
++ * to soon for the application to be deemed as soft
++ * real-time. Then, in the high-speed interval that follows, the
++ * application will not be deemed as soft real-time, just because
++ * it will do I/O at a high speed. And so on.
++ *
++ * Getting back to the filtering in item (a), in the following two
++ * cases this filtering might be easily passed by a greedy
++ * application, if the reference quantity was just
++ * bfqd->bfq_slice_idle:
++ * 1) HZ is so low that the duration of a jiffy is comparable to or
++ * higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
++ * devices with HZ=100. The time granularity may be so coarse
++ * that the approximation, in jiffies, of bfqd->bfq_slice_idle
++ * is rather lower than the exact value.
++ * 2) jiffies, instead of increasing at a constant rate, may stop increasing
++ * for a while, then suddenly 'jump' by several units to recover the lost
++ * increments. This seems to happen, e.g., inside virtual machines.
++ * To address this issue, in the filtering in (a) we do not use as a
++ * reference time interval just bfqd->bfq_slice_idle, but
++ * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
++ * minimum number of jiffies for which the filter seems to be quite
++ * precise also in embedded systems and KVM/QEMU virtual machines.
++ */
++static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ bfq_log_bfqq(bfqd, bfqq,
++"service_blkg %lu soft_rate %u sects/sec interval %u",
++ bfqq->service_from_backlogged,
++ bfqd->bfq_wr_max_softrt_rate,
++ jiffies_to_msecs(HZ * bfqq->service_from_backlogged /
++ bfqd->bfq_wr_max_softrt_rate));
++
++ return max3(bfqq->soft_rt_next_start,
++ bfqq->last_idle_bklogged +
++ HZ * bfqq->service_from_backlogged /
++ bfqd->bfq_wr_max_softrt_rate,
++ jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
++}
++
++static bool bfq_bfqq_injectable(struct bfq_queue *bfqq)
++{
++ return BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
++ blk_queue_nonrot(bfqq->bfqd->queue) &&
++ bfqq->bfqd->hw_tag;
++}
++
++/**
++ * bfq_bfqq_expire - expire a queue.
++ * @bfqd: device owning the queue.
++ * @bfqq: the queue to expire.
++ * @compensate: if true, compensate for the time spent idling.
++ * @reason: the reason causing the expiration.
++ *
++ * If the process associated with bfqq does slow I/O (e.g., because it
++ * issues random requests), we charge bfqq with the time it has been
++ * in service instead of the service it has received (see
++ * bfq_bfqq_charge_time for details on how this goal is achieved). As
++ * a consequence, bfqq will typically get higher timestamps upon
++ * reactivation, and hence it will be rescheduled as if it had
++ * received more service than what it has actually received. In the
++ * end, bfqq receives less service in proportion to how slowly its
++ * associated process consumes its budgets (and hence how seriously it
++ * tends to lower the throughput). In addition, this time-charging
++ * strategy guarantees time fairness among slow processes. In
++ * contrast, if the process associated with bfqq is not slow, we
++ * charge bfqq exactly with the service it has received.
++ *
++ * Charging time to the first type of queues and the exact service to
++ * the other has the effect of using the WF2Q+ policy to schedule the
++ * former on a timeslice basis, without violating service domain
++ * guarantees among the latter.
++ */
++static void bfq_bfqq_expire(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ bool compensate,
++ enum bfqq_expiration reason)
++{
++ bool slow;
++ unsigned long delta = 0;
++ struct bfq_entity *entity = &bfqq->entity;
++ int ref;
++
++ BUG_ON(bfqq != bfqd->in_service_queue);
++
++ /*
++ * Check whether the process is slow (see bfq_bfqq_is_slow).
++ */
++ slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
++
++ /*
++ * As above explained, charge slow (typically seeky) and
++ * timed-out queues with the time and not the service
++ * received, to favor sequential workloads.
++ *
++ * Processes doing I/O in the slower disk zones will tend to
++ * be slow(er) even if not seeky. Therefore, since the
++ * estimated peak rate is actually an average over the disk
++ * surface, these processes may timeout just for bad luck. To
++ * avoid punishing them, do not charge time to processes that
++ * succeeded in consuming at least 2/3 of their budget. This
++ * allows BFQ to preserve enough elasticity to still perform
++ * bandwidth, and not time, distribution with little unlucky
++ * or quasi-sequential processes.
++ */
++ if (bfqq->wr_coeff == 1 &&
++ (slow ||
++ (reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
++ bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
++ bfq_bfqq_charge_time(bfqd, bfqq, delta);
++
++ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
++
++ if (reason == BFQ_BFQQ_TOO_IDLE &&
++ entity->service <= 2 * entity->budget / 10)
++ bfq_clear_bfqq_IO_bound(bfqq);
++
++ if (bfqd->low_latency && bfqq->wr_coeff == 1)
++ bfqq->last_wr_start_finish = jiffies;
++
++ if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
++ RB_EMPTY_ROOT(&bfqq->sort_list)) {
++ /*
++ * If we get here, and there are no outstanding
++ * requests, then the request pattern is isochronous
++ * (see the comments on the function
++ * bfq_bfqq_softrt_next_start()). Thus we can compute
++ * soft_rt_next_start. And we do it, unless bfqq is in
++ * interactive weight raising. We do not do it in the
++ * latter subcase, for the following reason. bfqq may
++ * be conveying the I/O needed to load a soft
++ * real-time application. Such an application will
++ * actually exhibit a soft real-time I/O pattern after
++ * it finally starts doing its job. But, if
++ * soft_rt_next_start is computed here for an
++ * interactive bfqq, and bfqq had received a lot of
++ * service before remaining with no outstanding
++ * request (likely to happen on a fast device), then
++ * soft_rt_next_start would be assigned such a high
++ * value that, for a very long time, bfqq would be
++ * prevented from being possibly considered as soft
++ * real time.
++ *
++ * If, instead, the queue still has outstanding
++ * requests, then we have to wait for the completion
++ * of all the outstanding requests to discover whether
++ * the request pattern is actually isochronous.
++ */
++ BUG_ON(bfq_tot_busy_queues(bfqd) < 1);
++ if (bfqq->dispatched == 0 &&
++ bfqq->wr_coeff != bfqd->bfq_wr_coeff) {
++ bfqq->soft_rt_next_start =
++ bfq_bfqq_softrt_next_start(bfqd, bfqq);
++ bfq_log_bfqq(bfqd, bfqq, "new soft_rt_next %lu",
++ bfqq->soft_rt_next_start);
++ } else if (bfqq->dispatched > 0) {
++ /*
++ * Schedule an update of soft_rt_next_start to when
++ * the task may be discovered to be isochronous.
++ */
++ bfq_mark_bfqq_softrt_update(bfqq);
++ }
++ }
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "expire (%s, slow %d, num_disp %d, short %d, weight %d, serv %d/%d)",
++ reason_name[reason], slow, bfqq->dispatched,
++ bfq_bfqq_has_short_ttime(bfqq), entity->weight,
++ entity->service, entity->budget);
++
++ /*
++ * Increase, decrease or leave budget unchanged according to
++ * reason.
++ */
++ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
++ __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
++ BUG_ON(bfqq->next_rq == NULL &&
++ bfqq->entity.budget < bfqq->entity.service);
++ ref = bfqq->ref;
++ __bfq_bfqq_expire(bfqd, bfqq);
++
++ if (ref == 1) /* bfqq is gone, no more actions on it */
++ return;
++
++ BUG_ON(ref > 1 &&
++ !bfq_bfqq_busy(bfqq) && reason == BFQ_BFQQ_BUDGET_EXHAUSTED &&
++ !bfq_class_idle(bfqq));
++
++ bfqq->injected_service = 0;
++
++ /* mark bfqq as waiting a request only if a bic still points to it */
++ if (!bfq_bfqq_busy(bfqq) &&
++ reason != BFQ_BFQQ_BUDGET_TIMEOUT &&
++ reason != BFQ_BFQQ_BUDGET_EXHAUSTED) {
++ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
++ BUG_ON(bfqq->next_rq);
++ bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
++ /*
++ * Not setting service to 0, because, if the next rq
++ * arrives in time, the queue will go on receiving
++ * service with this same budget (as if it never expired)
++ */
++ } else {
++ entity->service = 0;
++ bfq_log_bfqq(bfqd, bfqq, "resetting service");
++ }
++
++ /*
++ * Reset the received-service counter for every parent entity.
++ * Differently from what happens with bfqq->entity.service,
++ * the resetting of this counter never needs to be postponed
++ * for parent entities. In fact, in case bfqq may have a
++ * chance to go on being served using the last, partially
++ * consumed budget, bfqq->entity.service needs to be kept,
++ * because if bfqq then actually goes on being served using
++ * the same budget, the last value of bfqq->entity.service is
++ * needed to properly decrement bfqq->entity.budget by the
++ * portion already consumed. In contrast, it is not necessary
++ * to keep entity->service for parent entities too, because
++ * the bubble up of the new value of bfqq->entity.budget will
++ * make sure that the budgets of parent entities are correct,
++ * even in case bfqq and thus parent entities go on receiving
++ * service with the same budget.
++ */
++ entity = entity->parent;
++ for_each_entity(entity)
++ entity->service = 0;
++}
++
++/*
++ * Budget timeout is not implemented through a dedicated timer, but
++ * just checked on request arrivals and completions, as well as on
++ * idle timer expirations.
++ */
++static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
++{
++ return time_is_before_eq_jiffies(bfqq->budget_timeout);
++}
++
++/*
++ * If we expire a queue that is actively waiting (i.e., with the
++ * device idled) for the arrival of a new request, then we may incur
++ * the timestamp misalignment problem described in the body of the
++ * function __bfq_activate_entity. Hence we return true only if this
++ * condition does not hold, or if the queue is slow enough to deserve
++ * only to be kicked off for preserving a high throughput.
++ */
++static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
++{
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "wait_request %d left %d timeout %d",
++ bfq_bfqq_wait_request(bfqq),
++ bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
++ bfq_bfqq_budget_timeout(bfqq));
++
++ return (!bfq_bfqq_wait_request(bfqq) ||
++ bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
++ &&
++ bfq_bfqq_budget_timeout(bfqq);
++}
++
++static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ bool rot_without_queueing =
++ !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
++ bfqq_sequential_and_IO_bound,
++ idling_boosts_thr;
++
++ bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
++ bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
++ /*
++ * The next variable takes into account the cases where idling
++ * boosts the throughput.
++ *
++ * The value of the variable is computed considering, first, that
++ * idling is virtually always beneficial for the throughput if:
++ * (a) the device is not NCQ-capable and rotational, or
++ * (b) regardless of the presence of NCQ, the device is rotational and
++ * the request pattern for bfqq is I/O-bound and sequential, or
++ * (c) regardless of whether it is rotational, the device is
++ * not NCQ-capable and the request pattern for bfqq is
++ * I/O-bound and sequential.
++ *
++ * Secondly, and in contrast to the above item (b), idling an
++ * NCQ-capable flash-based device would not boost the
++ * throughput even with sequential I/O; rather it would lower
++ * the throughput in proportion to how fast the device
++ * is. Accordingly, the next variable is true if any of the
++ * above conditions (a), (b) or (c) is true, and, in
++ * particular, happens to be false if bfqd is an NCQ-capable
++ * flash-based device.
++ */
++ idling_boosts_thr = rot_without_queueing ||
++ ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
++ bfqq_sequential_and_IO_bound);
++
++ bfq_log_bfqq(bfqd, bfqq, "idling_boosts_thr %d", idling_boosts_thr);
++
++ /*
++ * The return value of this function is equal to that of
++ * idling_boosts_thr, unless a special case holds. In this
++ * special case, described below, idling may cause problems to
++ * weight-raised queues.
++ *
++ * When the request pool is saturated (e.g., in the presence
++ * of write hogs), if the processes associated with
++ * non-weight-raised queues ask for requests at a lower rate,
++ * then processes associated with weight-raised queues have a
++ * higher probability to get a request from the pool
++ * immediately (or at least soon) when they need one. Thus
++ * they have a higher probability to actually get a fraction
++ * of the device throughput proportional to their high
++ * weight. This is especially true with NCQ-capable drives,
++ * which enqueue several requests in advance, and further
++ * reorder internally-queued requests.
++ *
++ * For this reason, we force to false the return value if
++ * there are weight-raised busy queues. In this case, and if
++ * bfqq is not weight-raised, this guarantees that the device
++ * is not idled for bfqq (if, instead, bfqq is weight-raised,
++ * then idling will be guaranteed by another variable, see
++ * below). Combined with the timestamping rules of BFQ (see
++ * [1] for details), this behavior causes bfqq, and hence any
++ * sync non-weight-raised queue, to get a lower number of
++ * requests served, and thus to ask for a lower number of
++ * requests from the request pool, before the busy
++ * weight-raised queues get served again. This often mitigates
++ * starvation problems in the presence of heavy write
++ * workloads and NCQ, thereby guaranteeing a higher
++ * application and system responsiveness in these hostile
++ * scenarios.
++ */
++ return idling_boosts_thr &&
++ bfqd->wr_busy_queues == 0;
++}
++
++/*
++ * There is a case where idling must be performed not for
++ * throughput concerns, but to preserve service guarantees.
++ *
++ * To introduce this case, we can note that allowing the drive
++ * to enqueue more than one request at a time, and hence
++ * delegating de facto final scheduling decisions to the
++ * drive's internal scheduler, entails loss of control on the
++ * actual request service order. In particular, the critical
++ * situation is when requests from different processes happen
++ * to be present, at the same time, in the internal queue(s)
++ * of the drive. In such a situation, the drive, by deciding
++ * the service order of the internally-queued requests, does
++ * determine also the actual throughput distribution among
++ * these processes. But the drive typically has no notion or
++ * concern about per-process throughput distribution, and
++ * makes its decisions only on a per-request basis. Therefore,
++ * the service distribution enforced by the drive's internal
++ * scheduler is likely to coincide with the desired
++ * device-throughput distribution only in a completely
++ * symmetric scenario where:
++ * (i) each of these processes must get the same throughput as
++ * the others;
++ * (ii) the I/O of each process has the same properties, in
++ * terms of locality (sequential or random), direction
++ * (reads or writes), request sizes, greediness
++ * (from I/O-bound to sporadic), and so on.
++ * In fact, in such a scenario, the drive tends to treat
++ * the requests of each of these processes in about the same
++ * way as the requests of the others, and thus to provide
++ * each of these processes with about the same throughput
++ * (which is exactly the desired throughput distribution). In
++ * contrast, in any asymmetric scenario, device idling is
++ * certainly needed to guarantee that bfqq receives its
++ * assigned fraction of the device throughput (see [1] for
++ * details).
++ * The problem is that idling may significantly reduce
++ * throughput with certain combinations of types of I/O and
++ * devices. An important example is sync random I/O, on flash
++ * storage with command queueing. So, unless bfqq falls in the
++ * above cases where idling also boosts throughput, it would
++ * be important to check conditions (i) and (ii) accurately,
++ * so as to avoid idling when not strictly needed for service
++ * guarantees.
++ *
++ * Unfortunately, it is extremely difficult to thoroughly
++ * check condition (ii). And, in case there are active groups,
++ * it becomes very difficult to check condition (i) too. In
++ * fact, if there are active groups, then, for condition (i)
++ * to become false, it is enough that an active group contains
++ * more active processes or sub-groups than some other active
++ * group. More precisely, for condition (i) to hold because of
++ * such a group, it is not even necessary that the group is
++ * (still) active: it is sufficient that, even if the group
++ * has become inactive, some of its descendant processes still
++ * have some request already dispatched but still waiting for
++ * completion. In fact, requests have still to be guaranteed
++ * their share of the throughput even after being
++ * dispatched. In this respect, it is easy to show that, if a
++ * group frequently becomes inactive while still having
++ * in-flight requests, and if, when this happens, the group is
++ * not considered in the calculation of whether the scenario
++ * is asymmetric, then the group may fail to be guaranteed its
++ * fair share of the throughput (basically because idling may
++ * not be performed for the descendant processes of the group,
++ * but it had to be). We address this issue with the
++ * following bi-modal behavior, implemented in the function
++ * bfq_symmetric_scenario().
++ *
++ * If there are groups with requests waiting for completion
++ * (as commented above, some of these groups may even be
++ * already inactive), then the scenario is tagged as
++ * asymmetric, conservatively, without checking any of the
++ * conditions (i) and (ii). So the device is idled for bfqq.
++ * This behavior matches also the fact that groups are created
++ * exactly if controlling I/O is a primary concern (to
++ * preserve bandwidth and latency guarantees).
++ *
++ * On the opposite end, if there are no groups with requests
++ * waiting for completion, then only condition (i) is actually
++ * controlled, i.e., provided that condition (i) holds, idling
++ * is not performed, regardless of whether condition (ii)
++ * holds. In other words, only if condition (i) does not hold,
++ * then idling is allowed, and the device tends to be
++ * prevented from queueing many requests, possibly of several
++ * processes. Since there are no groups with requests waiting
++ * for completion, then, to control condition (i) it is enough
++ * to check just whether all the queues with requests waiting
++ * for completion also have the same weight.
++ *
++ * Not checking condition (ii) evidently exposes bfqq to the
++ * risk of getting less throughput than its fair share.
++ * However, for queues with the same weight, a further
++ * mechanism, preemption, mitigates or even eliminates this
++ * problem. And it does so without consequences on overall
++ * throughput. This mechanism and its benefits are explained
++ * in the next three paragraphs.
++ *
++ * Even if a queue, say Q, is expired when it remains idle, Q
++ * can still preempt the new in-service queue if the next
++ * request of Q arrives soon (see the comments on
++ * bfq_bfqq_update_budg_for_activation). If all queues and
++ * groups have the same weight, this form of preemption,
++ * combined with the hole-recovery heuristic described in the
++ * comments on function bfq_bfqq_update_budg_for_activation,
++ * are enough to preserve a correct bandwidth distribution in
++ * the mid term, even without idling. In fact, even if not
++ * idling allows the internal queues of the device to contain
++ * many requests, and thus to reorder requests, we can rather
++ * safely assume that the internal scheduler still preserves a
++ * minimum of mid-term fairness.
++ *
++ * More precisely, this preemption-based, idleless approach
++ * provides fairness in terms of IOPS, and not sectors per
++ * second. This can be seen with a simple example. Suppose
++ * that there are two queues with the same weight, but that
++ * the first queue receives requests of 8 sectors, while the
++ * second queue receives requests of 1024 sectors. In
++ * addition, suppose that each of the two queues contains at
++ * most one request at a time, which implies that each queue
++ * always remains idle after it is served. Finally, after
++ * remaining idle, each queue receives very quickly a new
++ * request. It follows that the two queues are served
++ * alternatively, preempting each other if needed. This
++ * implies that, although both queues have the same weight,
++ * the queue with large requests receives a service that is
++ * 1024/8 times as high as the service received by the other
++ * queue.
++ *
++ * The motivation for using preemption instead of idling (for
++ * queues with the same weight) is that, by not idling,
++ * service guarantees are preserved (completely or at least in
++ * part) without minimally sacrificing throughput. And, if
++ * there is no active group, then the primary expectation for
++ * this device is probably a high throughput.
++ *
++ * We are now left only with explaining the additional
++ * compound condition that is checked below for deciding
++ * whether the scenario is asymmetric. To explain this
++ * compound condition, we need to add that the function
++ * bfq_symmetric_scenario checks the weights of only
++ * non-weight-raised queues, for efficiency reasons (see
++ * comments on bfq_weights_tree_add()). Then the fact that
++ * bfqq is weight-raised is checked explicitly here. More
++ * precisely, the compound condition below takes into account
++ * also the fact that, even if bfqq is being weight-raised,
++ * the scenario is still symmetric if all queues with requests
++ * waiting for completion happen to be
++ * weight-raised. Actually, we should be even more precise
++ * here, and differentiate between interactive weight raising
++ * and soft real-time weight raising.
++ *
++ * As a side note, it is worth considering that the above
++ * device-idling countermeasures may however fail in the
++ * following unlucky scenario: if idling is (correctly)
++ * disabled in a time period during which all symmetry
++ * sub-conditions hold, and hence the device is allowed to
++ * enqueue many requests, but at some later point in time some
++ * sub-condition stops to hold, then it may become impossible
++ * to let requests be served in the desired order until all
++ * the requests already queued in the device have been served.
++ */
++static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ bool asymmetric_scenario = (bfqq->wr_coeff > 1 &&
++ bfqd->wr_busy_queues <
++ bfq_tot_busy_queues(bfqd)) ||
++ !bfq_symmetric_scenario(bfqd);
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "wr_coeff %d wr_busy %d busy %d asymmetric %d",
++ bfqq->wr_coeff,
++ bfqd->wr_busy_queues,
++ bfq_tot_busy_queues(bfqd),
++ asymmetric_scenario);
++
++ return asymmetric_scenario;
++}
++
++/*
++ * For a queue that becomes empty, device idling is allowed only if
++ * this function returns true for that queue. As a consequence, since
++ * device idling plays a critical role for both throughput boosting
++ * and service guarantees, the return value of this function plays a
++ * critical role as well.
++ *
++ * In a nutshell, this function returns true only if idling is
++ * beneficial for throughput or, even if detrimental for throughput,
++ * idling is however necessary to preserve service guarantees (low
++ * latency, desired throughput distribution, ...). In particular, on
++ * NCQ-capable devices, this function tries to return false, so as to
++ * help keep the drives' internal queues full, whenever this helps the
++ * device boost the throughput without causing any service-guarantee
++ * issue.
++ *
++ * Most of the issues taken into account to get the return value of
++ * this function are not trivial. We discuss these issues in the two
++ * functions providing the main pieces of information needed by this
++ * function.
++ */
++static bool bfq_better_to_idle(struct bfq_queue *bfqq)
++{
++ struct bfq_data *bfqd = bfqq->bfqd;
++ bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
++
++ if (unlikely(bfqd->strict_guarantees))
++ return true;
++
++ /*
++ * Idling is performed only if slice_idle > 0. In addition, we
++ * do not idle if
++ * (a) bfqq is async
++ * (b) bfqq is in the idle io prio class: in this case we do
++ * not idle because we want to minimize the bandwidth that
++ * queues in this class can steal to higher-priority queues
++ */
++ if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
++ bfq_class_idle(bfqq))
++ return false;
++
++ idling_boosts_thr_with_no_issue =
++ idling_boosts_thr_without_issues(bfqd, bfqq);
++
++ idling_needed_for_service_guar =
++ idling_needed_for_service_guarantees(bfqd, bfqq);
++
++ /*
++ * We have now the two components we need to compute the
++ * return value of the function, which is true only if idling
++ * either boosts the throughput (without issues), or is
++ * necessary to preserve service guarantees.
++ */
++ bfq_log_bfqq(bfqd, bfqq,
++ "wr_busy %d boosts %d IO-bound %d guar %d",
++ bfqd->wr_busy_queues,
++ idling_boosts_thr_with_no_issue,
++ bfq_bfqq_IO_bound(bfqq),
++ idling_needed_for_service_guar);
++
++ return idling_boosts_thr_with_no_issue ||
++ idling_needed_for_service_guar;
++}
++
++/*
++ * If the in-service queue is empty but the function bfq_better_to_idle
++ * returns true, then:
++ * 1) the queue must remain in service and cannot be expired, and
++ * 2) the device must be idled to wait for the possible arrival of a new
++ * request for the queue.
++ * See the comments on the function bfq_better_to_idle for the reasons
++ * why performing device idling is the best choice to boost the throughput
++ * and preserve service guarantees when bfq_better_to_idle itself
++ * returns true.
++ */
++static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
++{
++ return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
++}
++
++static struct bfq_queue *bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
++{
++ struct bfq_queue *bfqq;
++
++ /*
++ * A linear search; but, with a high probability, very few
++ * steps are needed to find a candidate queue, i.e., a queue
++ * with enough budget left for its next request. In fact:
++ * - BFQ dynamically updates the budget of every queue so as
++ * to accomodate the expected backlog of the queue;
++ * - if a queue gets all its requests dispatched as injected
++ * service, then the queue is removed from the active list
++ * (and re-added only if it gets new requests, but with
++ * enough budget for its new backlog).
++ */
++ list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
++ if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
++ bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
++ bfq_bfqq_budget_left(bfqq)) {
++ bfq_log_bfqq(bfqd, bfqq, "returned this queue");
++ return bfqq;
++ }
++
++ bfq_log(bfqd, "no queue found");
++ return NULL;
++}
++
++/*
++ * Select a queue for service. If we have a current queue in service,
++ * check whether to continue servicing it, or retrieve and set a new one.
++ */
++static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
++{
++ struct bfq_queue *bfqq;
++ struct request *next_rq;
++ enum bfqq_expiration reason = BFQ_BFQQ_BUDGET_TIMEOUT;
++
++ bfqq = bfqd->in_service_queue;
++ if (!bfqq)
++ goto new_queue;
++
++ bfq_log_bfqq(bfqd, bfqq, "already in-service queue");
++
++ /*
++ * Do not expire bfqq for budget timeout if bfqq may be about
++ * to enjoy device idling. The reason why, in this case, we
++ * prevent bfqq from expiring is the same as in the comments
++ * on the case where bfq_bfqq_must_idle() returns true, in
++ * bfq_completed_request().
++ */
++ if (bfq_may_expire_for_budg_timeout(bfqq) &&
++ !bfq_bfqq_must_idle(bfqq))
++ goto expire;
++
++check_queue:
++ /*
++ * This loop is rarely executed more than once. Even when it
++ * happens, it is much more convenient to re-execute this loop
++ * than to return NULL and trigger a new dispatch to get a
++ * request served.
++ */
++ next_rq = bfqq->next_rq;
++ /*
++ * If bfqq has requests queued and it has enough budget left to
++ * serve them, keep the queue, otherwise expire it.
++ */
++ if (next_rq) {
++ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
++
++ if (bfq_serv_to_charge(next_rq, bfqq) >
++ bfq_bfqq_budget_left(bfqq)) {
++ /*
++ * Expire the queue for budget exhaustion,
++ * which makes sure that the next budget is
++ * enough to serve the next request, even if
++ * it comes from the fifo expired path.
++ */
++ reason = BFQ_BFQQ_BUDGET_EXHAUSTED;
++ goto expire;
++ } else {
++ /*
++ * The idle timer may be pending because we may
++ * not disable disk idling even when a new request
++ * arrives.
++ */
++ if (bfq_bfqq_wait_request(bfqq)) {
++ BUG_ON(!hrtimer_active(&bfqd->idle_slice_timer));
++ /*
++ * If we get here: 1) at least a new request
++ * has arrived but we have not disabled the
++ * timer because the request was too small,
++ * 2) then the block layer has unplugged
++ * the device, causing the dispatch to be
++ * invoked.
++ *
++ * Since the device is unplugged, now the
++ * requests are probably large enough to
++ * provide a reasonable throughput.
++ * So we disable idling.
++ */
++ bfq_clear_bfqq_wait_request(bfqq);
++ hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
++ bfqg_stats_update_idle_time(bfqq_group(bfqq));
++ }
++ goto keep_queue;
++ }
++ }
++
++ /*
++ * No requests pending. However, if the in-service queue is idling
++ * for a new request, or has requests waiting for a completion and
++ * may idle after their completion, then keep it anyway.
++ *
++ * Yet, to boost throughput, inject service from other queues if
++ * possible.
++ */
++ if (hrtimer_active(&bfqd->idle_slice_timer) ||
++ (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
++ if (bfq_bfqq_injectable(bfqq) &&
++ bfqq->injected_service * bfqq->inject_coeff <
++ bfqq->entity.service * 10) {
++ bfq_log_bfqq(bfqd, bfqq, "looking for queue for injection");
++ bfqq = bfq_choose_bfqq_for_injection(bfqd);
++ } else {
++ if (BFQQ_SEEKY(bfqq))
++ bfq_log_bfqq(bfqd, bfqq,
++ "injection saturated %d * %d >= %d * 10",
++ bfqq->injected_service, bfqq->inject_coeff,
++ bfqq->entity.service);
++ bfqq = NULL;
++ }
++ goto keep_queue;
++ }
++
++ reason = BFQ_BFQQ_NO_MORE_REQUESTS;
++expire:
++ bfq_bfqq_expire(bfqd, bfqq, false, reason);
++new_queue:
++ bfqq = bfq_set_in_service_queue(bfqd);
++ if (bfqq) {
++ bfq_log_bfqq(bfqd, bfqq, "checking new queue");
++ goto check_queue;
++ }
++keep_queue:
++ if (bfqq)
++ bfq_log_bfqq(bfqd, bfqq, "returned this queue");
++ else
++ bfq_log(bfqd, "no queue returned");
++
++ return bfqq;
++}
++
++static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++
++ if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
++ BUG_ON(bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
++ time_is_after_jiffies(bfqq->last_wr_start_finish));
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
++ jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
++ jiffies_to_msecs(bfqq->wr_cur_max_time),
++ bfqq->wr_coeff,
++ bfqq->entity.weight, bfqq->entity.orig_weight);
++
++ BUG_ON(bfqq != bfqd->in_service_queue && entity->weight !=
++ entity->orig_weight * bfqq->wr_coeff);
++ if (entity->prio_changed)
++ bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
++
++ /*
++ * If the queue was activated in a burst, or too much
++ * time has elapsed from the beginning of this
++ * weight-raising period, then end weight raising.
++ */
++ if (bfq_bfqq_in_large_burst(bfqq))
++ bfq_bfqq_end_wr(bfqq);
++ else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
++ bfqq->wr_cur_max_time)) {
++ if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
++ time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
++ bfq_wr_duration(bfqd)))
++ bfq_bfqq_end_wr(bfqq);
++ else {
++ switch_back_to_interactive_wr(bfqq, bfqd);
++ BUG_ON(time_is_after_jiffies(
++ bfqq->last_wr_start_finish));
++ bfqq->entity.prio_changed = 1;
++ bfq_log_bfqq(bfqd, bfqq,
++ "back to interactive wr");
++ }
++ }
++ if (bfqq->wr_coeff > 1 &&
++ bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
++ bfqq->service_from_wr > max_service_from_wr) {
++ /* see comments on max_service_from_wr */
++ bfq_bfqq_end_wr(bfqq);
++ bfq_log_bfqq(bfqd, bfqq,
++ "too much service");
++ }
++ }
++ /*
++ * To improve latency (for this or other queues), immediately
++ * update weight both if it must be raised and if it must be
++ * lowered. Since, entity may be on some active tree here, and
++ * might have a pending change of its ioprio class, invoke
++ * next function with the last parameter unset (see the
++ * comments on the function).
++ */
++ if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
++ __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
++ entity, false);
++}
++
++/*
++ * Dispatch one request from bfqq, moving it to the request queue
++ * dispatch list.
++ */
++static int bfq_dispatch_request(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ int dispatched = 0;
++ struct request *rq = bfqq->next_rq;
++ unsigned long service_to_charge;
++
++ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
++ BUG_ON(!rq);
++ service_to_charge = bfq_serv_to_charge(rq, bfqq);
++
++ BUG_ON(service_to_charge > bfq_bfqq_budget_left(bfqq));
++
++ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
++
++ bfq_bfqq_served(bfqq, service_to_charge);
++
++ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
++
++ bfq_dispatch_insert(bfqd->queue, rq);
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "dispatched %u sec req (%llu), budg left %d, new disp_nr %d",
++ blk_rq_sectors(rq),
++ (unsigned long long) blk_rq_pos(rq),
++ bfq_bfqq_budget_left(bfqq),
++ bfqq->dispatched);
++
++ dispatched++;
++
++ if (bfqq != bfqd->in_service_queue) {
++ if (likely(bfqd->in_service_queue)) {
++ bfqd->in_service_queue->injected_service +=
++ bfq_serv_to_charge(rq, bfqq);
++ bfq_log_bfqq(bfqd, bfqd->in_service_queue,
++ "injected_service increased to %d",
++ bfqd->in_service_queue->injected_service);
++ }
++ return dispatched;
++ }
++
++ /*
++ * If weight raising has to terminate for bfqq, then next
++ * function causes an immediate update of bfqq's weight,
++ * without waiting for next activation. As a consequence, on
++ * expiration, bfqq will be timestamped as if has never been
++ * weight-raised during this service slot, even if it has
++ * received part or even most of the service as a
++ * weight-raised queue. This inflates bfqq's timestamps, which
++ * is beneficial, as bfqq is then more willing to leave the
++ * device immediately to possible other weight-raised queues.
++ */
++ bfq_update_wr_data(bfqd, bfqq);
++
++ if (!bfqd->in_service_bic) {
++ atomic_long_inc(&RQ_BIC(rq)->icq.ioc->refcount);
++ bfqd->in_service_bic = RQ_BIC(rq);
++ BUG_ON(!bfqd->in_service_bic);
++ }
++
++ if (bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq))
++ goto expire;
++
++ return dispatched;
++
++expire:
++ bfq_bfqq_expire(bfqd, bfqq, false, BFQ_BFQQ_BUDGET_EXHAUSTED);
++ return dispatched;
++}
++
++static int __bfq_forced_dispatch_bfqq(struct bfq_queue *bfqq)
++{
++ int dispatched = 0;
++
++ while (bfqq->next_rq) {
++ bfq_dispatch_insert(bfqq->bfqd->queue, bfqq->next_rq);
++ dispatched++;
++ }
++
++ BUG_ON(!list_empty(&bfqq->fifo));
++ return dispatched;
++}
++
++/*
++ * Drain our current requests.
++ * Used for barriers and when switching io schedulers on-the-fly.
++ */
++static int bfq_forced_dispatch(struct bfq_data *bfqd)
++{
++ struct bfq_queue *bfqq, *n;
++ struct bfq_service_tree *st;
++ int dispatched = 0;
++
++ bfqq = bfqd->in_service_queue;
++ if (bfqq)
++ __bfq_bfqq_expire(bfqd, bfqq);
++
++ /*
++ * Loop through classes, and be careful to leave the scheduler
++ * in a consistent state, as feedback mechanisms and vtime
++ * updates cannot be disabled during the process.
++ */
++ list_for_each_entry_safe(bfqq, n, &bfqd->active_list, bfqq_list) {
++ st = bfq_entity_service_tree(&bfqq->entity);
++
++ dispatched += __bfq_forced_dispatch_bfqq(bfqq);
++
++ bfqq->max_budget = bfq_max_budget(bfqd);
++ bfq_forget_idle(st);
++ }
++
++ BUG_ON(bfq_tot_busy_queues(bfqd) != 0);
++
++ return dispatched;
++}
++
++static int bfq_dispatch_requests(struct request_queue *q, int force)
++{
++ struct bfq_data *bfqd = q->elevator->elevator_data;
++ struct bfq_queue *bfqq;
++
++ bfq_log(bfqd, "%d busy queues", bfq_tot_busy_queues(bfqd));
++
++ if (bfq_tot_busy_queues(bfqd) == 0)
++ return 0;
++
++ if (unlikely(force))
++ return bfq_forced_dispatch(bfqd);
++
++ /*
++ * Force device to serve one request at a time if
++ * strict_guarantees is true. Forcing this service scheme is
++ * currently the ONLY way to guarantee that the request
++ * service order enforced by the scheduler is respected by a
++ * queueing device. Otherwise the device is free even to make
++ * some unlucky request wait for as long as the device
++ * wishes.
++ *
++ * Of course, serving one request at at time may cause loss of
++ * throughput.
++ */
++ if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
++ return 0;
++
++ bfqq = bfq_select_queue(bfqd);
++ if (!bfqq)
++ return 0;
++
++ BUG_ON(bfqq == bfqd->in_service_queue &&
++ bfqq->entity.budget < bfqq->entity.service);
++
++ BUG_ON(bfqq == bfqd->in_service_queue &&
++ bfq_bfqq_wait_request(bfqq));
++
++ if (!bfq_dispatch_request(bfqd, bfqq))
++ return 0;
++
++ bfq_log_bfqq(bfqd, bfqq, "%s request",
++ bfq_bfqq_sync(bfqq) ? "sync" : "async");
++
++ BUG_ON(bfqq->next_rq == NULL &&
++ bfqq->entity.budget < bfqq->entity.service);
++ return 1;
++}
++
++/*
++ * Task holds one reference to the queue, dropped when task exits. Each rq
++ * in-flight on this queue also holds a reference, dropped when rq is freed.
++ *
++ * Queue lock must be held here. Recall not to use bfqq after calling
++ * this function on it.
++ */
++static void bfq_put_queue(struct bfq_queue *bfqq)
++{
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ struct bfq_group *bfqg = bfqq_group(bfqq);
++#endif
++
++ BUG_ON(bfqq->ref <= 0);
++
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "%p %d", bfqq, bfqq->ref);
++ bfqq->ref--;
++ if (bfqq->ref)
++ return;
++
++ BUG_ON(rb_first(&bfqq->sort_list));
++ BUG_ON(bfqq->allocated[READ] + bfqq->allocated[WRITE] != 0);
++ BUG_ON(bfqq->entity.tree);
++ BUG_ON(bfq_bfqq_busy(bfqq));
++
++ if (!hlist_unhashed(&bfqq->burst_list_node)) {
++ hlist_del_init(&bfqq->burst_list_node);
++ /*
++ * Decrement also burst size after the removal, if the
++ * process associated with bfqq is exiting, and thus
++ * does not contribute to the burst any longer. This
++ * decrement helps filter out false positives of large
++ * bursts, when some short-lived process (often due to
++ * the execution of commands by some service) happens
++ * to start and exit while a complex application is
++ * starting, and thus spawning several processes that
++ * do I/O (and that *must not* be treated as a large
++ * burst, see comments on bfq_handle_burst).
++ *
++ * In particular, the decrement is performed only if:
++ * 1) bfqq is not a merged queue, because, if it is,
++ * then this free of bfqq is not triggered by the exit
++ * of the process bfqq is associated with, but exactly
++ * by the fact that bfqq has just been merged.
++ * 2) burst_size is greater than 0, to handle
++ * unbalanced decrements. Unbalanced decrements may
++ * happen in te following case: bfqq is inserted into
++ * the current burst list--without incrementing
++ * bust_size--because of a split, but the current
++ * burst list is not the burst list bfqq belonged to
++ * (see comments on the case of a split in
++ * bfq_set_request).
++ */
++ if (bfqq->bic && bfqq->bfqd->burst_size > 0)
++ bfqq->bfqd->burst_size--;
++ }
++
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "%p freed", bfqq);
++
++ kmem_cache_free(bfq_pool, bfqq);
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ bfqg_put(bfqg);
++#endif
++}
++
++static void bfq_put_cooperator(struct bfq_queue *bfqq)
++{
++ struct bfq_queue *__bfqq, *next;
++
++ /*
++ * If this queue was scheduled to merge with another queue, be
++ * sure to drop the reference taken on that queue (and others in
++ * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
++ */
++ __bfqq = bfqq->new_bfqq;
++ while (__bfqq) {
++ if (__bfqq == bfqq)
++ break;
++ next = __bfqq->new_bfqq;
++ bfq_put_queue(__bfqq);
++ __bfqq = next;
++ }
++}
++
++static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ if (bfqq == bfqd->in_service_queue) {
++ __bfq_bfqq_expire(bfqd, bfqq);
++ bfq_schedule_dispatch(bfqd);
++ }
++
++ bfq_log_bfqq(bfqd, bfqq, "%p, %d", bfqq, bfqq->ref);
++
++ bfq_put_cooperator(bfqq);
++
++ bfq_put_queue(bfqq); /* release process reference */
++}
++
++static void bfq_init_icq(struct io_cq *icq)
++{
++ icq_to_bic(icq)->ttime.last_end_request = ktime_get_ns() - (1ULL<<32);
++}
++
++static void bfq_exit_icq(struct io_cq *icq)
++{
++ struct bfq_io_cq *bic = icq_to_bic(icq);
++ struct bfq_data *bfqd = bic_to_bfqd(bic);
++
++ if (bic_to_bfqq(bic, false)) {
++ bfq_exit_bfqq(bfqd, bic_to_bfqq(bic, false));
++ bic_set_bfqq(bic, NULL, false);
++ }
++
++ if (bic_to_bfqq(bic, true)) {
++ /*
++ * If the bic is using a shared queue, put the reference
++ * taken on the io_context when the bic started using a
++ * shared bfq_queue.
++ */
++ if (bfq_bfqq_coop(bic_to_bfqq(bic, true)))
++ put_io_context(icq->ioc);
++ bfq_exit_bfqq(bfqd, bic_to_bfqq(bic, true));
++ bic_set_bfqq(bic, NULL, true);
++ }
++}
++
++/*
++ * Update the entity prio values; note that the new values will not
++ * be used until the next (re)activation.
++ */
++static void bfq_set_next_ioprio_data(struct bfq_queue *bfqq,
++ struct bfq_io_cq *bic)
++{
++ struct task_struct *tsk = current;
++ int ioprio_class;
++
++ ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
++ switch (ioprio_class) {
++ default:
++ dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
++ "bfq: bad prio class %d\n", ioprio_class);
++ case IOPRIO_CLASS_NONE:
++ /*
++ * No prio set, inherit CPU scheduling settings.
++ */
++ bfqq->new_ioprio = task_nice_ioprio(tsk);
++ bfqq->new_ioprio_class = task_nice_ioclass(tsk);
++ break;
++ case IOPRIO_CLASS_RT:
++ bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
++ bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
++ break;
++ case IOPRIO_CLASS_BE:
++ bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
++ bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
++ break;
++ case IOPRIO_CLASS_IDLE:
++ bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
++ bfqq->new_ioprio = 7;
++ break;
++ }
++
++ if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
++ pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
++ bfqq->new_ioprio);
++ BUG();
++ }
++
++ bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
++ bfqq->entity.prio_changed = 1;
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "bic_class %d prio %d class %d",
++ ioprio_class, bfqq->new_ioprio, bfqq->new_ioprio_class);
++}
++
++static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
++{
++ struct bfq_data *bfqd = bic_to_bfqd(bic);
++ struct bfq_queue *bfqq;
++ unsigned long uninitialized_var(flags);
++ int ioprio = bic->icq.ioc->ioprio;
++
++ /*
++ * This condition may trigger on a newly created bic, be sure to
++ * drop the lock before returning.
++ */
++ if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
++ return;
++
++ bic->ioprio = ioprio;
++
++ bfqq = bic_to_bfqq(bic, false);
++ if (bfqq) {
++ /* release process reference on this queue */
++ bfq_put_queue(bfqq);
++ bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
++ bic_set_bfqq(bic, bfqq, false);
++ bfq_log_bfqq(bfqd, bfqq,
++ "bfqq %p %d",
++ bfqq, bfqq->ref);
++ }
++
++ bfqq = bic_to_bfqq(bic, true);
++ if (bfqq)
++ bfq_set_next_ioprio_data(bfqq, bic);
++}
++
++static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ struct bfq_io_cq *bic, pid_t pid, int is_sync)
++{
++ RB_CLEAR_NODE(&bfqq->entity.rb_node);
++ INIT_LIST_HEAD(&bfqq->fifo);
++ INIT_HLIST_NODE(&bfqq->burst_list_node);
++ BUG_ON(!hlist_unhashed(&bfqq->burst_list_node));
++
++ bfqq->ref = 0;
++ bfqq->bfqd = bfqd;
++
++ if (bic)
++ bfq_set_next_ioprio_data(bfqq, bic);
++
++ if (is_sync) {
++ /*
++ * No need to mark as has_short_ttime if in
++ * idle_class, because no device idling is performed
++ * for queues in idle class
++ */
++ if (!bfq_class_idle(bfqq))
++ /* tentatively mark as has_short_ttime */
++ bfq_mark_bfqq_has_short_ttime(bfqq);
++ bfq_mark_bfqq_sync(bfqq);
++ bfq_mark_bfqq_just_created(bfqq);
++ /*
++ * Aggressively inject a lot of service: up to 90%.
++ * This coefficient remains constant during bfqq life,
++ * but this behavior might be changed, after enough
++ * testing and tuning.
++ */
++ bfqq->inject_coeff = 1;
++ } else
++ bfq_clear_bfqq_sync(bfqq);
++ bfq_mark_bfqq_IO_bound(bfqq);
++
++ /* Tentative initial value to trade off between thr and lat */
++ bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
++ bfqq->pid = pid;
++
++ bfqq->wr_coeff = 1;
++ bfqq->last_wr_start_finish = jiffies;
++ bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
++ bfqq->budget_timeout = bfq_smallest_from_now();
++ bfqq->split_time = bfq_smallest_from_now();
++
++ /*
++ * To not forget the possibly high bandwidth consumed by a
++ * process/queue in the recent past,
++ * bfq_bfqq_softrt_next_start() returns a value at least equal
++ * to the current value of bfqq->soft_rt_next_start (see
++ * comments on bfq_bfqq_softrt_next_start). Set
++ * soft_rt_next_start to now, to mean that bfqq has consumed
++ * no bandwidth so far.
++ */
++ bfqq->soft_rt_next_start = jiffies;
++
++ /* first request is almost certainly seeky */
++ bfqq->seek_history = 1;
++}
++
++static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
++ struct bfq_group *bfqg,
++ int ioprio_class, int ioprio)
++{
++ switch (ioprio_class) {
++ case IOPRIO_CLASS_RT:
++ return &bfqg->async_bfqq[0][ioprio];
++ case IOPRIO_CLASS_NONE:
++ ioprio = IOPRIO_NORM;
++ /* fall through */
++ case IOPRIO_CLASS_BE:
++ return &bfqg->async_bfqq[1][ioprio];
++ case IOPRIO_CLASS_IDLE:
++ return &bfqg->async_idle_bfqq;
++ default:
++ BUG();
++ }
++}
++
++static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
++ struct bio *bio, bool is_sync,
++ struct bfq_io_cq *bic)
++{
++ const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
++ const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
++ struct bfq_queue **async_bfqq = NULL;
++ struct bfq_queue *bfqq;
++ struct bfq_group *bfqg;
++
++ rcu_read_lock();
++
++ bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
++ if (!bfqg) {
++ bfqq = &bfqd->oom_bfqq;
++ goto out;
++ }
++
++ if (!is_sync) {
++ async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
++ ioprio);
++ bfqq = *async_bfqq;
++ if (bfqq)
++ goto out;
++ }
++
++ bfqq = kmem_cache_alloc_node(bfq_pool,
++ GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
++ bfqd->queue->node);
++
++ if (bfqq) {
++ bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
++ is_sync);
++ bfq_init_entity(&bfqq->entity, bfqg);
++ bfq_log_bfqq(bfqd, bfqq, "allocated");
++ } else {
++ bfqq = &bfqd->oom_bfqq;
++ bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
++ goto out;
++ }
++
++ /*
++ * Pin the queue now that it's allocated, scheduler exit will
++ * prune it.
++ */
++ if (async_bfqq) {
++ bfqq->ref++; /*
++ * Extra group reference, w.r.t. sync
++ * queue. This extra reference is removed
++ * only if bfqq->bfqg disappears, to
++ * guarantee that this queue is not freed
++ * until its group goes away.
++ */
++ bfq_log_bfqq(bfqd, bfqq, "bfqq not in async: %p, %d",
++ bfqq, bfqq->ref);
++ *async_bfqq = bfqq;
++ }
++
++out:
++ bfqq->ref++; /* get a process reference to this queue */
++ bfq_log_bfqq(bfqd, bfqq, "at end: %p, %d", bfqq, bfqq->ref);
++ rcu_read_unlock();
++ return bfqq;
++}
++
++static void bfq_update_io_thinktime(struct bfq_data *bfqd,
++ struct bfq_io_cq *bic)
++{
++ struct bfq_ttime *ttime = &bic->ttime;
++ u64 elapsed = ktime_get_ns() - bic->ttime.last_end_request;
++
++ elapsed = min_t(u64, elapsed, 2 * bfqd->bfq_slice_idle);
++
++ ttime->ttime_samples = (7*bic->ttime.ttime_samples + 256) / 8;
++ ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
++ ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
++ ttime->ttime_samples);
++}
++
++static void
++bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ struct request *rq)
++{
++ bfqq->seek_history <<= 1;
++ bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
++}
++
++static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ struct bfq_io_cq *bic)
++{
++ bool has_short_ttime = true;
++
++ /*
++ * No need to update has_short_ttime if bfqq is async or in
++ * idle io prio class, or if bfq_slice_idle is zero, because
++ * no device idling is performed for bfqq in this case.
++ */
++ if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
++ bfqd->bfq_slice_idle == 0)
++ return;
++
++ /* Idle window just restored, statistics are meaningless. */
++ if (time_is_after_eq_jiffies(bfqq->split_time +
++ bfqd->bfq_wr_min_idle_time))
++ return;
++
++ /* Think time is infinite if no process is linked to
++ * bfqq. Otherwise check average think time to
++ * decide whether to mark as has_short_ttime
++ */
++ if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
++ (bfq_sample_valid(bic->ttime.ttime_samples) &&
++ bic->ttime.ttime_mean > bfqd->bfq_slice_idle))
++ has_short_ttime = false;
++
++ bfq_log_bfqq(bfqd, bfqq, "has_short_ttime %d",
++ has_short_ttime);
++
++ if (has_short_ttime)
++ bfq_mark_bfqq_has_short_ttime(bfqq);
++ else
++ bfq_clear_bfqq_has_short_ttime(bfqq);
++}
++
++/*
++ * Called when a new fs request (rq) is added to bfqq. Check if there's
++ * something we should do about it.
++ */
++static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ struct request *rq)
++{
++ struct bfq_io_cq *bic = RQ_BIC(rq);
++
++ if (rq->cmd_flags & REQ_META)
++ bfqq->meta_pending++;
++
++ bfq_update_io_thinktime(bfqd, bic);
++ bfq_update_has_short_ttime(bfqd, bfqq, bic);
++ bfq_update_io_seektime(bfqd, bfqq, rq);
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "has_short_ttime=%d (seeky %d)",
++ bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
++
++ bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
++
++ if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
++ bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
++ blk_rq_sectors(rq) < 32;
++ bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
++
++ /*
++ * There is just this request queued: if
++ * - the request is small, and
++ * - we are idling to boost throughput, and
++ * - the queue is not to be expired,
++ * then just exit.
++ *
++ * In this way, if the device is being idled to wait
++ * for a new request from the in-service queue, we
++ * avoid unplugging the device and committing the
++ * device to serve just a small request. In contrast
++ * we wait for the block layer to decide when to
++ * unplug the device: hopefully, new requests will be
++ * merged to this one quickly, then the device will be
++ * unplugged and larger requests will be dispatched.
++ */
++ if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
++ !budget_timeout)
++ return;
++
++ /*
++ * A large enough request arrived, or idling is being
++ * performed to preserve service guarantees, or
++ * finally the queue is to be expired: in all these
++ * cases disk idling is to be stopped, so clear
++ * wait_request flag and reset timer.
++ */
++ bfq_clear_bfqq_wait_request(bfqq);
++ hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
++ bfqg_stats_update_idle_time(bfqq_group(bfqq));
++
++ /*
++ * The queue is not empty, because a new request just
++ * arrived. Hence we can safely expire the queue, in
++ * case of budget timeout, without risking that the
++ * timestamps of the queue are not updated correctly.
++ * See [1] for more details.
++ */
++ if (budget_timeout)
++ bfq_bfqq_expire(bfqd, bfqq, false,
++ BFQ_BFQQ_BUDGET_TIMEOUT);
++
++ /*
++ * Let the request rip immediately, or let a new queue be
++ * selected if bfqq has just been expired.
++ */
++ __blk_run_queue(bfqd->queue);
++ }
++}
++
++static void bfq_insert_request(struct request_queue *q, struct request *rq)
++{
++ struct bfq_data *bfqd = q->elevator->elevator_data;
++ struct bfq_queue *bfqq = RQ_BFQQ(rq), *new_bfqq;
++
++ assert_spin_locked(bfqd->queue->queue_lock);
++
++ /*
++ * An unplug may trigger a requeue of a request from the device
++ * driver: make sure we are in process context while trying to
++ * merge two bfq_queues.
++ */
++ if (!in_interrupt()) {
++ new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
++ if (new_bfqq) {
++ if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
++ new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
++ /*
++ * Release the request's reference to the old bfqq
++ * and make sure one is taken to the shared queue.
++ */
++ new_bfqq->allocated[rq_data_dir(rq)]++;
++ bfqq->allocated[rq_data_dir(rq)]--;
++ new_bfqq->ref++;
++ if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
++ bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
++ bfqq, new_bfqq);
++
++ bfq_clear_bfqq_just_created(bfqq);
++ /*
++ * rq is about to be enqueued into new_bfqq,
++ * release rq reference on bfqq
++ */
++ bfq_put_queue(bfqq);
++ rq->elv.priv[1] = new_bfqq;
++ bfqq = new_bfqq;
++ }
++ }
++
++ bfq_add_request(rq);
++
++ rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
++ list_add_tail(&rq->queuelist, &bfqq->fifo);
++
++ bfq_rq_enqueued(bfqd, bfqq, rq);
++}
++
++static void bfq_update_hw_tag(struct bfq_data *bfqd)
++{
++ struct bfq_queue *bfqq = bfqd->in_service_queue;
++
++ bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
++ bfqd->rq_in_driver);
++
++ if (bfqd->hw_tag == 1)
++ return;
++
++ /*
++ * This sample is valid if the number of outstanding requests
++ * is large enough to allow a queueing behavior. Note that the
++ * sum is not exact, as it's not taking into account deactivated
++ * requests.
++ */
++ if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
++ return;
++
++ /*
++ * If active queue hasn't enough requests and can idle, bfq might not
++ * dispatch sufficient requests to hardware. Don't zero hw_tag in this
++ * case
++ */
++ if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
++ bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
++ BFQ_HW_QUEUE_THRESHOLD && bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
++ return;
++
++ if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
++ return;
++
++ bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
++ bfqd->max_rq_in_driver = 0;
++ bfqd->hw_tag_samples = 0;
++}
++
++static void bfq_completed_request(struct request_queue *q, struct request *rq)
++{
++ struct bfq_queue *bfqq = RQ_BFQQ(rq);
++ struct bfq_data *bfqd = bfqq->bfqd;
++ u64 now_ns;
++ u32 delta_us;
++
++ bfq_log_bfqq(bfqd, bfqq, "completed one req with %u sects left",
++ blk_rq_sectors(rq));
++
++ assert_spin_locked(bfqd->queue->queue_lock);
++ bfq_update_hw_tag(bfqd);
++
++ BUG_ON(!bfqd->rq_in_driver);
++ BUG_ON(!bfqq->dispatched);
++ bfqd->rq_in_driver--;
++ bfqq->dispatched--;
++ bfqg_stats_update_completion(bfqq_group(bfqq),
++ rq->start_time_ns,
++ rq->io_start_time_ns,
++ rq->cmd_flags);
++
++ if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
++ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
++ /*
++ * Set budget_timeout (which we overload to store the
++ * time at which the queue remains with no backlog and
++ * no outstanding request; used by the weight-raising
++ * mechanism).
++ */
++ bfqq->budget_timeout = jiffies;
++
++ bfq_weights_tree_remove(bfqd, bfqq);
++ }
++
++ now_ns = ktime_get_ns();
++
++ RQ_BIC(rq)->ttime.last_end_request = now_ns;
++
++ /*
++ * Using us instead of ns, to get a reasonable precision in
++ * computing rate in next check.
++ */
++ delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
++
++ bfq_log(bfqd, "delta %uus/%luus max_size %u rate %llu/%llu",
++ delta_us, BFQ_MIN_TT/NSEC_PER_USEC, bfqd->last_rq_max_size,
++ delta_us > 0 ?
++ (USEC_PER_SEC*
++ (u64)((bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us))
++ >>BFQ_RATE_SHIFT :
++ (USEC_PER_SEC*
++ (u64)(bfqd->last_rq_max_size<<BFQ_RATE_SHIFT))>>BFQ_RATE_SHIFT,
++ (USEC_PER_SEC*(u64)(1UL<<(BFQ_RATE_SHIFT-10)))>>BFQ_RATE_SHIFT);
++
++ /*
++ * If the request took rather long to complete, and, according
++ * to the maximum request size recorded, this completion latency
++ * implies that the request was certainly served at a very low
++ * rate (less than 1M sectors/sec), then the whole observation
++ * interval that lasts up to this time instant cannot be a
++ * valid time interval for computing a new peak rate. Invoke
++ * bfq_update_rate_reset to have the following three steps
++ * taken:
++ * - close the observation interval at the last (previous)
++ * request dispatch or completion
++ * - compute rate, if possible, for that observation interval
++ * - reset to zero samples, which will trigger a proper
++ * re-initialization of the observation interval on next
++ * dispatch
++ */
++ if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
++ (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
++ 1UL<<(BFQ_RATE_SHIFT - 10))
++ bfq_update_rate_reset(bfqd, NULL);
++ bfqd->last_completion = now_ns;
++
++ /*
++ * If we are waiting to discover whether the request pattern
++ * of the task associated with the queue is actually
++ * isochronous, and both requisites for this condition to hold
++ * are now satisfied, then compute soft_rt_next_start (see the
++ * comments on the function bfq_bfqq_softrt_next_start()). We
++ * do not compute soft_rt_next_start if bfqq is in interactive
++ * weight raising (see the comments in bfq_bfqq_expire() for
++ * an explanation). We schedule this delayed update when bfqq
++ * expires, if it still has in-flight requests.
++ */
++ if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
++ RB_EMPTY_ROOT(&bfqq->sort_list) &&
++ bfqq->wr_coeff != bfqd->bfq_wr_coeff)
++ bfqq->soft_rt_next_start =
++ bfq_bfqq_softrt_next_start(bfqd, bfqq);
++
++ /*
++ * If this is the in-service queue, check if it needs to be expired,
++ * or if we want to idle in case it has no pending requests.
++ */
++ if (bfqd->in_service_queue == bfqq) {
++ if (bfq_bfqq_must_idle(bfqq)) {
++ if (bfqq->dispatched == 0)
++ bfq_arm_slice_timer(bfqd);
++ /*
++ * If we get here, we do not expire bfqq, even
++ * if bfqq was in budget timeout or had no
++ * more requests (as controlled in the next
++ * conditional instructions). The reason for
++ * not expiring bfqq is as follows.
++ *
++ * Here bfqq->dispatched > 0 holds, but
++ * bfq_bfqq_must_idle() returned true. This
++ * implies that, even if no request arrives
++ * for bfqq before bfqq->dispatched reaches 0,
++ * bfqq will, however, not be expired on the
++ * completion event that causes bfqq->dispatch
++ * to reach zero. In contrast, on this event,
++ * bfqq will start enjoying device idling
++ * (I/O-dispatch plugging).
++ *
++ * But, if we expired bfqq here, bfqq would
++ * not have the chance to enjoy device idling
++ * when bfqq->dispatched finally reaches
++ * zero. This would expose bfqq to violation
++ * of its reserved service guarantees.
++ */
++ goto out;
++ } else if (bfq_may_expire_for_budg_timeout(bfqq))
++ bfq_bfqq_expire(bfqd, bfqq, false,
++ BFQ_BFQQ_BUDGET_TIMEOUT);
++ else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
++ (bfqq->dispatched == 0 ||
++ !bfq_better_to_idle(bfqq)))
++ bfq_bfqq_expire(bfqd, bfqq, false,
++ BFQ_BFQQ_NO_MORE_REQUESTS);
++ }
++
++ if (!bfqd->rq_in_driver)
++ bfq_schedule_dispatch(bfqd);
++
++out:
++ return;
++}
++
++static int __bfq_may_queue(struct bfq_queue *bfqq)
++{
++ if (bfq_bfqq_wait_request(bfqq) && bfq_bfqq_must_alloc(bfqq)) {
++ bfq_clear_bfqq_must_alloc(bfqq);
++ return ELV_MQUEUE_MUST;
++ }
++
++ return ELV_MQUEUE_MAY;
++}
++
++static int bfq_may_queue(struct request_queue *q, unsigned int op)
++{
++ struct bfq_data *bfqd = q->elevator->elevator_data;
++ struct task_struct *tsk = current;
++ struct bfq_io_cq *bic;
++ struct bfq_queue *bfqq;
++
++ /*
++ * Don't force setup of a queue from here, as a call to may_queue
++ * does not necessarily imply that a request actually will be
++ * queued. So just lookup a possibly existing queue, or return
++ * 'may queue' if that fails.
++ */
++ bic = bfq_bic_lookup(bfqd, tsk->io_context);
++ if (!bic)
++ return ELV_MQUEUE_MAY;
++
++ bfqq = bic_to_bfqq(bic, op_is_sync(op));
++ if (bfqq)
++ return __bfq_may_queue(bfqq);
++
++ return ELV_MQUEUE_MAY;
++}
++
++/*
++ * Queue lock held here.
++ */
++static void bfq_put_request(struct request *rq)
++{
++ struct bfq_queue *bfqq = RQ_BFQQ(rq);
++
++ if (bfqq) {
++ const int rw = rq_data_dir(rq);
++
++ BUG_ON(!bfqq->allocated[rw]);
++ bfqq->allocated[rw]--;
++
++ rq->elv.priv[0] = NULL;
++ rq->elv.priv[1] = NULL;
++
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "%p, %d",
++ bfqq, bfqq->ref);
++ bfq_put_queue(bfqq);
++ }
++}
++
++/*
++ * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
++ * was the last process referring to that bfqq.
++ */
++static struct bfq_queue *
++bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
++{
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
++
++ put_io_context(bic->icq.ioc);
++
++ if (bfqq_process_refs(bfqq) == 1) {
++ bfqq->pid = current->pid;
++ bfq_clear_bfqq_coop(bfqq);
++ bfq_clear_bfqq_split_coop(bfqq);
++ return bfqq;
++ }
++
++ bic_set_bfqq(bic, NULL, 1);
++
++ bfq_put_cooperator(bfqq);
++
++ bfq_put_queue(bfqq);
++ return NULL;
++}
++
++/*
++ * Allocate bfq data structures associated with this request.
++ */
++static int bfq_set_request(struct request_queue *q, struct request *rq,
++ struct bio *bio, gfp_t gfp_mask)
++{
++ struct bfq_data *bfqd = q->elevator->elevator_data;
++ struct bfq_io_cq *bic = icq_to_bic(rq->elv.icq);
++ const int rw = rq_data_dir(rq);
++ const int is_sync = rq_is_sync(rq);
++ struct bfq_queue *bfqq;
++ unsigned long flags;
++ bool bfqq_already_existing = false, split = false;
++
++ spin_lock_irqsave(q->queue_lock, flags);
++
++ if (!bic)
++ goto queue_fail;
++
++ bfq_check_ioprio_change(bic, bio);
++
++ bfq_bic_update_cgroup(bic, bio);
++
++new_queue:
++ bfqq = bic_to_bfqq(bic, is_sync);
++ if (!bfqq || bfqq == &bfqd->oom_bfqq) {
++ if (bfqq)
++ bfq_put_queue(bfqq);
++ bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
++ BUG_ON(!hlist_unhashed(&bfqq->burst_list_node));
++
++ bic_set_bfqq(bic, bfqq, is_sync);
++ if (split && is_sync) {
++ bfq_log_bfqq(bfqd, bfqq,
++ "was_in_list %d "
++ "was_in_large_burst %d "
++ "large burst in progress %d",
++ bic->was_in_burst_list,
++ bic->saved_in_large_burst,
++ bfqd->large_burst);
++
++ if ((bic->was_in_burst_list && bfqd->large_burst) ||
++ bic->saved_in_large_burst) {
++ bfq_log_bfqq(bfqd, bfqq,
++ "marking in "
++ "large burst");
++ bfq_mark_bfqq_in_large_burst(bfqq);
++ } else {
++ bfq_log_bfqq(bfqd, bfqq,
++ "clearing in "
++ "large burst");
++ bfq_clear_bfqq_in_large_burst(bfqq);
++ if (bic->was_in_burst_list)
++ /*
++ * If bfqq was in the current
++ * burst list before being
++ * merged, then we have to add
++ * it back. And we do not need
++ * to increase burst_size, as
++ * we did not decrement
++ * burst_size when we removed
++ * bfqq from the burst list as
++ * a consequence of a merge
++ * (see comments in
++ * bfq_put_queue). In this
++ * respect, it would be rather
++ * costly to know whether the
++ * current burst list is still
++ * the same burst list from
++ * which bfqq was removed on
++ * the merge. To avoid this
++ * cost, if bfqq was in a
++ * burst list, then we add
++ * bfqq to the current burst
++ * list without any further
++ * check. This can cause
++ * inappropriate insertions,
++ * but rarely enough to not
++ * harm the detection of large
++ * bursts significantly.
++ */
++ hlist_add_head(&bfqq->burst_list_node,
++ &bfqd->burst_list);
++ }
++ bfqq->split_time = jiffies;
++ }
++ } else {
++ /* If the queue was seeky for too long, break it apart. */
++ if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
++ bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
++
++ /* Update bic before losing reference to bfqq */
++ if (bfq_bfqq_in_large_burst(bfqq))
++ bic->saved_in_large_burst = true;
++
++ bfqq = bfq_split_bfqq(bic, bfqq);
++ split = true;
++ if (!bfqq)
++ goto new_queue;
++ else
++ bfqq_already_existing = true;
++ }
++ }
++
++ bfqq->allocated[rw]++;
++ bfqq->ref++;
++ bfq_log_bfqq(bfqd, bfqq, "bfqq %p, %d", bfqq, bfqq->ref);
++
++ rq->elv.priv[0] = bic;
++ rq->elv.priv[1] = bfqq;
++
++ /*
++ * If a bfq_queue has only one process reference, it is owned
++ * by only one bfq_io_cq: we can set the bic field of the
++ * bfq_queue to the address of that structure. Also, if the
++ * queue has just been split, mark a flag so that the
++ * information is available to the other scheduler hooks.
++ */
++ if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
++ bfqq->bic = bic;
++ if (split) {
++ /*
++ * If the queue has just been split from a shared
++ * queue, restore the idle window and the possible
++ * weight raising period.
++ */
++ bfq_bfqq_resume_state(bfqq, bfqd, bic,
++ bfqq_already_existing);
++ }
++ }
++
++ if (unlikely(bfq_bfqq_just_created(bfqq)))
++ bfq_handle_burst(bfqd, bfqq);
++
++ spin_unlock_irqrestore(q->queue_lock, flags);
++
++ return 0;
++
++queue_fail:
++ bfq_schedule_dispatch(bfqd);
++ spin_unlock_irqrestore(q->queue_lock, flags);
++
++ return 1;
++}
++
++static void bfq_kick_queue(struct work_struct *work)
++{
++ struct bfq_data *bfqd =
++ container_of(work, struct bfq_data, unplug_work);
++ struct request_queue *q = bfqd->queue;
++
++ spin_lock_irq(q->queue_lock);
++ __blk_run_queue(q);
++ spin_unlock_irq(q->queue_lock);
++}
++
++/*
++ * Handler of the expiration of the timer running if the in-service queue
++ * is idling inside its time slice.
++ */
++static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
++{
++ struct bfq_data *bfqd = container_of(timer, struct bfq_data,
++ idle_slice_timer);
++ struct bfq_queue *bfqq;
++ unsigned long flags;
++ enum bfqq_expiration reason;
++
++ spin_lock_irqsave(bfqd->queue->queue_lock, flags);
++
++ bfqq = bfqd->in_service_queue;
++ /*
++ * Theoretical race here: the in-service queue can be NULL or
++ * different from the queue that was idling if the timer handler
++ * spins on the queue_lock and a new request arrives for the
++ * current queue and there is a full dispatch cycle that changes
++ * the in-service queue. This can hardly happen, but in the worst
++ * case we just expire a queue too early.
++ */
++ if (bfqq) {
++ bfq_log_bfqq(bfqd, bfqq, "expired");
++ bfq_clear_bfqq_wait_request(bfqq);
++
++ if (bfq_bfqq_budget_timeout(bfqq))
++ /*
++ * Also here the queue can be safely expired
++ * for budget timeout without wasting
++ * guarantees
++ */
++ reason = BFQ_BFQQ_BUDGET_TIMEOUT;
++ else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
++ /*
++ * The queue may not be empty upon timer expiration,
++ * because we may not disable the timer when the
++ * first request of the in-service queue arrives
++ * during disk idling.
++ */
++ reason = BFQ_BFQQ_TOO_IDLE;
++ else
++ goto schedule_dispatch;
++
++ bfq_bfqq_expire(bfqd, bfqq, true, reason);
++ }
++
++schedule_dispatch:
++ bfq_schedule_dispatch(bfqd);
++
++ spin_unlock_irqrestore(bfqd->queue->queue_lock, flags);
++ return HRTIMER_NORESTART;
++}
++
++static void bfq_shutdown_timer_wq(struct bfq_data *bfqd)
++{
++ hrtimer_cancel(&bfqd->idle_slice_timer);
++ cancel_work_sync(&bfqd->unplug_work);
++}
++
++static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
++ struct bfq_queue **bfqq_ptr)
++{
++ struct bfq_group *root_group = bfqd->root_group;
++ struct bfq_queue *bfqq = *bfqq_ptr;
++
++ bfq_log(bfqd, "%p", bfqq);
++ if (bfqq) {
++ bfq_bfqq_move(bfqd, bfqq, root_group);
++ bfq_log_bfqq(bfqd, bfqq, "putting %p, %d",
++ bfqq, bfqq->ref);
++ bfq_put_queue(bfqq);
++ *bfqq_ptr = NULL;
++ }
++}
++
++/*
++ * Release all the bfqg references to its async queues. If we are
++ * deallocating the group these queues may still contain requests, so
++ * we reparent them to the root cgroup (i.e., the only one that will
++ * exist for sure until all the requests on a device are gone).
++ */
++static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
++{
++ int i, j;
++
++ for (i = 0; i < 2; i++)
++ for (j = 0; j < IOPRIO_BE_NR; j++)
++ __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
++
++ __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
++}
++
++static void bfq_exit_queue(struct elevator_queue *e)
++{
++ struct bfq_data *bfqd = e->elevator_data;
++ struct request_queue *q = bfqd->queue;
++ struct bfq_queue *bfqq, *n;
++
++ bfq_shutdown_timer_wq(bfqd);
++
++ spin_lock_irq(q->queue_lock);
++
++ BUG_ON(bfqd->in_service_queue);
++ list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
++ bfq_deactivate_bfqq(bfqd, bfqq, false, false);
++
++ spin_unlock_irq(q->queue_lock);
++
++ bfq_shutdown_timer_wq(bfqd);
++
++ BUG_ON(hrtimer_active(&bfqd->idle_slice_timer));
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ /* release oom-queue reference to root group */
++ bfqg_put(bfqd->root_group);
++
++ blkcg_deactivate_policy(q, &blkcg_policy_bfq);
++#else
++ bfq_put_async_queues(bfqd, bfqd->root_group);
++ kfree(bfqd->root_group);
++#endif
++
++ kfree(bfqd);
++}
++
++static void bfq_init_root_group(struct bfq_group *root_group,
++ struct bfq_data *bfqd)
++{
++ int i;
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ root_group->entity.parent = NULL;
++ root_group->my_entity = NULL;
++ root_group->bfqd = bfqd;
++#endif
++ root_group->rq_pos_tree = RB_ROOT;
++ for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
++ root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
++ root_group->sched_data.bfq_class_idle_last_service = jiffies;
++}
++
++static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
++{
++ struct bfq_data *bfqd;
++ struct elevator_queue *eq;
++
++ eq = elevator_alloc(q, e);
++ if (!eq)
++ return -ENOMEM;
++
++ bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
++ if (!bfqd) {
++ kobject_put(&eq->kobj);
++ return -ENOMEM;
++ }
++ eq->elevator_data = bfqd;
++
++ /*
++ * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
++ * Grab a permanent reference to it, so that the normal code flow
++ * will not attempt to free it.
++ */
++ bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
++ bfqd->oom_bfqq.ref++;
++ bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
++ bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
++ bfqd->oom_bfqq.entity.new_weight =
++ bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
++
++ /* oom_bfqq does not participate to bursts */
++ bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
++ /*
++ * Trigger weight initialization, according to ioprio, at the
++ * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
++ * class won't be changed any more.
++ */
++ bfqd->oom_bfqq.entity.prio_changed = 1;
++
++ bfqd->queue = q;
++
++ spin_lock_irq(q->queue_lock);
++ q->elevator = eq;
++ spin_unlock_irq(q->queue_lock);
++
++ bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
++ if (!bfqd->root_group)
++ goto out_free;
++ bfq_init_root_group(bfqd->root_group, bfqd);
++ bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
++
++ hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
++ HRTIMER_MODE_REL);
++ bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
++
++ bfqd->queue_weights_tree = RB_ROOT;
++ bfqd->num_groups_with_pending_reqs = 0;
++
++ INIT_WORK(&bfqd->unplug_work, bfq_kick_queue);
++
++ INIT_LIST_HEAD(&bfqd->active_list);
++ INIT_LIST_HEAD(&bfqd->idle_list);
++ INIT_HLIST_HEAD(&bfqd->burst_list);
++
++ bfqd->hw_tag = -1;
++
++ bfqd->bfq_max_budget = bfq_default_max_budget;
++
++ bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
++ bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
++ bfqd->bfq_back_max = bfq_back_max;
++ bfqd->bfq_back_penalty = bfq_back_penalty;
++ bfqd->bfq_slice_idle = bfq_slice_idle;
++ bfqd->bfq_timeout = bfq_timeout;
++
++ bfqd->bfq_requests_within_timer = 120;
++
++ bfqd->bfq_large_burst_thresh = 8;
++ bfqd->bfq_burst_interval = msecs_to_jiffies(180);
++
++ bfqd->low_latency = true;
++
++ /*
++ * Trade-off between responsiveness and fairness.
++ */
++ bfqd->bfq_wr_coeff = 30;
++ bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
++ bfqd->bfq_wr_max_time = 0;
++ bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
++ bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
++ bfqd->bfq_wr_max_softrt_rate = 7000; /*
++ * Approximate rate required
++ * to playback or record a
++ * high-definition compressed
++ * video.
++ */
++ bfqd->wr_busy_queues = 0;
++
++ /*
++ * Begin by assuming, optimistically, that the device peak
++ * rate is equal to 2/3 of the highest reference rate.
++ */
++ bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
++ ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
++ bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
++
++ return 0;
++
++out_free:
++ kfree(bfqd);
++ kobject_put(&eq->kobj);
++ return -ENOMEM;
++}
++
++static void bfq_registered_queue(struct request_queue *q)
++{
++ wbt_disable_default(q);
++}
++
++static void bfq_slab_kill(void)
++{
++ kmem_cache_destroy(bfq_pool);
++}
++
++static int __init bfq_slab_setup(void)
++{
++ bfq_pool = KMEM_CACHE(bfq_queue, 0);
++ if (!bfq_pool)
++ return -ENOMEM;
++ return 0;
++}
++
++static ssize_t bfq_var_show(unsigned int var, char *page)
++{
++ return sprintf(page, "%u\n", var);
++}
++
++static ssize_t bfq_var_store(unsigned long *var, const char *page,
++ size_t count)
++{
++ unsigned long new_val;
++ int ret = kstrtoul(page, 10, &new_val);
++
++ if (ret == 0)
++ *var = new_val;
++
++ return count;
++}
++
++static ssize_t bfq_wr_max_time_show(struct elevator_queue *e, char *page)
++{
++ struct bfq_data *bfqd = e->elevator_data;
++
++ return sprintf(page, "%d\n", bfqd->bfq_wr_max_time > 0 ?
++ jiffies_to_msecs(bfqd->bfq_wr_max_time) :
++ jiffies_to_msecs(bfq_wr_duration(bfqd)));
++}
++
++static ssize_t bfq_weights_show(struct elevator_queue *e, char *page)
++{
++ struct bfq_queue *bfqq;
++ struct bfq_data *bfqd = e->elevator_data;
++ ssize_t num_char = 0;
++
++ num_char += sprintf(page + num_char, "Tot reqs queued %d\n\n",
++ bfqd->queued);
++
++ spin_lock_irq(bfqd->queue->queue_lock);
++
++ num_char += sprintf(page + num_char, "Active:\n");
++ list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list) {
++ num_char += sprintf(page + num_char,
++ "pid%d: weight %hu, nr_queued %d %d, ",
++ bfqq->pid,
++ bfqq->entity.weight,
++ bfqq->queued[0],
++ bfqq->queued[1]);
++ num_char += sprintf(page + num_char,
++ "dur %d/%u\n",
++ jiffies_to_msecs(
++ jiffies -
++ bfqq->last_wr_start_finish),
++ jiffies_to_msecs(bfqq->wr_cur_max_time));
++ }
++
++ num_char += sprintf(page + num_char, "Idle:\n");
++ list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list) {
++ num_char += sprintf(page + num_char,
++ "pid%d: weight %hu, dur %d/%u\n",
++ bfqq->pid,
++ bfqq->entity.weight,
++ jiffies_to_msecs(jiffies -
++ bfqq->last_wr_start_finish),
++ jiffies_to_msecs(bfqq->wr_cur_max_time));
++ }
++
++ spin_unlock_irq(bfqd->queue->queue_lock);
++
++ return num_char;
++}
++
++#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
++static ssize_t __FUNC(struct elevator_queue *e, char *page) \
++{ \
++ struct bfq_data *bfqd = e->elevator_data; \
++ u64 __data = __VAR; \
++ if (__CONV == 1) \
++ __data = jiffies_to_msecs(__data); \
++ else if (__CONV == 2) \
++ __data = div_u64(__data, NSEC_PER_MSEC); \
++ return bfq_var_show(__data, (page)); \
++}
++SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
++SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
++SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
++SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
++SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
++SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
++SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
++SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
++SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
++SHOW_FUNCTION(bfq_wr_coeff_show, bfqd->bfq_wr_coeff, 0);
++SHOW_FUNCTION(bfq_wr_rt_max_time_show, bfqd->bfq_wr_rt_max_time, 1);
++SHOW_FUNCTION(bfq_wr_min_idle_time_show, bfqd->bfq_wr_min_idle_time, 1);
++SHOW_FUNCTION(bfq_wr_min_inter_arr_async_show, bfqd->bfq_wr_min_inter_arr_async,
++ 1);
++SHOW_FUNCTION(bfq_wr_max_softrt_rate_show, bfqd->bfq_wr_max_softrt_rate, 0);
++#undef SHOW_FUNCTION
++
++#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
++static ssize_t __FUNC(struct elevator_queue *e, char *page) \
++{ \
++ struct bfq_data *bfqd = e->elevator_data; \
++ u64 __data = __VAR; \
++ __data = div_u64(__data, NSEC_PER_USEC); \
++ return bfq_var_show(__data, (page)); \
++}
++USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
++#undef USEC_SHOW_FUNCTION
++
++#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
++static ssize_t \
++__FUNC(struct elevator_queue *e, const char *page, size_t count) \
++{ \
++ struct bfq_data *bfqd = e->elevator_data; \
++ unsigned long uninitialized_var(__data); \
++ int ret = bfq_var_store(&__data, (page), count); \
++ if (__data < (MIN)) \
++ __data = (MIN); \
++ else if (__data > (MAX)) \
++ __data = (MAX); \
++ if (__CONV == 1) \
++ *(__PTR) = msecs_to_jiffies(__data); \
++ else if (__CONV == 2) \
++ *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
++ else \
++ *(__PTR) = __data; \
++ return ret; \
++}
++STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
++ INT_MAX, 2);
++STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
++ INT_MAX, 2);
++STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
++STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
++ INT_MAX, 0);
++STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
++STORE_FUNCTION(bfq_wr_coeff_store, &bfqd->bfq_wr_coeff, 1, INT_MAX, 0);
++STORE_FUNCTION(bfq_wr_max_time_store, &bfqd->bfq_wr_max_time, 0, INT_MAX, 1);
++STORE_FUNCTION(bfq_wr_rt_max_time_store, &bfqd->bfq_wr_rt_max_time, 0, INT_MAX,
++ 1);
++STORE_FUNCTION(bfq_wr_min_idle_time_store, &bfqd->bfq_wr_min_idle_time, 0,
++ INT_MAX, 1);
++STORE_FUNCTION(bfq_wr_min_inter_arr_async_store,
++ &bfqd->bfq_wr_min_inter_arr_async, 0, INT_MAX, 1);
++STORE_FUNCTION(bfq_wr_max_softrt_rate_store, &bfqd->bfq_wr_max_softrt_rate, 0,
++ INT_MAX, 0);
++#undef STORE_FUNCTION
++
++#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
++static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
++{ \
++ struct bfq_data *bfqd = e->elevator_data; \
++ unsigned long uninitialized_var(__data); \
++ int ret = bfq_var_store(&__data, (page), count); \
++ if (__data < (MIN)) \
++ __data = (MIN); \
++ else if (__data > (MAX)) \
++ __data = (MAX); \
++ *(__PTR) = (u64)__data * NSEC_PER_USEC; \
++ return ret; \
++}
++USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
++ UINT_MAX);
++#undef USEC_STORE_FUNCTION
++
++/* do nothing for the moment */
++static ssize_t bfq_weights_store(struct elevator_queue *e,
++ const char *page, size_t count)
++{
++ return count;
++}
++
++static ssize_t bfq_max_budget_store(struct elevator_queue *e,
++ const char *page, size_t count)
++{
++ struct bfq_data *bfqd = e->elevator_data;
++ unsigned long uninitialized_var(__data);
++ int ret = bfq_var_store(&__data, (page), count);
++
++ if (__data == 0)
++ bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
++ else {
++ if (__data > INT_MAX)
++ __data = INT_MAX;
++ bfqd->bfq_max_budget = __data;
++ }
++
++ bfqd->bfq_user_max_budget = __data;
++
++ return ret;
++}
++
++/*
++ * Leaving this name to preserve name compatibility with cfq
++ * parameters, but this timeout is used for both sync and async.
++ */
++static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
++ const char *page, size_t count)
++{
++ struct bfq_data *bfqd = e->elevator_data;
++ unsigned long uninitialized_var(__data);
++ int ret = bfq_var_store(&__data, (page), count);
++
++ if (__data < 1)
++ __data = 1;
++ else if (__data > INT_MAX)
++ __data = INT_MAX;
++
++ bfqd->bfq_timeout = msecs_to_jiffies(__data);
++ if (bfqd->bfq_user_max_budget == 0)
++ bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
++
++ return ret;
++}
++
++static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
++ const char *page, size_t count)
++{
++ struct bfq_data *bfqd = e->elevator_data;
++ unsigned long uninitialized_var(__data);
++ int ret = bfq_var_store(&__data, (page), count);
++
++ if (__data > 1)
++ __data = 1;
++ if (!bfqd->strict_guarantees && __data == 1
++ && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
++ bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
++
++ bfqd->strict_guarantees = __data;
++
++ return ret;
++}
++
++static ssize_t bfq_low_latency_store(struct elevator_queue *e,
++ const char *page, size_t count)
++{
++ struct bfq_data *bfqd = e->elevator_data;
++ unsigned long uninitialized_var(__data);
++ int ret = bfq_var_store(&__data, (page), count);
++
++ if (__data > 1)
++ __data = 1;
++ if (__data == 0 && bfqd->low_latency != 0)
++ bfq_end_wr(bfqd);
++ bfqd->low_latency = __data;
++
++ return ret;
++}
++
++#define BFQ_ATTR(name) \
++ __ATTR(name, S_IRUGO|S_IWUSR, bfq_##name##_show, bfq_##name##_store)
++
++static struct elv_fs_entry bfq_attrs[] = {
++ BFQ_ATTR(fifo_expire_sync),
++ BFQ_ATTR(fifo_expire_async),
++ BFQ_ATTR(back_seek_max),
++ BFQ_ATTR(back_seek_penalty),
++ BFQ_ATTR(slice_idle),
++ BFQ_ATTR(slice_idle_us),
++ BFQ_ATTR(max_budget),
++ BFQ_ATTR(timeout_sync),
++ BFQ_ATTR(strict_guarantees),
++ BFQ_ATTR(low_latency),
++ BFQ_ATTR(wr_coeff),
++ BFQ_ATTR(wr_max_time),
++ BFQ_ATTR(wr_rt_max_time),
++ BFQ_ATTR(wr_min_idle_time),
++ BFQ_ATTR(wr_min_inter_arr_async),
++ BFQ_ATTR(wr_max_softrt_rate),
++ BFQ_ATTR(weights),
++ __ATTR_NULL
++};
++
++static struct elevator_type iosched_bfq = {
++ .ops.sq = {
++ .elevator_merge_fn = bfq_merge,
++ .elevator_merged_fn = bfq_merged_request,
++ .elevator_merge_req_fn = bfq_merged_requests,
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ .elevator_bio_merged_fn = bfq_bio_merged,
++#endif
++ .elevator_allow_bio_merge_fn = bfq_allow_bio_merge,
++ .elevator_allow_rq_merge_fn = bfq_allow_rq_merge,
++ .elevator_dispatch_fn = bfq_dispatch_requests,
++ .elevator_add_req_fn = bfq_insert_request,
++ .elevator_activate_req_fn = bfq_activate_request,
++ .elevator_deactivate_req_fn = bfq_deactivate_request,
++ .elevator_completed_req_fn = bfq_completed_request,
++ .elevator_former_req_fn = elv_rb_former_request,
++ .elevator_latter_req_fn = elv_rb_latter_request,
++ .elevator_init_icq_fn = bfq_init_icq,
++ .elevator_exit_icq_fn = bfq_exit_icq,
++ .elevator_set_req_fn = bfq_set_request,
++ .elevator_put_req_fn = bfq_put_request,
++ .elevator_may_queue_fn = bfq_may_queue,
++ .elevator_init_fn = bfq_init_queue,
++ .elevator_exit_fn = bfq_exit_queue,
++ .elevator_registered_fn = bfq_registered_queue,
++ },
++ .icq_size = sizeof(struct bfq_io_cq),
++ .icq_align = __alignof__(struct bfq_io_cq),
++ .elevator_attrs = bfq_attrs,
++ .elevator_name = "bfq-sq",
++ .elevator_owner = THIS_MODULE,
++};
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++static struct blkcg_policy blkcg_policy_bfq = {
++ .dfl_cftypes = bfq_blkg_files,
++ .legacy_cftypes = bfq_blkcg_legacy_files,
++
++ .cpd_alloc_fn = bfq_cpd_alloc,
++ .cpd_init_fn = bfq_cpd_init,
++ .cpd_bind_fn = bfq_cpd_init,
++ .cpd_free_fn = bfq_cpd_free,
++
++ .pd_alloc_fn = bfq_pd_alloc,
++ .pd_init_fn = bfq_pd_init,
++ .pd_offline_fn = bfq_pd_offline,
++ .pd_free_fn = bfq_pd_free,
++ .pd_reset_stats_fn = bfq_pd_reset_stats,
++};
++#endif
++
++static int __init bfq_init(void)
++{
++ int ret;
++ char msg[60] = "BFQ I/O-scheduler: v9";
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ ret = blkcg_policy_register(&blkcg_policy_bfq);
++ if (ret)
++ return ret;
++#endif
++
++ ret = -ENOMEM;
++ if (bfq_slab_setup())
++ goto err_pol_unreg;
++
++ /*
++ * Times to load large popular applications for the typical
++ * systems installed on the reference devices (see the
++ * comments before the definition of the next
++ * array). Actually, we use slightly lower values, as the
++ * estimated peak rate tends to be smaller than the actual
++ * peak rate. The reason for this last fact is that estimates
++ * are computed over much shorter time intervals than the long
++ * intervals typically used for benchmarking. Why? First, to
++ * adapt more quickly to variations. Second, because an I/O
++ * scheduler cannot rely on a peak-rate-evaluation workload to
++ * be run for a long time.
++ */
++ ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
++ ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
++
++ ret = elv_register(&iosched_bfq);
++ if (ret)
++ goto slab_kill;
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ strcat(msg, " (with cgroups support)");
++#endif
++ pr_info("%s", msg);
++
++ return 0;
++
++slab_kill:
++ bfq_slab_kill();
++err_pol_unreg:
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ blkcg_policy_unregister(&blkcg_policy_bfq);
++#endif
++ return ret;
++}
++
++static void __exit bfq_exit(void)
++{
++ elv_unregister(&iosched_bfq);
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ blkcg_policy_unregister(&blkcg_policy_bfq);
++#endif
++ bfq_slab_kill();
++}
++
++module_init(bfq_init);
++module_exit(bfq_exit);
++
++MODULE_AUTHOR("Arianna Avanzini, Fabio Checconi, Paolo Valente");
++MODULE_LICENSE("GPL");
+diff --git a/block/bfq.h b/block/bfq.h
+new file mode 100644
+index 000000000000..0177fc7205d7
+--- /dev/null
++++ b/block/bfq.h
+@@ -0,0 +1,1074 @@
++/*
++ * BFQ v9: data structures and common functions prototypes.
++ *
++ * Based on ideas and code from CFQ:
++ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
++ *
++ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
++ * Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
++ */
++
++#ifndef _BFQ_H
++#define _BFQ_H
++
++#include <linux/hrtimer.h>
++#include <linux/blk-cgroup.h>
++
++/*
++ * Define an alternative macro to compile cgroups support. This is one
++ * of the steps needed to let bfq-mq share the files bfq-sched.c and
++ * bfq-cgroup.c with bfq-sq. For bfq-mq, the macro
++ * BFQ_GROUP_IOSCHED_ENABLED will be defined as a function of whether
++ * the configuration option CONFIG_BFQ_MQ_GROUP_IOSCHED, and not
++ * CONFIG_BFQ_GROUP_IOSCHED, is defined.
++ */
++#ifdef CONFIG_BFQ_SQ_GROUP_IOSCHED
++#define BFQ_GROUP_IOSCHED_ENABLED
++#endif
++
++#define BFQ_IOPRIO_CLASSES 3
++#define BFQ_CL_IDLE_TIMEOUT (HZ/5)
++
++#define BFQ_MIN_WEIGHT 1
++#define BFQ_MAX_WEIGHT 1000
++#define BFQ_WEIGHT_CONVERSION_COEFF 10
++
++#define BFQ_DEFAULT_QUEUE_IOPRIO 4
++
++#define BFQ_WEIGHT_LEGACY_DFL 100
++#define BFQ_DEFAULT_GRP_IOPRIO 0
++#define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE
++
++/*
++ * Soft real-time applications are extremely more latency sensitive
++ * than interactive ones. Over-raise the weight of the former to
++ * privilege them against the latter.
++ */
++#define BFQ_SOFTRT_WEIGHT_FACTOR 100
++
++struct bfq_entity;
++
++/**
++ * struct bfq_service_tree - per ioprio_class service tree.
++ *
++ * Each service tree represents a B-WF2Q+ scheduler on its own. Each
++ * ioprio_class has its own independent scheduler, and so its own
++ * bfq_service_tree. All the fields are protected by the queue lock
++ * of the containing bfqd.
++ */
++struct bfq_service_tree {
++ /* tree for active entities (i.e., those backlogged) */
++ struct rb_root active;
++ /* tree for idle entities (i.e., not backlogged, with V <= F_i)*/
++ struct rb_root idle;
++
++ struct bfq_entity *first_idle; /* idle entity with minimum F_i */
++ struct bfq_entity *last_idle; /* idle entity with maximum F_i */
++
++ u64 vtime; /* scheduler virtual time */
++ /* scheduler weight sum; active and idle entities contribute to it */
++ unsigned long wsum;
++};
++
++/**
++ * struct bfq_sched_data - multi-class scheduler.
++ *
++ * bfq_sched_data is the basic scheduler queue. It supports three
++ * ioprio_classes, and can be used either as a toplevel queue or as an
++ * intermediate queue in a hierarchical setup.
++ *
++ * The supported ioprio_classes are the same as in CFQ, in descending
++ * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE.
++ * Requests from higher priority queues are served before all the
++ * requests from lower priority queues; among requests of the same
++ * queue requests are served according to B-WF2Q+.
++ *
++ * The schedule is implemented by the service trees, plus the field
++ * @next_in_service, which points to the entity on the active trees
++ * that will be served next, if 1) no changes in the schedule occurs
++ * before the current in-service entity is expired, 2) the in-service
++ * queue becomes idle when it expires, and 3) if the entity pointed by
++ * in_service_entity is not a queue, then the in-service child entity
++ * of the entity pointed by in_service_entity becomes idle on
++ * expiration. This peculiar definition allows for the following
++ * optimization, not yet exploited: while a given entity is still in
++ * service, we already know which is the best candidate for next
++ * service among the other active entitities in the same parent
++ * entity. We can then quickly compare the timestamps of the
++ * in-service entity with those of such best candidate.
++ *
++ * All the fields are protected by the queue lock of the containing
++ * bfqd.
++ */
++struct bfq_sched_data {
++ struct bfq_entity *in_service_entity; /* entity in service */
++ /* head-of-the-line entity in the scheduler (see comments above) */
++ struct bfq_entity *next_in_service;
++ /* array of service trees, one per ioprio_class */
++ struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES];
++ /* last time CLASS_IDLE was served */
++ unsigned long bfq_class_idle_last_service;
++
++};
++
++/**
++ * struct bfq_weight_counter - counter of the number of all active queues
++ * with a given weight.
++ */
++struct bfq_weight_counter {
++ unsigned int weight; /* weight of the queues this counter refers to */
++ unsigned int num_active; /* nr of active queues with this weight */
++ /*
++ * Weights tree member (see bfq_data's @queue_weights_tree)
++ */
++ struct rb_node weights_node;
++};
++
++/**
++ * struct bfq_entity - schedulable entity.
++ *
++ * A bfq_entity is used to represent either a bfq_queue (leaf node in the
++ * cgroup hierarchy) or a bfq_group into the upper level scheduler. Each
++ * entity belongs to the sched_data of the parent group in the cgroup
++ * hierarchy. Non-leaf entities have also their own sched_data, stored
++ * in @my_sched_data.
++ *
++ * Each entity stores independently its priority values; this would
++ * allow different weights on different devices, but this
++ * functionality is not exported to userspace by now. Priorities and
++ * weights are updated lazily, first storing the new values into the
++ * new_* fields, then setting the @prio_changed flag. As soon as
++ * there is a transition in the entity state that allows the priority
++ * update to take place the effective and the requested priority
++ * values are synchronized.
++ *
++ * Unless cgroups are used, the weight value is calculated from the
++ * ioprio to export the same interface as CFQ. When dealing with
++ * ``well-behaved'' queues (i.e., queues that do not spend too much
++ * time to consume their budget and have true sequential behavior, and
++ * when there are no external factors breaking anticipation) the
++ * relative weights at each level of the cgroups hierarchy should be
++ * guaranteed. All the fields are protected by the queue lock of the
++ * containing bfqd.
++ */
++struct bfq_entity {
++ struct rb_node rb_node; /* service_tree member */
++
++ /*
++ * Flag, true if the entity is on a tree (either the active or
++ * the idle one of its service_tree) or is in service.
++ */
++ bool on_st;
++
++ u64 finish; /* B-WF2Q+ finish timestamp (aka F_i) */
++ u64 start; /* B-WF2Q+ start timestamp (aka S_i) */
++
++ /* tree the entity is enqueued into; %NULL if not on a tree */
++ struct rb_root *tree;
++
++ /*
++ * minimum start time of the (active) subtree rooted at this
++ * entity; used for O(log N) lookups into active trees
++ */
++ u64 min_start;
++
++ /* amount of service received during the last service slot */
++ int service;
++
++ /* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */
++ int budget;
++
++ unsigned int weight; /* weight of the queue */
++ unsigned int new_weight; /* next weight if a change is in progress */
++
++ /* original weight, used to implement weight boosting */
++ unsigned int orig_weight;
++
++ /* parent entity, for hierarchical scheduling */
++ struct bfq_entity *parent;
++
++ /*
++ * For non-leaf nodes in the hierarchy, the associated
++ * scheduler queue, %NULL on leaf nodes.
++ */
++ struct bfq_sched_data *my_sched_data;
++ /* the scheduler queue this entity belongs to */
++ struct bfq_sched_data *sched_data;
++
++ /* flag, set to request a weight, ioprio or ioprio_class change */
++ int prio_changed;
++
++ /* flag, set if the entity is counted in groups_with_pending_reqs */
++ bool in_groups_with_pending_reqs;
++};
++
++struct bfq_group;
++
++/**
++ * struct bfq_queue - leaf schedulable entity.
++ *
++ * A bfq_queue is a leaf request queue; it can be associated with an
++ * io_context or more, if it is async or shared between cooperating
++ * processes. @cgroup holds a reference to the cgroup, to be sure that it
++ * does not disappear while a bfqq still references it (mostly to avoid
++ * races between request issuing and task migration followed by cgroup
++ * destruction).
++ * All the fields are protected by the queue lock of the containing bfqd.
++ */
++struct bfq_queue {
++ /* reference counter */
++ int ref;
++ /* parent bfq_data */
++ struct bfq_data *bfqd;
++
++ /* current ioprio and ioprio class */
++ unsigned short ioprio, ioprio_class;
++ /* next ioprio and ioprio class if a change is in progress */
++ unsigned short new_ioprio, new_ioprio_class;
++
++ /*
++ * Shared bfq_queue if queue is cooperating with one or more
++ * other queues.
++ */
++ struct bfq_queue *new_bfqq;
++ /* request-position tree member (see bfq_group's @rq_pos_tree) */
++ struct rb_node pos_node;
++ /* request-position tree root (see bfq_group's @rq_pos_tree) */
++ struct rb_root *pos_root;
++
++ /* sorted list of pending requests */
++ struct rb_root sort_list;
++ /* if fifo isn't expired, next request to serve */
++ struct request *next_rq;
++ /* number of sync and async requests queued */
++ int queued[2];
++ /* number of sync and async requests currently allocated */
++ int allocated[2];
++ /* number of pending metadata requests */
++ int meta_pending;
++ /* fifo list of requests in sort_list */
++ struct list_head fifo;
++
++ /* entity representing this queue in the scheduler */
++ struct bfq_entity entity;
++
++ /* pointer to the weight counter associated with this queue */
++ struct bfq_weight_counter *weight_counter;
++
++ /* maximum budget allowed from the feedback mechanism */
++ int max_budget;
++ /* budget expiration (in jiffies) */
++ unsigned long budget_timeout;
++
++ /* number of requests on the dispatch list or inside driver */
++ int dispatched;
++
++ unsigned int flags; /* status flags.*/
++
++ /* node for active/idle bfqq list inside parent bfqd */
++ struct list_head bfqq_list;
++
++ /* bit vector: a 1 for each seeky requests in history */
++ u32 seek_history;
++
++ /* node for the device's burst list */
++ struct hlist_node burst_list_node;
++
++ /* position of the last request enqueued */
++ sector_t last_request_pos;
++
++ /* Number of consecutive pairs of request completion and
++ * arrival, such that the queue becomes idle after the
++ * completion, but the next request arrives within an idle
++ * time slice; used only if the queue's IO_bound flag has been
++ * cleared.
++ */
++ unsigned int requests_within_timer;
++
++ /* pid of the process owning the queue, used for logging purposes */
++ pid_t pid;
++
++ /*
++ * Pointer to the bfq_io_cq owning the bfq_queue, set to %NULL
++ * if the queue is shared.
++ */
++ struct bfq_io_cq *bic;
++
++ /* current maximum weight-raising time for this queue */
++ unsigned long wr_cur_max_time;
++ /*
++ * Minimum time instant such that, only if a new request is
++ * enqueued after this time instant in an idle @bfq_queue with
++ * no outstanding requests, then the task associated with the
++ * queue it is deemed as soft real-time (see the comments on
++ * the function bfq_bfqq_softrt_next_start())
++ */
++ unsigned long soft_rt_next_start;
++ /*
++ * Start time of the current weight-raising period if
++ * the @bfq-queue is being weight-raised, otherwise
++ * finish time of the last weight-raising period.
++ */
++ unsigned long last_wr_start_finish;
++ /* factor by which the weight of this queue is multiplied */
++ unsigned int wr_coeff;
++ /*
++ * Time of the last transition of the @bfq_queue from idle to
++ * backlogged.
++ */
++ unsigned long last_idle_bklogged;
++ /*
++ * Cumulative service received from the @bfq_queue since the
++ * last transition from idle to backlogged.
++ */
++ unsigned long service_from_backlogged;
++ /*
++ * Cumulative service received from the @bfq_queue since its
++ * last transition to weight-raised state.
++ */
++ unsigned long service_from_wr;
++ /*
++ * Value of wr start time when switching to soft rt
++ */
++ unsigned long wr_start_at_switch_to_srt;
++
++ unsigned long split_time; /* time of last split */
++
++ unsigned long first_IO_time; /* time of first I/O for this queue */
++
++ /* max service rate measured so far */
++ u32 max_service_rate;
++ /*
++ * Ratio between the service received by bfqq while it is in
++ * service, and the cumulative service (of requests of other
++ * queues) that may be injected while bfqq is empty but still
++ * in service. To increase precision, the coefficient is
++ * measured in tenths of unit. Here are some example of (1)
++ * ratios, (2) resulting percentages of service injected
++ * w.r.t. to the total service dispatched while bfqq is in
++ * service, and (3) corresponding values of the coefficient:
++ * 1 (50%) -> 10
++ * 2 (33%) -> 20
++ * 10 (9%) -> 100
++ * 9.9 (9%) -> 99
++ * 1.5 (40%) -> 15
++ * 0.5 (66%) -> 5
++ * 0.1 (90%) -> 1
++ *
++ * So, if the coefficient is lower than 10, then
++ * injected service is more than bfqq service.
++ */
++ unsigned int inject_coeff;
++ /* amount of service injected in current service slot */
++ unsigned int injected_service;
++};
++
++/**
++ * struct bfq_ttime - per process thinktime stats.
++ */
++struct bfq_ttime {
++ u64 last_end_request; /* completion time of last request */
++
++ u64 ttime_total; /* total process thinktime */
++ unsigned long ttime_samples; /* number of thinktime samples */
++ u64 ttime_mean; /* average process thinktime */
++
++};
++
++/**
++ * struct bfq_io_cq - per (request_queue, io_context) structure.
++ */
++struct bfq_io_cq {
++ /* associated io_cq structure */
++ struct io_cq icq; /* must be the first member */
++ /* array of two process queues, the sync and the async */
++ struct bfq_queue *bfqq[2];
++ /* associated @bfq_ttime struct */
++ struct bfq_ttime ttime;
++ /* per (request_queue, blkcg) ioprio */
++ int ioprio;
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ uint64_t blkcg_serial_nr; /* the current blkcg serial */
++#endif
++
++ /*
++ * Snapshot of the has_short_time flag before merging; taken
++ * to remember its value while the queue is merged, so as to
++ * be able to restore it in case of split.
++ */
++ bool saved_has_short_ttime;
++ /*
++ * Same purpose as the previous two fields for the I/O bound
++ * classification of a queue.
++ */
++ bool saved_IO_bound;
++
++ /*
++ * Same purpose as the previous fields for the value of the
++ * field keeping the queue's belonging to a large burst
++ */
++ bool saved_in_large_burst;
++ /*
++ * True if the queue belonged to a burst list before its merge
++ * with another cooperating queue.
++ */
++ bool was_in_burst_list;
++
++ /*
++ * Similar to previous fields: save wr information.
++ */
++ unsigned long saved_wr_coeff;
++ unsigned long saved_last_wr_start_finish;
++ unsigned long saved_wr_start_at_switch_to_srt;
++ unsigned int saved_wr_cur_max_time;
++};
++
++/**
++ * struct bfq_data - per-device data structure.
++ *
++ * All the fields are protected by the @queue lock.
++ */
++struct bfq_data {
++ /* request queue for the device */
++ struct request_queue *queue;
++
++ /* root bfq_group for the device */
++ struct bfq_group *root_group;
++
++ /*
++ * rbtree of weight counters of @bfq_queues, sorted by
++ * weight. Used to keep track of whether all @bfq_queues have
++ * the same weight. The tree contains one counter for each
++ * distinct weight associated to some active and not
++ * weight-raised @bfq_queue (see the comments to the functions
++ * bfq_weights_tree_[add|remove] for further details).
++ */
++ struct rb_root queue_weights_tree;
++
++ /*
++ * Number of groups with at least one descendant process that
++ * has at least one request waiting for completion. Note that
++ * this accounts for also requests already dispatched, but not
++ * yet completed. Therefore this number of groups may differ
++ * (be larger) than the number of active groups, as a group is
++ * considered active only if its corresponding entity has
++ * descendant queues with at least one request queued. This
++ * number is used to decide whether a scenario is symmetric.
++ * For a detailed explanation see comments on the computation
++ * of the variable asymmetric_scenario in the function
++ * bfq_better_to_idle().
++ *
++ * However, it is hard to compute this number exactly, for
++ * groups with multiple descendant processes. Consider a group
++ * that is inactive, i.e., that has no descendant process with
++ * pending I/O inside BFQ queues. Then suppose that
++ * num_groups_with_pending_reqs is still accounting for this
++ * group, because the group has descendant processes with some
++ * I/O request still in flight. num_groups_with_pending_reqs
++ * should be decremented when the in-flight request of the
++ * last descendant process is finally completed (assuming that
++ * nothing else has changed for the group in the meantime, in
++ * terms of composition of the group and active/inactive state of child
++ * groups and processes). To accomplish this, an additional
++ * pending-request counter must be added to entities, and must
++ * be updated correctly. To avoid this additional field and operations,
++ * we resort to the following tradeoff between simplicity and
++ * accuracy: for an inactive group that is still counted in
++ * num_groups_with_pending_reqs, we decrement
++ * num_groups_with_pending_reqs when the first descendant
++ * process of the group remains with no request waiting for
++ * completion.
++ *
++ * Even this simpler decrement strategy requires a little
++ * carefulness: to avoid multiple decrements, we flag a group,
++ * more precisely an entity representing a group, as still
++ * counted in num_groups_with_pending_reqs when it becomes
++ * inactive. Then, when the first descendant queue of the
++ * entity remains with no request waiting for completion,
++ * num_groups_with_pending_reqs is decremented, and this flag
++ * is reset. After this flag is reset for the entity,
++ * num_groups_with_pending_reqs won't be decremented any
++ * longer in case a new descendant queue of the entity remains
++ * with no request waiting for completion.
++ */
++ unsigned int num_groups_with_pending_reqs;
++
++ /*
++ * Per-class (RT, BE, IDLE) number of bfq_queues containing
++ * requests (including the queue in service, even if it is
++ * idling).
++ */
++ unsigned int busy_queues[3];
++ /* number of weight-raised busy @bfq_queues */
++ int wr_busy_queues;
++ /* number of queued requests */
++ int queued;
++ /* number of requests dispatched and waiting for completion */
++ int rq_in_driver;
++
++ /*
++ * Maximum number of requests in driver in the last
++ * @hw_tag_samples completed requests.
++ */
++ int max_rq_in_driver;
++ /* number of samples used to calculate hw_tag */
++ int hw_tag_samples;
++ /* flag set to one if the driver is showing a queueing behavior */
++ int hw_tag;
++
++ /* number of budgets assigned */
++ int budgets_assigned;
++
++ /*
++ * Timer set when idling (waiting) for the next request from
++ * the queue in service.
++ */
++ struct hrtimer idle_slice_timer;
++ /* delayed work to restart dispatching on the request queue */
++ struct work_struct unplug_work;
++
++ /* bfq_queue in service */
++ struct bfq_queue *in_service_queue;
++ /* bfq_io_cq (bic) associated with the @in_service_queue */
++ struct bfq_io_cq *in_service_bic;
++
++ /* on-disk position of the last served request */
++ sector_t last_position;
++
++ /* position of the last served request for the in-service queue */
++ sector_t in_serv_last_pos;
++
++ /* time of last request completion (ns) */
++ u64 last_completion;
++
++ /* time of first rq dispatch in current observation interval (ns) */
++ u64 first_dispatch;
++ /* time of last rq dispatch in current observation interval (ns) */
++ u64 last_dispatch;
++
++ /* beginning of the last budget */
++ ktime_t last_budget_start;
++ /* beginning of the last idle slice */
++ ktime_t last_idling_start;
++
++ /* number of samples in current observation interval */
++ int peak_rate_samples;
++ /* num of samples of seq dispatches in current observation interval */
++ u32 sequential_samples;
++ /* total num of sectors transferred in current observation interval */
++ u64 tot_sectors_dispatched;
++ /* max rq size seen during current observation interval (sectors) */
++ u32 last_rq_max_size;
++ /* time elapsed from first dispatch in current observ. interval (us) */
++ u64 delta_from_first;
++ /*
++ * Current estimate of the device peak rate, measured in
++ * [(sectors/usec) / 2^BFQ_RATE_SHIFT]. The left-shift by
++ * BFQ_RATE_SHIFT is performed to increase precision in
++ * fixed-point calculations.
++ */
++ u32 peak_rate;
++
++ /* maximum budget allotted to a bfq_queue before rescheduling */
++ int bfq_max_budget;
++
++ /* list of all the bfq_queues active on the device */
++ struct list_head active_list;
++ /* list of all the bfq_queues idle on the device */
++ struct list_head idle_list;
++
++ /*
++ * Timeout for async/sync requests; when it fires, requests
++ * are served in fifo order.
++ */
++ u64 bfq_fifo_expire[2];
++ /* weight of backward seeks wrt forward ones */
++ unsigned int bfq_back_penalty;
++ /* maximum allowed backward seek */
++ unsigned int bfq_back_max;
++ /* maximum idling time */
++ u32 bfq_slice_idle;
++
++ /* user-configured max budget value (0 for auto-tuning) */
++ int bfq_user_max_budget;
++ /*
++ * Timeout for bfq_queues to consume their budget; used to
++ * prevent seeky queues from imposing long latencies to
++ * sequential or quasi-sequential ones (this also implies that
++ * seeky queues cannot receive guarantees in the service
++ * domain; after a timeout they are charged for the time they
++ * have been in service, to preserve fairness among them, but
++ * without service-domain guarantees).
++ */
++ unsigned int bfq_timeout;
++
++ /*
++ * Number of consecutive requests that must be issued within
++ * the idle time slice to set again idling to a queue which
++ * was marked as non-I/O-bound (see the definition of the
++ * IO_bound flag for further details).
++ */
++ unsigned int bfq_requests_within_timer;
++
++ /*
++ * Force device idling whenever needed to provide accurate
++ * service guarantees, without caring about throughput
++ * issues. CAVEAT: this may even increase latencies, in case
++ * of useless idling for processes that did stop doing I/O.
++ */
++ bool strict_guarantees;
++
++ /*
++ * Last time at which a queue entered the current burst of
++ * queues being activated shortly after each other; for more
++ * details about this and the following parameters related to
++ * a burst of activations, see the comments on the function
++ * bfq_handle_burst.
++ */
++ unsigned long last_ins_in_burst;
++ /*
++ * Reference time interval used to decide whether a queue has
++ * been activated shortly after @last_ins_in_burst.
++ */
++ unsigned long bfq_burst_interval;
++ /* number of queues in the current burst of queue activations */
++ int burst_size;
++
++ /* common parent entity for the queues in the burst */
++ struct bfq_entity *burst_parent_entity;
++ /* Maximum burst size above which the current queue-activation
++ * burst is deemed as 'large'.
++ */
++ unsigned long bfq_large_burst_thresh;
++ /* true if a large queue-activation burst is in progress */
++ bool large_burst;
++ /*
++ * Head of the burst list (as for the above fields, more
++ * details in the comments on the function bfq_handle_burst).
++ */
++ struct hlist_head burst_list;
++
++ /* if set to true, low-latency heuristics are enabled */
++ bool low_latency;
++ /*
++ * Maximum factor by which the weight of a weight-raised queue
++ * is multiplied.
++ */
++ unsigned int bfq_wr_coeff;
++ /* maximum duration of a weight-raising period (jiffies) */
++ unsigned int bfq_wr_max_time;
++
++ /* Maximum weight-raising duration for soft real-time processes */
++ unsigned int bfq_wr_rt_max_time;
++ /*
++ * Minimum idle period after which weight-raising may be
++ * reactivated for a queue (in jiffies).
++ */
++ unsigned int bfq_wr_min_idle_time;
++ /*
++ * Minimum period between request arrivals after which
++ * weight-raising may be reactivated for an already busy async
++ * queue (in jiffies).
++ */
++ unsigned long bfq_wr_min_inter_arr_async;
++
++ /* Max service-rate for a soft real-time queue, in sectors/sec */
++ unsigned int bfq_wr_max_softrt_rate;
++ /*
++ * Cached value of the product ref_rate*ref_wr_duration, used
++ * for computing the maximum duration of weight raising
++ * automatically.
++ */
++ u64 rate_dur_prod;
++
++ /* fallback dummy bfqq for extreme OOM conditions */
++ struct bfq_queue oom_bfqq;
++};
++
++enum bfqq_state_flags {
++ BFQ_BFQQ_FLAG_just_created = 0, /* queue just allocated */
++ BFQ_BFQQ_FLAG_busy, /* has requests or is in service */
++ BFQ_BFQQ_FLAG_wait_request, /* waiting for a request */
++ BFQ_BFQQ_FLAG_non_blocking_wait_rq, /*
++ * waiting for a request
++ * without idling the device
++ */
++ BFQ_BFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
++ BFQ_BFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
++ BFQ_BFQQ_FLAG_has_short_ttime, /* queue has a short think time */
++ BFQ_BFQQ_FLAG_sync, /* synchronous queue */
++ BFQ_BFQQ_FLAG_IO_bound, /*
++ * bfqq has timed-out at least once
++ * having consumed at most 2/10 of
++ * its budget
++ */
++ BFQ_BFQQ_FLAG_in_large_burst, /*
++ * bfqq activated in a large burst,
++ * see comments to bfq_handle_burst.
++ */
++ BFQ_BFQQ_FLAG_softrt_update, /*
++ * may need softrt-next-start
++ * update
++ */
++ BFQ_BFQQ_FLAG_coop, /* bfqq is shared */
++ BFQ_BFQQ_FLAG_split_coop /* shared bfqq will be split */
++};
++
++#define BFQ_BFQQ_FNS(name) \
++static void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
++{ \
++ (bfqq)->flags |= (1 << BFQ_BFQQ_FLAG_##name); \
++} \
++static void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
++{ \
++ (bfqq)->flags &= ~(1 << BFQ_BFQQ_FLAG_##name); \
++} \
++static int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
++{ \
++ return ((bfqq)->flags & (1 << BFQ_BFQQ_FLAG_##name)) != 0; \
++}
++
++BFQ_BFQQ_FNS(just_created);
++BFQ_BFQQ_FNS(busy);
++BFQ_BFQQ_FNS(wait_request);
++BFQ_BFQQ_FNS(non_blocking_wait_rq);
++BFQ_BFQQ_FNS(must_alloc);
++BFQ_BFQQ_FNS(fifo_expire);
++BFQ_BFQQ_FNS(has_short_ttime);
++BFQ_BFQQ_FNS(sync);
++BFQ_BFQQ_FNS(IO_bound);
++BFQ_BFQQ_FNS(in_large_burst);
++BFQ_BFQQ_FNS(coop);
++BFQ_BFQQ_FNS(split_coop);
++BFQ_BFQQ_FNS(softrt_update);
++#undef BFQ_BFQQ_FNS
++
++/* Logging facilities. */
++#ifdef CONFIG_BFQ_REDIRECT_TO_CONSOLE
++
++static const char *checked_dev_name(const struct device *dev)
++{
++ static const char nodev[] = "nodev";
++
++ if (dev)
++ return dev_name(dev);
++
++ return nodev;
++}
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
++static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg);
++
++#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \
++ char __pbuf[128]; \
++ \
++ assert_spin_locked((bfqd)->queue->queue_lock); \
++ blkg_path(bfqg_to_blkg(bfqq_group(bfqq)), __pbuf, sizeof(__pbuf)); \
++ pr_crit("%s bfq%d%c %s [%s] " fmt "\n", \
++ checked_dev_name((bfqd)->queue->backing_dev_info->dev), \
++ (bfqq)->pid, \
++ bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
++ __pbuf, __func__, ##args); \
++} while (0)
++
++#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do { \
++ char __pbuf[128]; \
++ \
++ blkg_path(bfqg_to_blkg(bfqg), __pbuf, sizeof(__pbuf)); \
++ pr_crit("%s %s [%s] " fmt "\n", \
++ checked_dev_name((bfqd)->queue->backing_dev_info->dev), \
++ __pbuf, __func__, ##args); \
++} while (0)
++
++#else /* BFQ_GROUP_IOSCHED_ENABLED */
++
++#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \
++ pr_crit("%s bfq%d%c [%s] " fmt "\n", \
++ checked_dev_name((bfqd)->queue->backing_dev_info->dev), \
++ (bfqq)->pid, bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
++ __func__, ##args)
++#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do {} while (0)
++
++#endif /* BFQ_GROUP_IOSCHED_ENABLED */
++
++#define bfq_log(bfqd, fmt, args...) \
++ pr_crit("%s bfq [%s] " fmt "\n", \
++ checked_dev_name((bfqd)->queue->backing_dev_info->dev), \
++ __func__, ##args)
++
++#else /* CONFIG_BFQ_REDIRECT_TO_CONSOLE */
++
++#if !defined(CONFIG_BLK_DEV_IO_TRACE)
++
++/* Avoid possible "unused-variable" warning. See commit message. */
++
++#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) ((void) (bfqq))
++
++#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) ((void) (bfqg))
++
++#define bfq_log(bfqd, fmt, args...) do {} while (0)
++
++#else /* CONFIG_BLK_DEV_IO_TRACE */
++
++#include <linux/blktrace_api.h>
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
++static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg);
++
++#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \
++ char __pbuf[128]; \
++ \
++ assert_spin_locked((bfqd)->queue->queue_lock); \
++ blkg_path(bfqg_to_blkg(bfqq_group(bfqq)), __pbuf, sizeof(__pbuf)); \
++ blk_add_trace_msg((bfqd)->queue, "bfq%d%c %s [%s] " fmt, \
++ (bfqq)->pid, \
++ bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
++ __pbuf, __func__, ##args); \
++} while (0)
++
++#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do { \
++ char __pbuf[128]; \
++ \
++ blkg_path(bfqg_to_blkg(bfqg), __pbuf, sizeof(__pbuf)); \
++ blk_add_trace_msg((bfqd)->queue, "%s [%s] " fmt, __pbuf, \
++ __func__, ##args); \
++} while (0)
++
++#else /* BFQ_GROUP_IOSCHED_ENABLED */
++
++#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \
++ blk_add_trace_msg((bfqd)->queue, "bfq%d%c [%s] " fmt, (bfqq)->pid, \
++ bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
++ __func__, ##args)
++#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do {} while (0)
++
++#endif /* BFQ_GROUP_IOSCHED_ENABLED */
++
++#define bfq_log(bfqd, fmt, args...) \
++ blk_add_trace_msg((bfqd)->queue, "bfq [%s] " fmt, __func__, ##args)
++
++#endif /* CONFIG_BLK_DEV_IO_TRACE */
++#endif /* CONFIG_BFQ_REDIRECT_TO_CONSOLE */
++
++/* Expiration reasons. */
++enum bfqq_expiration {
++ BFQ_BFQQ_TOO_IDLE = 0, /*
++ * queue has been idling for
++ * too long
++ */
++ BFQ_BFQQ_BUDGET_TIMEOUT, /* budget took too long to be used */
++ BFQ_BFQQ_BUDGET_EXHAUSTED, /* budget consumed */
++ BFQ_BFQQ_NO_MORE_REQUESTS, /* the queue has no more requests */
++ BFQ_BFQQ_PREEMPTED /* preemption in progress */
++};
++
++
++struct bfqg_stats {
++#if defined(BFQ_GROUP_IOSCHED_ENABLED) && defined(CONFIG_DEBUG_BLK_CGROUP)
++ /* number of ios merged */
++ struct blkg_rwstat merged;
++ /* total time spent on device in ns, may not be accurate w/ queueing */
++ struct blkg_rwstat service_time;
++ /* total time spent waiting in scheduler queue in ns */
++ struct blkg_rwstat wait_time;
++ /* number of IOs queued up */
++ struct blkg_rwstat queued;
++ /* total disk time and nr sectors dispatched by this group */
++ struct blkg_stat time;
++ /* sum of number of ios queued across all samples */
++ struct blkg_stat avg_queue_size_sum;
++ /* count of samples taken for average */
++ struct blkg_stat avg_queue_size_samples;
++ /* how many times this group has been removed from service tree */
++ struct blkg_stat dequeue;
++ /* total time spent waiting for it to be assigned a timeslice. */
++ struct blkg_stat group_wait_time;
++ /* time spent idling for this blkcg_gq */
++ struct blkg_stat idle_time;
++ /* total time with empty current active q with other requests queued */
++ struct blkg_stat empty_time;
++ /* fields after this shouldn't be cleared on stat reset */
++ uint64_t start_group_wait_time;
++ uint64_t start_idle_time;
++ uint64_t start_empty_time;
++ uint16_t flags;
++#endif /* BFQ_GROUP_IOSCHED_ENABLED && CONFIG_DEBUG_BLK_CGROUP */
++};
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++/*
++ * struct bfq_group_data - per-blkcg storage for the blkio subsystem.
++ *
++ * @ps: @blkcg_policy_storage that this structure inherits
++ * @weight: weight of the bfq_group
++ */
++struct bfq_group_data {
++ /* must be the first member */
++ struct blkcg_policy_data pd;
++
++ unsigned int weight;
++};
++
++/**
++ * struct bfq_group - per (device, cgroup) data structure.
++ * @entity: schedulable entity to insert into the parent group sched_data.
++ * @sched_data: own sched_data, to contain child entities (they may be
++ * both bfq_queues and bfq_groups).
++ * @bfqd: the bfq_data for the device this group acts upon.
++ * @async_bfqq: array of async queues for all the tasks belonging to
++ * the group, one queue per ioprio value per ioprio_class,
++ * except for the idle class that has only one queue.
++ * @async_idle_bfqq: async queue for the idle class (ioprio is ignored).
++ * @my_entity: pointer to @entity, %NULL for the toplevel group; used
++ * to avoid too many special cases during group creation/
++ * migration.
++ * @active_entities: number of active entities belonging to the group;
++ * unused for the root group. Used to know whether there
++ * are groups with more than one active @bfq_entity
++ * (see the comments to the function
++ * bfq_bfqq_may_idle()).
++ * @rq_pos_tree: rbtree sorted by next_request position, used when
++ * determining if two or more queues have interleaving
++ * requests (see bfq_find_close_cooperator()).
++ *
++ * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup
++ * there is a set of bfq_groups, each one collecting the lower-level
++ * entities belonging to the group that are acting on the same device.
++ *
++ * Locking works as follows:
++ * o @bfqd is protected by the queue lock, RCU is used to access it
++ * from the readers.
++ * o All the other fields are protected by the @bfqd queue lock.
++ */
++struct bfq_group {
++ /* must be the first member */
++ struct blkg_policy_data pd;
++
++ struct bfq_entity entity;
++ struct bfq_sched_data sched_data;
++
++ void *bfqd;
++
++ struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
++ struct bfq_queue *async_idle_bfqq;
++
++ struct bfq_entity *my_entity;
++
++ int active_entities;
++
++ struct rb_root rq_pos_tree;
++
++ struct bfqg_stats stats;
++};
++
++#else
++struct bfq_group {
++ struct bfq_sched_data sched_data;
++
++ struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
++ struct bfq_queue *async_idle_bfqq;
++
++ struct rb_root rq_pos_tree;
++};
++#endif
++
++static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
++
++static unsigned int bfq_class_idx(struct bfq_entity *entity)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++
++ return bfqq ? bfqq->ioprio_class - 1 :
++ BFQ_DEFAULT_GRP_CLASS - 1;
++}
++
++static unsigned int bfq_tot_busy_queues(struct bfq_data *bfqd)
++{
++ return bfqd->busy_queues[0] + bfqd->busy_queues[1] +
++ bfqd->busy_queues[2];
++}
++
++static struct bfq_service_tree *
++bfq_entity_service_tree(struct bfq_entity *entity)
++{
++ struct bfq_sched_data *sched_data = entity->sched_data;
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++ unsigned int idx = bfq_class_idx(entity);
++
++ BUG_ON(idx >= BFQ_IOPRIO_CLASSES);
++ BUG_ON(sched_data == NULL);
++
++ if (bfqq)
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "%p %d",
++ sched_data->service_tree + idx, idx);
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++ else {
++ struct bfq_group *bfqg =
++ container_of(entity, struct bfq_group, entity);
++
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++ "%p %d",
++ sched_data->service_tree + idx, idx);
++ }
++#endif
++ return sched_data->service_tree + idx;
++}
++
++static struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
++{
++ return bic->bfqq[is_sync];
++}
++
++static void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq,
++ bool is_sync)
++{
++ bic->bfqq[is_sync] = bfqq;
++}
++
++static struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
++{
++ return bic->icq.q->elevator->elevator_data;
++}
++
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++
++static struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
++{
++ struct bfq_entity *group_entity = bfqq->entity.parent;
++
++ if (!group_entity)
++ group_entity = &bfqq->bfqd->root_group->entity;
++
++ return container_of(group_entity, struct bfq_group, entity);
++}
++
++#else
++
++static struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
++{
++ return bfqq->bfqd->root_group;
++}
++
++#endif
++
++static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio);
++static void bfq_put_queue(struct bfq_queue *bfqq);
++static void bfq_dispatch_insert(struct request_queue *q, struct request *rq);
++static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
++ struct bio *bio, bool is_sync,
++ struct bfq_io_cq *bic);
++static void bfq_end_wr_async_queues(struct bfq_data *bfqd,
++ struct bfq_group *bfqg);
++#ifdef BFQ_GROUP_IOSCHED_ENABLED
++static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
++#endif
++static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
++
++#endif /* _BFQ_H */
+diff --git a/block/blk-mq.c b/block/blk-mq.c
+index e3c39ea8e17b..7a57368841f6 100644
+--- a/block/blk-mq.c
++++ b/block/blk-mq.c
+@@ -2878,6 +2878,8 @@ int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
+ }
+ if (ret)
+ break;
++ if (q->elevator && q->elevator->type->ops.mq.depth_updated)
++ q->elevator->type->ops.mq.depth_updated(hctx);
+ }
+
+ if (!ret)
+diff --git a/include/linux/blkdev.h b/include/linux/blkdev.h
+index 6980014357d4..8c4568ea6884 100644
+--- a/include/linux/blkdev.h
++++ b/include/linux/blkdev.h
+@@ -54,7 +54,7 @@ struct blk_stat_callback;
+ * Maximum number of blkcg policies allowed to be registered concurrently.
+ * Defined here to simplify include dependency.
+ */
+-#define BLKCG_MAX_POLS 5
++#define BLKCG_MAX_POLS 7
+
+ typedef void (rq_end_io_fn)(struct request *, blk_status_t);
+
+@@ -127,6 +127,10 @@ typedef __u32 __bitwise req_flags_t;
+ #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20))
+ /* ->timeout has been called, don't expire again */
+ #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
++/* DEBUG: rq in bfq-mq dispatch list */
++#define RQF_DISP_LIST ((__force req_flags_t)(1 << 22))
++/* DEBUG: rq had get_rq_private executed on it */
++#define RQF_GOT ((__force req_flags_t)(1 << 23))
+
+ /* flags that prevent us from merging requests: */
+ #define RQF_NOMERGE_FLAGS \
+diff --git a/include/linux/elevator.h b/include/linux/elevator.h
+index a02deea30185..a2bf4a6b9316 100644
+--- a/include/linux/elevator.h
++++ b/include/linux/elevator.h
+@@ -99,6 +99,7 @@ struct elevator_mq_ops {
+ void (*exit_sched)(struct elevator_queue *);
+ int (*init_hctx)(struct blk_mq_hw_ctx *, unsigned int);
+ void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
++ void (*depth_updated)(struct blk_mq_hw_ctx *);
+
+ bool (*allow_merge)(struct request_queue *, struct request *, struct bio *);
+ bool (*bio_merge)(struct blk_mq_hw_ctx *, struct bio *);