summaryrefslogtreecommitdiff
path: root/sys-kernel/kogaion-sources/files/desktop/0002-block-introduce-the-BFQ-v7-I-O-sched-for-3.10.patch
diff options
context:
space:
mode:
Diffstat (limited to 'sys-kernel/kogaion-sources/files/desktop/0002-block-introduce-the-BFQ-v7-I-O-sched-for-3.10.patch')
-rw-r--r--sys-kernel/kogaion-sources/files/desktop/0002-block-introduce-the-BFQ-v7-I-O-sched-for-3.10.patch5969
1 files changed, 0 insertions, 5969 deletions
diff --git a/sys-kernel/kogaion-sources/files/desktop/0002-block-introduce-the-BFQ-v7-I-O-sched-for-3.10.patch b/sys-kernel/kogaion-sources/files/desktop/0002-block-introduce-the-BFQ-v7-I-O-sched-for-3.10.patch
deleted file mode 100644
index 0a2c5079..00000000
--- a/sys-kernel/kogaion-sources/files/desktop/0002-block-introduce-the-BFQ-v7-I-O-sched-for-3.10.patch
+++ /dev/null
@@ -1,5969 +0,0 @@
-From d40506359ff7f890adac4bd75541de73044a121e Mon Sep 17 00:00:00 2001
-From: Paolo Valente <paolo.valente@unimore.it>
-Date: Thu, 9 May 2013 19:10:02 +0200
-Subject: [PATCH 2/3] block: introduce the BFQ-v7 I/O sched for 3.10
-
-Add the BFQ-v7 I/O scheduler to 3.10.
-The general structure is borrowed from CFQ, as much of the code for
-handling I/O contexts Over time, several useful features have been
-ported from CFQ as well (details in the changelog in README.BFQ). A
-(bfq_)queue is associated to each task doing I/O on a device, and each
-time a scheduling decision has to be made a queue is selected and served
-until it expires.
-
- - Slices are given in the service domain: tasks are assigned
- budgets, measured in number of sectors. Once got the disk, a task
- must however consume its assigned budget within a configurable
- maximum time (by default, the maximum possible value of the
- budgets is automatically computed to comply with this timeout).
- This allows the desired latency vs "throughput boosting" tradeoff
- to be set.
-
- - Budgets are scheduled according to a variant of WF2Q+, implemented
- using an augmented rb-tree to take eligibility into account while
- preserving an O(log N) overall complexity.
-
- - A low-latency tunable is provided; if enabled, both interactive
- and soft real-time applications are guaranteed a very low latency.
-
- - Latency guarantees are preserved also in the presence of NCQ.
-
- - Also with flash-based devices, a high throughput is achieved
- while still preserving latency guarantees.
-
- - BFQ features Early Queue Merge (EQM), a sort of fusion of the
- cooperating-queue-merging and the preemption mechanisms present
- in CFQ. EQM is in fact a unified mechanism that tries to get a
- sequential read pattern, and hence a high throughput, with any
- set of processes performing interleaved I/O over a contiguous
- sequence of sectors.
-
- - BFQ supports full hierarchical scheduling, exporting a cgroups
- interface. Since each node has a full scheduler, each group can
- be assigned its own weight.
-
- - If the cgroups interface is not used, only I/O priorities can be
- assigned to processes, with ioprio values mapped to weights
- with the relation weight = IOPRIO_BE_NR - ioprio.
-
- - ioprio classes are served in strict priority order, i.e., lower
- priority queues are not served as long as there are higher
- priority queues. Among queues in the same class the bandwidth is
- distributed in proportion to the weight of each queue. A very
- thin extra bandwidth is however guaranteed to the Idle class, to
- prevent it from starving.
-
-Signed-off-by: Paolo Valente <paolo.valente@unimore.it>
-Signed-off-by: Arianna Avanzini <avanzini.arianna@gmail.com>
----
- block/bfq-cgroup.c | 885 ++++++++++++++
- block/bfq-ioc.c | 36 +
- block/bfq-iosched.c | 3256 +++++++++++++++++++++++++++++++++++++++++++++++++++
- block/bfq-sched.c | 1077 +++++++++++++++++
- block/bfq.h | 612 ++++++++++
- 5 files changed, 5866 insertions(+)
- create mode 100644 block/bfq-cgroup.c
- create mode 100644 block/bfq-ioc.c
- create mode 100644 block/bfq-iosched.c
- create mode 100644 block/bfq-sched.c
- create mode 100644 block/bfq.h
-
-diff --git a/block/bfq-cgroup.c b/block/bfq-cgroup.c
-new file mode 100644
-index 0000000..5a117ad
---- /dev/null
-+++ b/block/bfq-cgroup.c
-@@ -0,0 +1,885 @@
-+/*
-+ * BFQ: CGROUPS support.
-+ *
-+ * Based on ideas and code from CFQ:
-+ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
-+ *
-+ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
-+ * Paolo Valente <paolo.valente@unimore.it>
-+ *
-+ * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
-+ *
-+ * Licensed under the GPL-2 as detailed in the accompanying COPYING.BFQ file.
-+ */
-+
-+#ifdef CONFIG_CGROUP_BFQIO
-+
-+static DEFINE_MUTEX(bfqio_mutex);
-+
-+static bool bfqio_is_removed(struct cgroup *cgroup)
-+{
-+ return test_bit(CGRP_REMOVED, &cgroup->flags);
-+}
-+
-+static struct bfqio_cgroup bfqio_root_cgroup = {
-+ .weight = BFQ_DEFAULT_GRP_WEIGHT,
-+ .ioprio = BFQ_DEFAULT_GRP_IOPRIO,
-+ .ioprio_class = BFQ_DEFAULT_GRP_CLASS,
-+};
-+
-+static inline void bfq_init_entity(struct bfq_entity *entity,
-+ struct bfq_group *bfqg)
-+{
-+ entity->weight = entity->new_weight;
-+ entity->orig_weight = entity->new_weight;
-+ entity->ioprio = entity->new_ioprio;
-+ entity->ioprio_class = entity->new_ioprio_class;
-+ entity->parent = bfqg->my_entity;
-+ entity->sched_data = &bfqg->sched_data;
-+}
-+
-+static struct bfqio_cgroup *cgroup_to_bfqio(struct cgroup *cgroup)
-+{
-+ return container_of(cgroup_subsys_state(cgroup, bfqio_subsys_id),
-+ struct bfqio_cgroup, css);
-+}
-+
-+/*
-+ * Search the bfq_group for bfqd into the hash table (by now only a list)
-+ * of bgrp. Must be called under rcu_read_lock().
-+ */
-+static struct bfq_group *bfqio_lookup_group(struct bfqio_cgroup *bgrp,
-+ struct bfq_data *bfqd)
-+{
-+ struct bfq_group *bfqg;
-+ void *key;
-+
-+ hlist_for_each_entry_rcu(bfqg, &bgrp->group_data, group_node) {
-+ key = rcu_dereference(bfqg->bfqd);
-+ if (key == bfqd)
-+ return bfqg;
-+ }
-+
-+ return NULL;
-+}
-+
-+static inline void bfq_group_init_entity(struct bfqio_cgroup *bgrp,
-+ struct bfq_group *bfqg)
-+{
-+ struct bfq_entity *entity = &bfqg->entity;
-+
-+ /*
-+ * If the weight of the entity has never been set via the sysfs
-+ * interface, then bgrp->weight == 0. In this case we initialize
-+ * the weight from the current ioprio value. Otherwise, the group
-+ * weight, if set, has priority over the ioprio value.
-+ */
-+ if (bgrp->weight == 0) {
-+ entity->new_weight = bfq_ioprio_to_weight(bgrp->ioprio);
-+ entity->new_ioprio = bgrp->ioprio;
-+ } else {
-+ entity->new_weight = bgrp->weight;
-+ entity->new_ioprio = bfq_weight_to_ioprio(bgrp->weight);
-+ }
-+ entity->orig_weight = entity->weight = entity->new_weight;
-+ entity->ioprio = entity->new_ioprio;
-+ entity->ioprio_class = entity->new_ioprio_class = bgrp->ioprio_class;
-+ entity->my_sched_data = &bfqg->sched_data;
-+}
-+
-+static inline void bfq_group_set_parent(struct bfq_group *bfqg,
-+ struct bfq_group *parent)
-+{
-+ struct bfq_entity *entity;
-+
-+ BUG_ON(parent == NULL);
-+ BUG_ON(bfqg == NULL);
-+
-+ entity = &bfqg->entity;
-+ entity->parent = parent->my_entity;
-+ entity->sched_data = &parent->sched_data;
-+}
-+
-+/**
-+ * bfq_group_chain_alloc - allocate a chain of groups.
-+ * @bfqd: queue descriptor.
-+ * @cgroup: the leaf cgroup this chain starts from.
-+ *
-+ * Allocate a chain of groups starting from the one belonging to
-+ * @cgroup up to the root cgroup. Stop if a cgroup on the chain
-+ * to the root has already an allocated group on @bfqd.
-+ */
-+static struct bfq_group *bfq_group_chain_alloc(struct bfq_data *bfqd,
-+ struct cgroup *cgroup)
-+{
-+ struct bfqio_cgroup *bgrp;
-+ struct bfq_group *bfqg, *prev = NULL, *leaf = NULL;
-+
-+ for (; cgroup != NULL; cgroup = cgroup->parent) {
-+ bgrp = cgroup_to_bfqio(cgroup);
-+
-+ bfqg = bfqio_lookup_group(bgrp, bfqd);
-+ if (bfqg != NULL) {
-+ /*
-+ * All the cgroups in the path from there to the
-+ * root must have a bfq_group for bfqd, so we don't
-+ * need any more allocations.
-+ */
-+ break;
-+ }
-+
-+ bfqg = kzalloc(sizeof(*bfqg), GFP_ATOMIC);
-+ if (bfqg == NULL)
-+ goto cleanup;
-+
-+ bfq_group_init_entity(bgrp, bfqg);
-+ bfqg->my_entity = &bfqg->entity;
-+
-+ if (leaf == NULL) {
-+ leaf = bfqg;
-+ prev = leaf;
-+ } else {
-+ bfq_group_set_parent(prev, bfqg);
-+ /*
-+ * Build a list of allocated nodes using the bfqd
-+ * filed, that is still unused and will be initialized
-+ * only after the node will be connected.
-+ */
-+ prev->bfqd = bfqg;
-+ prev = bfqg;
-+ }
-+ }
-+
-+ return leaf;
-+
-+cleanup:
-+ while (leaf != NULL) {
-+ prev = leaf;
-+ leaf = leaf->bfqd;
-+ kfree(prev);
-+ }
-+
-+ return NULL;
-+}
-+
-+/**
-+ * bfq_group_chain_link - link an allocatd group chain to a cgroup hierarchy.
-+ * @bfqd: the queue descriptor.
-+ * @cgroup: the leaf cgroup to start from.
-+ * @leaf: the leaf group (to be associated to @cgroup).
-+ *
-+ * Try to link a chain of groups to a cgroup hierarchy, connecting the
-+ * nodes bottom-up, so we can be sure that when we find a cgroup in the
-+ * hierarchy that already as a group associated to @bfqd all the nodes
-+ * in the path to the root cgroup have one too.
-+ *
-+ * On locking: the queue lock protects the hierarchy (there is a hierarchy
-+ * per device) while the bfqio_cgroup lock protects the list of groups
-+ * belonging to the same cgroup.
-+ */
-+static void bfq_group_chain_link(struct bfq_data *bfqd, struct cgroup *cgroup,
-+ struct bfq_group *leaf)
-+{
-+ struct bfqio_cgroup *bgrp;
-+ struct bfq_group *bfqg, *next, *prev = NULL;
-+ unsigned long flags;
-+
-+ assert_spin_locked(bfqd->queue->queue_lock);
-+
-+ for (; cgroup != NULL && leaf != NULL; cgroup = cgroup->parent) {
-+ bgrp = cgroup_to_bfqio(cgroup);
-+ next = leaf->bfqd;
-+
-+ bfqg = bfqio_lookup_group(bgrp, bfqd);
-+ BUG_ON(bfqg != NULL);
-+
-+ spin_lock_irqsave(&bgrp->lock, flags);
-+
-+ rcu_assign_pointer(leaf->bfqd, bfqd);
-+ hlist_add_head_rcu(&leaf->group_node, &bgrp->group_data);
-+ hlist_add_head(&leaf->bfqd_node, &bfqd->group_list);
-+
-+ spin_unlock_irqrestore(&bgrp->lock, flags);
-+
-+ prev = leaf;
-+ leaf = next;
-+ }
-+
-+ BUG_ON(cgroup == NULL && leaf != NULL);
-+ if (cgroup != NULL && prev != NULL) {
-+ bgrp = cgroup_to_bfqio(cgroup);
-+ bfqg = bfqio_lookup_group(bgrp, bfqd);
-+ bfq_group_set_parent(prev, bfqg);
-+ }
-+}
-+
-+/**
-+ * bfq_find_alloc_group - return the group associated to @bfqd in @cgroup.
-+ * @bfqd: queue descriptor.
-+ * @cgroup: cgroup being searched for.
-+ *
-+ * Return a group associated to @bfqd in @cgroup, allocating one if
-+ * necessary. When a group is returned all the cgroups in the path
-+ * to the root have a group associated to @bfqd.
-+ *
-+ * If the allocation fails, return the root group: this breaks guarantees
-+ * but is a safe fallbak. If this loss becames a problem it can be
-+ * mitigated using the equivalent weight (given by the product of the
-+ * weights of the groups in the path from @group to the root) in the
-+ * root scheduler.
-+ *
-+ * We allocate all the missing nodes in the path from the leaf cgroup
-+ * to the root and we connect the nodes only after all the allocations
-+ * have been successful.
-+ */
-+static struct bfq_group *bfq_find_alloc_group(struct bfq_data *bfqd,
-+ struct cgroup *cgroup)
-+{
-+ struct bfqio_cgroup *bgrp = cgroup_to_bfqio(cgroup);
-+ struct bfq_group *bfqg;
-+
-+ bfqg = bfqio_lookup_group(bgrp, bfqd);
-+ if (bfqg != NULL)
-+ return bfqg;
-+
-+ bfqg = bfq_group_chain_alloc(bfqd, cgroup);
-+ if (bfqg != NULL)
-+ bfq_group_chain_link(bfqd, cgroup, bfqg);
-+ else
-+ bfqg = bfqd->root_group;
-+
-+ return bfqg;
-+}
-+
-+/**
-+ * bfq_bfqq_move - migrate @bfqq to @bfqg.
-+ * @bfqd: queue descriptor.
-+ * @bfqq: the queue to move.
-+ * @entity: @bfqq's entity.
-+ * @bfqg: the group to move to.
-+ *
-+ * Move @bfqq to @bfqg, deactivating it from its old group and reactivating
-+ * it on the new one. Avoid putting the entity on the old group idle tree.
-+ *
-+ * Must be called under the queue lock; the cgroup owning @bfqg must
-+ * not disappear (by now this just means that we are called under
-+ * rcu_read_lock()).
-+ */
-+static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
-+ struct bfq_entity *entity, struct bfq_group *bfqg)
-+{
-+ int busy, resume;
-+
-+ busy = bfq_bfqq_busy(bfqq);
-+ resume = !RB_EMPTY_ROOT(&bfqq->sort_list);
-+
-+ BUG_ON(resume && !entity->on_st);
-+ BUG_ON(busy && !resume && entity->on_st &&
-+ bfqq != bfqd->in_service_queue);
-+
-+ if (busy) {
-+ BUG_ON(atomic_read(&bfqq->ref) < 2);
-+
-+ if (!resume)
-+ bfq_del_bfqq_busy(bfqd, bfqq, 0);
-+ else
-+ bfq_deactivate_bfqq(bfqd, bfqq, 0);
-+ } else if (entity->on_st)
-+ bfq_put_idle_entity(bfq_entity_service_tree(entity), entity);
-+
-+ /*
-+ * Here we use a reference to bfqg. We don't need a refcounter
-+ * as the cgroup reference will not be dropped, so that its
-+ * destroy() callback will not be invoked.
-+ */
-+ entity->parent = bfqg->my_entity;
-+ entity->sched_data = &bfqg->sched_data;
-+
-+ if (busy && resume)
-+ bfq_activate_bfqq(bfqd, bfqq);
-+
-+ if (bfqd->in_service_queue == NULL && !bfqd->rq_in_driver)
-+ bfq_schedule_dispatch(bfqd);
-+}
-+
-+/**
-+ * __bfq_bic_change_cgroup - move @bic to @cgroup.
-+ * @bfqd: the queue descriptor.
-+ * @bic: the bic to move.
-+ * @cgroup: the cgroup to move to.
-+ *
-+ * Move bic to cgroup, assuming that bfqd->queue is locked; the caller
-+ * has to make sure that the reference to cgroup is valid across the call.
-+ *
-+ * NOTE: an alternative approach might have been to store the current
-+ * cgroup in bfqq and getting a reference to it, reducing the lookup
-+ * time here, at the price of slightly more complex code.
-+ */
-+static struct bfq_group *__bfq_bic_change_cgroup(struct bfq_data *bfqd,
-+ struct bfq_io_cq *bic,
-+ struct cgroup *cgroup)
-+{
-+ struct bfq_queue *async_bfqq = bic_to_bfqq(bic, 0);
-+ struct bfq_queue *sync_bfqq = bic_to_bfqq(bic, 1);
-+ struct bfq_entity *entity;
-+ struct bfq_group *bfqg;
-+ struct bfqio_cgroup *bgrp;
-+
-+ bgrp = cgroup_to_bfqio(cgroup);
-+
-+ bfqg = bfq_find_alloc_group(bfqd, cgroup);
-+ if (async_bfqq != NULL) {
-+ entity = &async_bfqq->entity;
-+
-+ if (entity->sched_data != &bfqg->sched_data) {
-+ bic_set_bfqq(bic, NULL, 0);
-+ bfq_log_bfqq(bfqd, async_bfqq,
-+ "bic_change_group: %p %d",
-+ async_bfqq, atomic_read(&async_bfqq->ref));
-+ bfq_put_queue(async_bfqq);
-+ }
-+ }
-+
-+ if (sync_bfqq != NULL) {
-+ entity = &sync_bfqq->entity;
-+ if (entity->sched_data != &bfqg->sched_data)
-+ bfq_bfqq_move(bfqd, sync_bfqq, entity, bfqg);
-+ }
-+
-+ return bfqg;
-+}
-+
-+/**
-+ * bfq_bic_change_cgroup - move @bic to @cgroup.
-+ * @bic: the bic being migrated.
-+ * @cgroup: the destination cgroup.
-+ *
-+ * When the task owning @bic is moved to @cgroup, @bic is immediately
-+ * moved into its new parent group.
-+ */
-+static void bfq_bic_change_cgroup(struct bfq_io_cq *bic,
-+ struct cgroup *cgroup)
-+{
-+ struct bfq_data *bfqd;
-+ unsigned long uninitialized_var(flags);
-+
-+ bfqd = bfq_get_bfqd_locked(&(bic->icq.q->elevator->elevator_data),
-+ &flags);
-+ if (bfqd != NULL) {
-+ __bfq_bic_change_cgroup(bfqd, bic, cgroup);
-+ bfq_put_bfqd_unlock(bfqd, &flags);
-+ }
-+}
-+
-+/**
-+ * bfq_bic_update_cgroup - update the cgroup of @bic.
-+ * @bic: the @bic to update.
-+ *
-+ * Make sure that @bic is enqueued in the cgroup of the current task.
-+ * We need this in addition to moving bics during the cgroup attach
-+ * phase because the task owning @bic could be at its first disk
-+ * access or we may end up in the root cgroup as the result of a
-+ * memory allocation failure and here we try to move to the right
-+ * group.
-+ *
-+ * Must be called under the queue lock. It is safe to use the returned
-+ * value even after the rcu_read_unlock() as the migration/destruction
-+ * paths act under the queue lock too. IOW it is impossible to race with
-+ * group migration/destruction and end up with an invalid group as:
-+ * a) here cgroup has not yet been destroyed, nor its destroy callback
-+ * has started execution, as current holds a reference to it,
-+ * b) if it is destroyed after rcu_read_unlock() [after current is
-+ * migrated to a different cgroup] its attach() callback will have
-+ * taken care of remove all the references to the old cgroup data.
-+ */
-+static struct bfq_group *bfq_bic_update_cgroup(struct bfq_io_cq *bic)
-+{
-+ struct bfq_data *bfqd = bic_to_bfqd(bic);
-+ struct bfq_group *bfqg;
-+ struct cgroup *cgroup;
-+
-+ BUG_ON(bfqd == NULL);
-+
-+ rcu_read_lock();
-+ cgroup = task_cgroup(current, bfqio_subsys_id);
-+ bfqg = __bfq_bic_change_cgroup(bfqd, bic, cgroup);
-+ rcu_read_unlock();
-+
-+ return bfqg;
-+}
-+
-+/**
-+ * bfq_flush_idle_tree - deactivate any entity on the idle tree of @st.
-+ * @st: the service tree being flushed.
-+ */
-+static inline void bfq_flush_idle_tree(struct bfq_service_tree *st)
-+{
-+ struct bfq_entity *entity = st->first_idle;
-+
-+ for (; entity != NULL; entity = st->first_idle)
-+ __bfq_deactivate_entity(entity, 0);
-+}
-+
-+/**
-+ * bfq_reparent_leaf_entity - move leaf entity to the root_group.
-+ * @bfqd: the device data structure with the root group.
-+ * @entity: the entity to move.
-+ */
-+static inline void bfq_reparent_leaf_entity(struct bfq_data *bfqd,
-+ struct bfq_entity *entity)
-+{
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+
-+ BUG_ON(bfqq == NULL);
-+ bfq_bfqq_move(bfqd, bfqq, entity, bfqd->root_group);
-+ return;
-+}
-+
-+/**
-+ * bfq_reparent_active_entities - move to the root group all active entities.
-+ * @bfqd: the device data structure with the root group.
-+ * @bfqg: the group to move from.
-+ * @st: the service tree with the entities.
-+ *
-+ * Needs queue_lock to be taken and reference to be valid over the call.
-+ */
-+static inline void bfq_reparent_active_entities(struct bfq_data *bfqd,
-+ struct bfq_group *bfqg,
-+ struct bfq_service_tree *st)
-+{
-+ struct rb_root *active = &st->active;
-+ struct bfq_entity *entity = NULL;
-+
-+ if (!RB_EMPTY_ROOT(&st->active))
-+ entity = bfq_entity_of(rb_first(active));
-+
-+ for (; entity != NULL; entity = bfq_entity_of(rb_first(active)))
-+ bfq_reparent_leaf_entity(bfqd, entity);
-+
-+ if (bfqg->sched_data.active_entity != NULL)
-+ bfq_reparent_leaf_entity(bfqd, bfqg->sched_data.active_entity);
-+
-+ return;
-+}
-+
-+/**
-+ * bfq_destroy_group - destroy @bfqg.
-+ * @bgrp: the bfqio_cgroup containing @bfqg.
-+ * @bfqg: the group being destroyed.
-+ *
-+ * Destroy @bfqg, making sure that it is not referenced from its parent.
-+ */
-+static void bfq_destroy_group(struct bfqio_cgroup *bgrp, struct bfq_group *bfqg)
-+{
-+ struct bfq_data *bfqd;
-+ struct bfq_service_tree *st;
-+ struct bfq_entity *entity = bfqg->my_entity;
-+ unsigned long uninitialized_var(flags);
-+ int i;
-+
-+ hlist_del(&bfqg->group_node);
-+
-+ /*
-+ * Empty all service_trees belonging to this group before deactivating
-+ * the group itself.
-+ */
-+ for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) {
-+ st = bfqg->sched_data.service_tree + i;
-+
-+ /*
-+ * The idle tree may still contain bfq_queues belonging
-+ * to exited task because they never migrated to a different
-+ * cgroup from the one being destroyed now. Noone else
-+ * can access them so it's safe to act without any lock.
-+ */
-+ bfq_flush_idle_tree(st);
-+
-+ /*
-+ * It may happen that some queues are still active
-+ * (busy) upon group destruction (if the corresponding
-+ * processes have been forced to terminate). We move
-+ * all the leaf entities corresponding to these queues
-+ * to the root_group.
-+ * Also, it may happen that the group has an entity
-+ * under service, which is disconnected from the active
-+ * tree: it must be moved, too.
-+ * There is no need to put the sync queues, as the
-+ * scheduler has taken no reference.
-+ */
-+ bfqd = bfq_get_bfqd_locked(&bfqg->bfqd, &flags);
-+ if (bfqd != NULL) {
-+ bfq_reparent_active_entities(bfqd, bfqg, st);
-+ bfq_put_bfqd_unlock(bfqd, &flags);
-+ }
-+ BUG_ON(!RB_EMPTY_ROOT(&st->active));
-+ BUG_ON(!RB_EMPTY_ROOT(&st->idle));
-+ }
-+ BUG_ON(bfqg->sched_data.next_active != NULL);
-+ BUG_ON(bfqg->sched_data.active_entity != NULL);
-+
-+ /*
-+ * We may race with device destruction, take extra care when
-+ * dereferencing bfqg->bfqd.
-+ */
-+ bfqd = bfq_get_bfqd_locked(&bfqg->bfqd, &flags);
-+ if (bfqd != NULL) {
-+ hlist_del(&bfqg->bfqd_node);
-+ __bfq_deactivate_entity(entity, 0);
-+ bfq_put_async_queues(bfqd, bfqg);
-+ bfq_put_bfqd_unlock(bfqd, &flags);
-+ }
-+ BUG_ON(entity->tree != NULL);
-+
-+ /*
-+ * No need to defer the kfree() to the end of the RCU grace
-+ * period: we are called from the destroy() callback of our
-+ * cgroup, so we can be sure that noone is a) still using
-+ * this cgroup or b) doing lookups in it.
-+ */
-+ kfree(bfqg);
-+}
-+
-+static void bfq_end_raising_async(struct bfq_data *bfqd)
-+{
-+ struct hlist_node *tmp;
-+ struct bfq_group *bfqg;
-+
-+ hlist_for_each_entry_safe(bfqg, tmp, &bfqd->group_list, bfqd_node)
-+ bfq_end_raising_async_queues(bfqd, bfqg);
-+ bfq_end_raising_async_queues(bfqd, bfqd->root_group);
-+}
-+
-+/**
-+ * bfq_disconnect_groups - diconnect @bfqd from all its groups.
-+ * @bfqd: the device descriptor being exited.
-+ *
-+ * When the device exits we just make sure that no lookup can return
-+ * the now unused group structures. They will be deallocated on cgroup
-+ * destruction.
-+ */
-+static void bfq_disconnect_groups(struct bfq_data *bfqd)
-+{
-+ struct hlist_node *tmp;
-+ struct bfq_group *bfqg;
-+
-+ bfq_log(bfqd, "disconnect_groups beginning");
-+ hlist_for_each_entry_safe(bfqg, tmp, &bfqd->group_list, bfqd_node) {
-+ hlist_del(&bfqg->bfqd_node);
-+
-+ __bfq_deactivate_entity(bfqg->my_entity, 0);
-+
-+ /*
-+ * Don't remove from the group hash, just set an
-+ * invalid key. No lookups can race with the
-+ * assignment as bfqd is being destroyed; this
-+ * implies also that new elements cannot be added
-+ * to the list.
-+ */
-+ rcu_assign_pointer(bfqg->bfqd, NULL);
-+
-+ bfq_log(bfqd, "disconnect_groups: put async for group %p",
-+ bfqg);
-+ bfq_put_async_queues(bfqd, bfqg);
-+ }
-+}
-+
-+static inline void bfq_free_root_group(struct bfq_data *bfqd)
-+{
-+ struct bfqio_cgroup *bgrp = &bfqio_root_cgroup;
-+ struct bfq_group *bfqg = bfqd->root_group;
-+
-+ bfq_put_async_queues(bfqd, bfqg);
-+
-+ spin_lock_irq(&bgrp->lock);
-+ hlist_del_rcu(&bfqg->group_node);
-+ spin_unlock_irq(&bgrp->lock);
-+
-+ /*
-+ * No need to synchronize_rcu() here: since the device is gone
-+ * there cannot be any read-side access to its root_group.
-+ */
-+ kfree(bfqg);
-+}
-+
-+static struct bfq_group *bfq_alloc_root_group(struct bfq_data *bfqd, int node)
-+{
-+ struct bfq_group *bfqg;
-+ struct bfqio_cgroup *bgrp;
-+ int i;
-+
-+ bfqg = kzalloc_node(sizeof(*bfqg), GFP_KERNEL, node);
-+ if (bfqg == NULL)
-+ return NULL;
-+
-+ bfqg->entity.parent = NULL;
-+ for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
-+ bfqg->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
-+
-+ bgrp = &bfqio_root_cgroup;
-+ spin_lock_irq(&bgrp->lock);
-+ rcu_assign_pointer(bfqg->bfqd, bfqd);
-+ hlist_add_head_rcu(&bfqg->group_node, &bgrp->group_data);
-+ spin_unlock_irq(&bgrp->lock);
-+
-+ return bfqg;
-+}
-+
-+#define SHOW_FUNCTION(__VAR) \
-+static u64 bfqio_cgroup_##__VAR##_read(struct cgroup *cgroup, \
-+ struct cftype *cftype) \
-+{ \
-+ struct bfqio_cgroup *bgrp; \
-+ u64 ret = -ENODEV; \
-+ \
-+ mutex_lock(&bfqio_mutex); \
-+ if (bfqio_is_removed(cgroup)) \
-+ goto out_unlock; \
-+ \
-+ bgrp = cgroup_to_bfqio(cgroup); \
-+ spin_lock_irq(&bgrp->lock); \
-+ ret = bgrp->__VAR; \
-+ spin_unlock_irq(&bgrp->lock); \
-+ \
-+out_unlock: \
-+ mutex_unlock(&bfqio_mutex); \
-+ return ret; \
-+}
-+
-+SHOW_FUNCTION(weight);
-+SHOW_FUNCTION(ioprio);
-+SHOW_FUNCTION(ioprio_class);
-+#undef SHOW_FUNCTION
-+
-+#define STORE_FUNCTION(__VAR, __MIN, __MAX) \
-+static int bfqio_cgroup_##__VAR##_write(struct cgroup *cgroup, \
-+ struct cftype *cftype, \
-+ u64 val) \
-+{ \
-+ struct bfqio_cgroup *bgrp; \
-+ struct bfq_group *bfqg; \
-+ int ret = -EINVAL; \
-+ \
-+ if (val < (__MIN) || val > (__MAX)) \
-+ return ret; \
-+ \
-+ ret = -ENODEV; \
-+ mutex_lock(&bfqio_mutex); \
-+ if (bfqio_is_removed(cgroup)) \
-+ goto out_unlock; \
-+ ret = 0; \
-+ \
-+ bgrp = cgroup_to_bfqio(cgroup); \
-+ \
-+ spin_lock_irq(&bgrp->lock); \
-+ bgrp->__VAR = (unsigned short)val; \
-+ hlist_for_each_entry(bfqg, &bgrp->group_data, group_node) { \
-+ /* \
-+ * Setting the ioprio_changed flag of the entity \
-+ * to 1 with new_##__VAR == ##__VAR would re-set \
-+ * the value of the weight to its ioprio mapping. \
-+ * Set the flag only if necessary. \
-+ */ \
-+ if ((unsigned short)val != bfqg->entity.new_##__VAR) { \
-+ bfqg->entity.new_##__VAR = (unsigned short)val; \
-+ smp_wmb(); \
-+ bfqg->entity.ioprio_changed = 1; \
-+ } \
-+ } \
-+ spin_unlock_irq(&bgrp->lock); \
-+ \
-+out_unlock: \
-+ mutex_unlock(&bfqio_mutex); \
-+ return ret; \
-+}
-+
-+STORE_FUNCTION(weight, BFQ_MIN_WEIGHT, BFQ_MAX_WEIGHT);
-+STORE_FUNCTION(ioprio, 0, IOPRIO_BE_NR - 1);
-+STORE_FUNCTION(ioprio_class, IOPRIO_CLASS_RT, IOPRIO_CLASS_IDLE);
-+#undef STORE_FUNCTION
-+
-+static struct cftype bfqio_files[] = {
-+ {
-+ .name = "weight",
-+ .read_u64 = bfqio_cgroup_weight_read,
-+ .write_u64 = bfqio_cgroup_weight_write,
-+ },
-+ {
-+ .name = "ioprio",
-+ .read_u64 = bfqio_cgroup_ioprio_read,
-+ .write_u64 = bfqio_cgroup_ioprio_write,
-+ },
-+ {
-+ .name = "ioprio_class",
-+ .read_u64 = bfqio_cgroup_ioprio_class_read,
-+ .write_u64 = bfqio_cgroup_ioprio_class_write,
-+ },
-+ { }, /* terminate */
-+};
-+
-+static struct cgroup_subsys_state *bfqio_create(struct cgroup *cgroup)
-+{
-+ struct bfqio_cgroup *bgrp;
-+
-+ if (cgroup->parent != NULL) {
-+ bgrp = kzalloc(sizeof(*bgrp), GFP_KERNEL);
-+ if (bgrp == NULL)
-+ return ERR_PTR(-ENOMEM);
-+ } else
-+ bgrp = &bfqio_root_cgroup;
-+
-+ spin_lock_init(&bgrp->lock);
-+ INIT_HLIST_HEAD(&bgrp->group_data);
-+ bgrp->ioprio = BFQ_DEFAULT_GRP_IOPRIO;
-+ bgrp->ioprio_class = BFQ_DEFAULT_GRP_CLASS;
-+
-+ return &bgrp->css;
-+}
-+
-+/*
-+ * We cannot support shared io contexts, as we have no means to support
-+ * two tasks with the same ioc in two different groups without major rework
-+ * of the main bic/bfqq data structures. By now we allow a task to change
-+ * its cgroup only if it's the only owner of its ioc; the drawback of this
-+ * behavior is that a group containing a task that forked using CLONE_IO
-+ * will not be destroyed until the tasks sharing the ioc die.
-+ */
-+static int bfqio_can_attach(struct cgroup *cgroup, struct cgroup_taskset *tset)
-+{
-+ struct task_struct *task;
-+ struct io_context *ioc;
-+ int ret = 0;
-+
-+ cgroup_taskset_for_each(task, cgroup, tset) {
-+ /* task_lock() is needed to avoid races with exit_io_context() */
-+ task_lock(task);
-+ ioc = task->io_context;
-+ if (ioc != NULL && atomic_read(&ioc->nr_tasks) > 1)
-+ /*
-+ * ioc == NULL means that the task is either too young or
-+ * exiting: if it has still no ioc the ioc can't be shared,
-+ * if the task is exiting the attach will fail anyway, no
-+ * matter what we return here.
-+ */
-+ ret = -EINVAL;
-+ task_unlock(task);
-+ if (ret)
-+ break;
-+ }
-+
-+ return ret;
-+}
-+
-+static void bfqio_attach(struct cgroup *cgroup, struct cgroup_taskset *tset)
-+{
-+ struct task_struct *task;
-+ struct io_context *ioc;
-+ struct io_cq *icq;
-+
-+ /*
-+ * IMPORTANT NOTE: The move of more than one process at a time to a
-+ * new group has not yet been tested.
-+ */
-+ cgroup_taskset_for_each(task, cgroup, tset) {
-+ ioc = get_task_io_context(task, GFP_ATOMIC, NUMA_NO_NODE);
-+ if (ioc) {
-+ /*
-+ * Handle cgroup change here.
-+ */
-+ rcu_read_lock();
-+ hlist_for_each_entry_rcu(icq, &ioc->icq_list, ioc_node)
-+ if (!strncmp(
-+ icq->q->elevator->type->elevator_name,
-+ "bfq", ELV_NAME_MAX))
-+ bfq_bic_change_cgroup(icq_to_bic(icq),
-+ cgroup);
-+ rcu_read_unlock();
-+ put_io_context(ioc);
-+ }
-+ }
-+}
-+
-+static void bfqio_destroy(struct cgroup *cgroup)
-+{
-+ struct bfqio_cgroup *bgrp = cgroup_to_bfqio(cgroup);
-+ struct hlist_node *tmp;
-+ struct bfq_group *bfqg;
-+
-+ /*
-+ * Since we are destroying the cgroup, there are no more tasks
-+ * referencing it, and all the RCU grace periods that may have
-+ * referenced it are ended (as the destruction of the parent
-+ * cgroup is RCU-safe); bgrp->group_data will not be accessed by
-+ * anything else and we don't need any synchronization.
-+ */
-+ hlist_for_each_entry_safe(bfqg, tmp, &bgrp->group_data, group_node)
-+ bfq_destroy_group(bgrp, bfqg);
-+
-+ BUG_ON(!hlist_empty(&bgrp->group_data));
-+
-+ kfree(bgrp);
-+}
-+
-+struct cgroup_subsys bfqio_subsys = {
-+ .name = "bfqio",
-+ .css_alloc = bfqio_create,
-+ .can_attach = bfqio_can_attach,
-+ .attach = bfqio_attach,
-+ .css_free = bfqio_destroy,
-+ .subsys_id = bfqio_subsys_id,
-+ .base_cftypes = bfqio_files,
-+};
-+#else
-+static inline void bfq_init_entity(struct bfq_entity *entity,
-+ struct bfq_group *bfqg)
-+{
-+ entity->weight = entity->new_weight;
-+ entity->orig_weight = entity->new_weight;
-+ entity->ioprio = entity->new_ioprio;
-+ entity->ioprio_class = entity->new_ioprio_class;
-+ entity->sched_data = &bfqg->sched_data;
-+}
-+
-+static inline struct bfq_group *
-+bfq_bic_update_cgroup(struct bfq_io_cq *bic)
-+{
-+ struct bfq_data *bfqd = bic_to_bfqd(bic);
-+ return bfqd->root_group;
-+}
-+
-+static inline void bfq_bfqq_move(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ struct bfq_entity *entity,
-+ struct bfq_group *bfqg)
-+{
-+}
-+
-+static void bfq_end_raising_async(struct bfq_data *bfqd)
-+{
-+ bfq_end_raising_async_queues(bfqd, bfqd->root_group);
-+}
-+
-+static inline void bfq_disconnect_groups(struct bfq_data *bfqd)
-+{
-+ bfq_put_async_queues(bfqd, bfqd->root_group);
-+}
-+
-+static inline void bfq_free_root_group(struct bfq_data *bfqd)
-+{
-+ kfree(bfqd->root_group);
-+}
-+
-+static struct bfq_group *bfq_alloc_root_group(struct bfq_data *bfqd, int node)
-+{
-+ struct bfq_group *bfqg;
-+ int i;
-+
-+ bfqg = kmalloc_node(sizeof(*bfqg), GFP_KERNEL | __GFP_ZERO, node);
-+ if (bfqg == NULL)
-+ return NULL;
-+
-+ for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
-+ bfqg->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
-+
-+ return bfqg;
-+}
-+#endif
-diff --git a/block/bfq-ioc.c b/block/bfq-ioc.c
-new file mode 100644
-index 0000000..7f6b000
---- /dev/null
-+++ b/block/bfq-ioc.c
-@@ -0,0 +1,36 @@
-+/*
-+ * BFQ: I/O context handling.
-+ *
-+ * Based on ideas and code from CFQ:
-+ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
-+ *
-+ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
-+ * Paolo Valente <paolo.valente@unimore.it>
-+ *
-+ * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
-+ */
-+
-+/**
-+ * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
-+ * @icq: the iocontext queue.
-+ */
-+static inline struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
-+{
-+ /* bic->icq is the first member, %NULL will convert to %NULL */
-+ return container_of(icq, struct bfq_io_cq, icq);
-+}
-+
-+/**
-+ * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
-+ * @bfqd: the lookup key.
-+ * @ioc: the io_context of the process doing I/O.
-+ *
-+ * Queue lock must be held.
-+ */
-+static inline struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
-+ struct io_context *ioc)
-+{
-+ if (ioc)
-+ return icq_to_bic(ioc_lookup_icq(ioc, bfqd->queue));
-+ return NULL;
-+}
-diff --git a/block/bfq-iosched.c b/block/bfq-iosched.c
-new file mode 100644
-index 0000000..96abb81
---- /dev/null
-+++ b/block/bfq-iosched.c
-@@ -0,0 +1,3256 @@
-+/*
-+ * BFQ, or Budget Fair Queueing, disk scheduler.
-+ *
-+ * Based on ideas and code from CFQ:
-+ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
-+ *
-+ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
-+ * Paolo Valente <paolo.valente@unimore.it>
-+ *
-+ * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
-+ *
-+ * Licensed under the GPL-2 as detailed in the accompanying COPYING.BFQ file.
-+ *
-+ * BFQ is a proportional share disk scheduling algorithm based on the
-+ * slice-by-slice service scheme of CFQ. But BFQ assigns budgets, measured in
-+ * number of sectors, to tasks instead of time slices. The disk is not granted
-+ * to the in-service task for a given time slice, but until it has exahusted
-+ * its assigned budget. This change from the time to the service domain allows
-+ * BFQ to distribute the disk bandwidth among tasks as desired, without any
-+ * distortion due to ZBR, workload fluctuations or other factors. BFQ uses an
-+ * ad hoc internal scheduler, called B-WF2Q+, to schedule tasks according to
-+ * their budgets (more precisely BFQ schedules queues associated to tasks).
-+ * Thanks to this accurate scheduler, BFQ can afford to assign high budgets to
-+ * disk-bound non-seeky tasks (to boost the throughput), and yet guarantee low
-+ * latencies to interactive and soft real-time applications.
-+ *
-+ * BFQ is described in [1], where also a reference to the initial, more
-+ * theoretical paper on BFQ can be found. The interested reader can find in
-+ * the latter paper full details on the main algorithm as well as formulas of
-+ * the guarantees, plus formal proofs of all the properties. With respect to
-+ * the version of BFQ presented in these papers, this implementation adds a
-+ * few more heuristics, such as the one that guarantees a low latency to soft
-+ * real-time applications, and a hierarchical extension based on H-WF2Q+.
-+ *
-+ * B-WF2Q+ is based on WF2Q+, that is described in [2], together with
-+ * H-WF2Q+, while the augmented tree used to implement B-WF2Q+ with O(log N)
-+ * complexity derives from the one introduced with EEVDF in [3].
-+ *
-+ * [1] P. Valente and M. Andreolini, ``Improving Application Responsiveness
-+ * with the BFQ Disk I/O Scheduler'',
-+ * Proceedings of the 5th Annual International Systems and Storage
-+ * Conference (SYSTOR '12), June 2012.
-+ *
-+ * http://algogroup.unimo.it/people/paolo/disk_sched/bf1-v1-suite-results.pdf
-+ *
-+ * [2] Jon C.R. Bennett and H. Zhang, ``Hierarchical Packet Fair Queueing
-+ * Algorithms,'' IEEE/ACM Transactions on Networking, 5(5):675-689,
-+ * Oct 1997.
-+ *
-+ * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
-+ *
-+ * [3] I. Stoica and H. Abdel-Wahab, ``Earliest Eligible Virtual Deadline
-+ * First: A Flexible and Accurate Mechanism for Proportional Share
-+ * Resource Allocation,'' technical report.
-+ *
-+ * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
-+ */
-+#include <linux/module.h>
-+#include <linux/slab.h>
-+#include <linux/blkdev.h>
-+#include <linux/cgroup.h>
-+#include <linux/elevator.h>
-+#include <linux/jiffies.h>
-+#include <linux/rbtree.h>
-+#include <linux/ioprio.h>
-+#include "bfq.h"
-+#include "blk.h"
-+
-+/* Max number of dispatches in one round of service. */
-+static const int bfq_quantum = 4;
-+
-+/* Expiration time of sync (0) and async (1) requests, in jiffies. */
-+static const int bfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
-+
-+/* Maximum backwards seek, in KiB. */
-+static const int bfq_back_max = 16 * 1024;
-+
-+/* Penalty of a backwards seek, in number of sectors. */
-+static const int bfq_back_penalty = 2;
-+
-+/* Idling period duration, in jiffies. */
-+static int bfq_slice_idle = HZ / 125;
-+
-+/* Default maximum budget values, in sectors and number of requests. */
-+static const int bfq_default_max_budget = 16 * 1024;
-+static const int bfq_max_budget_async_rq = 4;
-+
-+/*
-+ * Async to sync throughput distribution is controlled as follows:
-+ * when an async request is served, the entity is charged the number
-+ * of sectors of the request, multipled by the factor below
-+ */
-+static const int bfq_async_charge_factor = 10;
-+
-+/* Default timeout values, in jiffies, approximating CFQ defaults. */
-+static const int bfq_timeout_sync = HZ / 8;
-+static int bfq_timeout_async = HZ / 25;
-+
-+struct kmem_cache *bfq_pool;
-+
-+/* Below this threshold (in ms), we consider thinktime immediate. */
-+#define BFQ_MIN_TT 2
-+
-+/* hw_tag detection: parallel requests threshold and min samples needed. */
-+#define BFQ_HW_QUEUE_THRESHOLD 4
-+#define BFQ_HW_QUEUE_SAMPLES 32
-+
-+#define BFQQ_SEEK_THR (sector_t)(8 * 1024)
-+#define BFQQ_SEEKY(bfqq) ((bfqq)->seek_mean > BFQQ_SEEK_THR)
-+
-+/* Min samples used for peak rate estimation (for autotuning). */
-+#define BFQ_PEAK_RATE_SAMPLES 32
-+
-+/* Shift used for peak rate fixed precision calculations. */
-+#define BFQ_RATE_SHIFT 16
-+
-+/*
-+ * The duration of the weight raising for interactive applications is
-+ * computed automatically (as default behaviour), using the following
-+ * formula: duration = (R / r) * T, where r is the peak rate of the
-+ * disk, and R and T are two reference parameters. In particular, R is
-+ * the peak rate of a reference disk, and T is about the maximum time
-+ * for starting popular large applications on that disk, under BFQ and
-+ * while reading two files in parallel. Finally, BFQ uses two
-+ * different pairs (R, T) depending on whether the disk is rotational
-+ * or non-rotational.
-+ */
-+#define T_rot (msecs_to_jiffies(5500))
-+#define T_nonrot (msecs_to_jiffies(2000))
-+/* Next two quantities are in sectors/usec, left-shifted by BFQ_RATE_SHIFT */
-+#define R_rot 17415
-+#define R_nonrot 34791
-+
-+#define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \
-+ { RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 })
-+
-+#define RQ_BIC(rq) ((struct bfq_io_cq *) (rq)->elv.priv[0])
-+#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
-+
-+static inline void bfq_schedule_dispatch(struct bfq_data *bfqd);
-+
-+#include "bfq-ioc.c"
-+#include "bfq-sched.c"
-+#include "bfq-cgroup.c"
-+
-+#define bfq_class_idle(bfqq) ((bfqq)->entity.ioprio_class ==\
-+ IOPRIO_CLASS_IDLE)
-+#define bfq_class_rt(bfqq) ((bfqq)->entity.ioprio_class ==\
-+ IOPRIO_CLASS_RT)
-+
-+#define bfq_sample_valid(samples) ((samples) > 80)
-+
-+/*
-+ * We regard a request as SYNC, if either it's a read or has the SYNC bit
-+ * set (in which case it could also be a direct WRITE).
-+ */
-+static inline int bfq_bio_sync(struct bio *bio)
-+{
-+ if (bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC))
-+ return 1;
-+
-+ return 0;
-+}
-+
-+/*
-+ * Scheduler run of queue, if there are requests pending and no one in the
-+ * driver that will restart queueing.
-+ */
-+static inline void bfq_schedule_dispatch(struct bfq_data *bfqd)
-+{
-+ if (bfqd->queued != 0) {
-+ bfq_log(bfqd, "schedule dispatch");
-+ kblockd_schedule_work(bfqd->queue, &bfqd->unplug_work);
-+ }
-+}
-+
-+/*
-+ * Lifted from AS - choose which of rq1 and rq2 that is best served now.
-+ * We choose the request that is closesr to the head right now. Distance
-+ * behind the head is penalized and only allowed to a certain extent.
-+ */
-+static struct request *bfq_choose_req(struct bfq_data *bfqd,
-+ struct request *rq1,
-+ struct request *rq2,
-+ sector_t last)
-+{
-+ sector_t s1, s2, d1 = 0, d2 = 0;
-+ unsigned long back_max;
-+#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
-+#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
-+ unsigned wrap = 0; /* bit mask: requests behind the disk head? */
-+
-+ if (rq1 == NULL || rq1 == rq2)
-+ return rq2;
-+ if (rq2 == NULL)
-+ return rq1;
-+
-+ if (rq_is_sync(rq1) && !rq_is_sync(rq2))
-+ return rq1;
-+ else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
-+ return rq2;
-+ if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
-+ return rq1;
-+ else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
-+ return rq2;
-+
-+ s1 = blk_rq_pos(rq1);
-+ s2 = blk_rq_pos(rq2);
-+
-+ /*
-+ * By definition, 1KiB is 2 sectors.
-+ */
-+ back_max = bfqd->bfq_back_max * 2;
-+
-+ /*
-+ * Strict one way elevator _except_ in the case where we allow
-+ * short backward seeks which are biased as twice the cost of a
-+ * similar forward seek.
-+ */
-+ if (s1 >= last)
-+ d1 = s1 - last;
-+ else if (s1 + back_max >= last)
-+ d1 = (last - s1) * bfqd->bfq_back_penalty;
-+ else
-+ wrap |= BFQ_RQ1_WRAP;
-+
-+ if (s2 >= last)
-+ d2 = s2 - last;
-+ else if (s2 + back_max >= last)
-+ d2 = (last - s2) * bfqd->bfq_back_penalty;
-+ else
-+ wrap |= BFQ_RQ2_WRAP;
-+
-+ /* Found required data */
-+
-+ /*
-+ * By doing switch() on the bit mask "wrap" we avoid having to
-+ * check two variables for all permutations: --> faster!
-+ */
-+ switch (wrap) {
-+ case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
-+ if (d1 < d2)
-+ return rq1;
-+ else if (d2 < d1)
-+ return rq2;
-+ else {
-+ if (s1 >= s2)
-+ return rq1;
-+ else
-+ return rq2;
-+ }
-+
-+ case BFQ_RQ2_WRAP:
-+ return rq1;
-+ case BFQ_RQ1_WRAP:
-+ return rq2;
-+ case (BFQ_RQ1_WRAP|BFQ_RQ2_WRAP): /* both rqs wrapped */
-+ default:
-+ /*
-+ * Since both rqs are wrapped,
-+ * start with the one that's further behind head
-+ * (--> only *one* back seek required),
-+ * since back seek takes more time than forward.
-+ */
-+ if (s1 <= s2)
-+ return rq1;
-+ else
-+ return rq2;
-+ }
-+}
-+
-+static struct bfq_queue *
-+bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
-+ sector_t sector, struct rb_node **ret_parent,
-+ struct rb_node ***rb_link)
-+{
-+ struct rb_node **p, *parent;
-+ struct bfq_queue *bfqq = NULL;
-+
-+ parent = NULL;
-+ p = &root->rb_node;
-+ while (*p) {
-+ struct rb_node **n;
-+
-+ parent = *p;
-+ bfqq = rb_entry(parent, struct bfq_queue, pos_node);
-+
-+ /*
-+ * Sort strictly based on sector. Smallest to the left,
-+ * largest to the right.
-+ */
-+ if (sector > blk_rq_pos(bfqq->next_rq))
-+ n = &(*p)->rb_right;
-+ else if (sector < blk_rq_pos(bfqq->next_rq))
-+ n = &(*p)->rb_left;
-+ else
-+ break;
-+ p = n;
-+ bfqq = NULL;
-+ }
-+
-+ *ret_parent = parent;
-+ if (rb_link)
-+ *rb_link = p;
-+
-+ bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
-+ (long long unsigned)sector,
-+ bfqq != NULL ? bfqq->pid : 0);
-+
-+ return bfqq;
-+}
-+
-+static void bfq_rq_pos_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq)
-+{
-+ struct rb_node **p, *parent;
-+ struct bfq_queue *__bfqq;
-+
-+ if (bfqq->pos_root != NULL) {
-+ rb_erase(&bfqq->pos_node, bfqq->pos_root);
-+ bfqq->pos_root = NULL;
-+ }
-+
-+ if (bfq_class_idle(bfqq))
-+ return;
-+ if (!bfqq->next_rq)
-+ return;
-+
-+ bfqq->pos_root = &bfqd->rq_pos_tree;
-+ __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
-+ blk_rq_pos(bfqq->next_rq), &parent, &p);
-+ if (__bfqq == NULL) {
-+ rb_link_node(&bfqq->pos_node, parent, p);
-+ rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
-+ } else
-+ bfqq->pos_root = NULL;
-+}
-+
-+static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ struct request *last)
-+{
-+ struct rb_node *rbnext = rb_next(&last->rb_node);
-+ struct rb_node *rbprev = rb_prev(&last->rb_node);
-+ struct request *next = NULL, *prev = NULL;
-+
-+ BUG_ON(RB_EMPTY_NODE(&last->rb_node));
-+
-+ if (rbprev != NULL)
-+ prev = rb_entry_rq(rbprev);
-+
-+ if (rbnext != NULL)
-+ next = rb_entry_rq(rbnext);
-+ else {
-+ rbnext = rb_first(&bfqq->sort_list);
-+ if (rbnext && rbnext != &last->rb_node)
-+ next = rb_entry_rq(rbnext);
-+ }
-+
-+ return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
-+}
-+
-+static void bfq_del_rq_rb(struct request *rq)
-+{
-+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
-+ struct bfq_data *bfqd = bfqq->bfqd;
-+ const int sync = rq_is_sync(rq);
-+
-+ BUG_ON(bfqq->queued[sync] == 0);
-+ bfqq->queued[sync]--;
-+ bfqd->queued--;
-+
-+ elv_rb_del(&bfqq->sort_list, rq);
-+
-+ if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
-+ if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue)
-+ bfq_del_bfqq_busy(bfqd, bfqq, 1);
-+ /*
-+ * Remove queue from request-position tree as it is empty.
-+ */
-+ if (bfqq->pos_root != NULL) {
-+ rb_erase(&bfqq->pos_node, bfqq->pos_root);
-+ bfqq->pos_root = NULL;
-+ }
-+ }
-+}
-+
-+/* see the definition of bfq_async_charge_factor for details */
-+static inline unsigned long bfq_serv_to_charge(struct request *rq,
-+ struct bfq_queue *bfqq)
-+{
-+ return blk_rq_sectors(rq) *
-+ (1 + ((!bfq_bfqq_sync(bfqq)) * (bfqq->raising_coeff == 1) *
-+ bfq_async_charge_factor));
-+}
-+
-+/**
-+ * bfq_updated_next_req - update the queue after a new next_rq selection.
-+ * @bfqd: the device data the queue belongs to.
-+ * @bfqq: the queue to update.
-+ *
-+ * If the first request of a queue changes we make sure that the queue
-+ * has enough budget to serve at least its first request (if the
-+ * request has grown). We do this because if the queue has not enough
-+ * budget for its first request, it has to go through two dispatch
-+ * rounds to actually get it dispatched.
-+ */
-+static void bfq_updated_next_req(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ struct bfq_entity *entity = &bfqq->entity;
-+ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
-+ struct request *next_rq = bfqq->next_rq;
-+ unsigned long new_budget;
-+
-+ if (next_rq == NULL)
-+ return;
-+
-+ if (bfqq == bfqd->in_service_queue)
-+ /*
-+ * In order not to break guarantees, budgets cannot be
-+ * changed after an entity has been selected.
-+ */
-+ return;
-+
-+ BUG_ON(entity->tree != &st->active);
-+ BUG_ON(entity == entity->sched_data->active_entity);
-+
-+ new_budget = max_t(unsigned long, bfqq->max_budget,
-+ bfq_serv_to_charge(next_rq, bfqq));
-+ entity->budget = new_budget;
-+ bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu", new_budget);
-+ bfq_activate_bfqq(bfqd, bfqq);
-+}
-+
-+static inline unsigned int bfq_wrais_duration(struct bfq_data *bfqd)
-+{
-+ u64 dur;
-+
-+ if (bfqd->bfq_raising_max_time > 0)
-+ return bfqd->bfq_raising_max_time;
-+
-+ dur = bfqd->RT_prod;
-+ do_div(dur, bfqd->peak_rate);
-+
-+ return dur;
-+}
-+
-+static void bfq_add_rq_rb(struct request *rq)
-+{
-+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
-+ struct bfq_entity *entity = &bfqq->entity;
-+ struct bfq_data *bfqd = bfqq->bfqd;
-+ struct request *next_rq, *prev;
-+ unsigned long old_raising_coeff = bfqq->raising_coeff;
-+ int idle_for_long_time = 0;
-+
-+ bfq_log_bfqq(bfqd, bfqq, "add_rq_rb %d", rq_is_sync(rq));
-+ bfqq->queued[rq_is_sync(rq)]++;
-+ bfqd->queued++;
-+
-+ elv_rb_add(&bfqq->sort_list, rq);
-+
-+ /*
-+ * Check if this request is a better next-serve candidate.
-+ */
-+ prev = bfqq->next_rq;
-+ next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
-+ BUG_ON(next_rq == NULL);
-+ bfqq->next_rq = next_rq;
-+
-+ /*
-+ * Adjust priority tree position, if next_rq changes.
-+ */
-+ if (prev != bfqq->next_rq)
-+ bfq_rq_pos_tree_add(bfqd, bfqq);
-+
-+ if (!bfq_bfqq_busy(bfqq)) {
-+ int soft_rt = bfqd->bfq_raising_max_softrt_rate > 0 &&
-+ time_is_before_jiffies(bfqq->soft_rt_next_start);
-+ idle_for_long_time = time_is_before_jiffies(
-+ bfqq->budget_timeout +
-+ bfqd->bfq_raising_min_idle_time);
-+ entity->budget = max_t(unsigned long, bfqq->max_budget,
-+ bfq_serv_to_charge(next_rq, bfqq));
-+
-+ if (!bfqd->low_latency)
-+ goto add_bfqq_busy;
-+
-+ /*
-+ * If the queue is not being boosted and has been idle
-+ * for enough time, start a weight-raising period
-+ */
-+ if (old_raising_coeff == 1 &&
-+ (idle_for_long_time || soft_rt)) {
-+ bfqq->raising_coeff = bfqd->bfq_raising_coeff;
-+ if (idle_for_long_time)
-+ bfqq->raising_cur_max_time =
-+ bfq_wrais_duration(bfqd);
-+ else
-+ bfqq->raising_cur_max_time =
-+ bfqd->bfq_raising_rt_max_time;
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "wrais starting at %llu msec,"
-+ "rais_max_time %u",
-+ bfqq->last_rais_start_finish,
-+ jiffies_to_msecs(bfqq->
-+ raising_cur_max_time));
-+ } else if (old_raising_coeff > 1) {
-+ if (idle_for_long_time)
-+ bfqq->raising_cur_max_time =
-+ bfq_wrais_duration(bfqd);
-+ else if (bfqq->raising_cur_max_time ==
-+ bfqd->bfq_raising_rt_max_time &&
-+ !soft_rt) {
-+ bfqq->raising_coeff = 1;
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "wrais ending at %llu msec,"
-+ "rais_max_time %u",
-+ bfqq->last_rais_start_finish,
-+ jiffies_to_msecs(bfqq->
-+ raising_cur_max_time));
-+ } else if ((bfqq->last_rais_start_finish +
-+ bfqq->raising_cur_max_time <
-+ jiffies + bfqd->bfq_raising_rt_max_time) &&
-+ soft_rt) {
-+ /*
-+ *
-+ * The remaining weight-raising time is lower
-+ * than bfqd->bfq_raising_rt_max_time, which
-+ * means that the application is enjoying
-+ * weight raising either because deemed soft rt
-+ * in the near past, or because deemed
-+ * interactive a long ago. In both cases,
-+ * resetting now the current remaining weight-
-+ * raising time for the application to the
-+ * weight-raising duration for soft rt
-+ * applications would not cause any latency
-+ * increase for the application (as the new
-+ * duration would be higher than the remaining
-+ * time).
-+ *
-+ * In addition, the application is now meeting
-+ * the requirements for being deemed soft rt.
-+ * In the end we can correctly and safely
-+ * (re)charge the weight-raising duration for
-+ * the application with the weight-raising
-+ * duration for soft rt applications.
-+ *
-+ * In particular, doing this recharge now, i.e.,
-+ * before the weight-raising period for the
-+ * application finishes, reduces the probability
-+ * of the following negative scenario:
-+ * 1) the weight of a soft rt application is
-+ * raised at startup (as for any newly
-+ * created application),
-+ * 2) since the application is not interactive,
-+ * at a certain time weight-raising is
-+ * stopped for the application,
-+ * 3) at that time the application happens to
-+ * still have pending requests, and hence
-+ * is destined to not have a chance to be
-+ * deemed soft rt before these requests are
-+ * completed (see the comments to the
-+ * function bfq_bfqq_softrt_next_start()
-+ * for details on soft rt detection),
-+ * 4) these pending requests experience a high
-+ * latency because the application is not
-+ * weight-raised while they are pending.
-+ */
-+ bfqq->last_rais_start_finish = jiffies;
-+ bfqq->raising_cur_max_time =
-+ bfqd->bfq_raising_rt_max_time;
-+ }
-+ }
-+ if (old_raising_coeff != bfqq->raising_coeff)
-+ entity->ioprio_changed = 1;
-+add_bfqq_busy:
-+ bfqq->last_idle_bklogged = jiffies;
-+ bfqq->service_from_backlogged = 0;
-+ bfq_clear_bfqq_softrt_update(bfqq);
-+ bfq_add_bfqq_busy(bfqd, bfqq);
-+ } else {
-+ if (bfqd->low_latency && old_raising_coeff == 1 &&
-+ !rq_is_sync(rq) &&
-+ bfqq->last_rais_start_finish +
-+ time_is_before_jiffies(
-+ bfqd->bfq_raising_min_inter_arr_async)) {
-+ bfqq->raising_coeff = bfqd->bfq_raising_coeff;
-+ bfqq->raising_cur_max_time = bfq_wrais_duration(bfqd);
-+
-+ bfqd->raised_busy_queues++;
-+ entity->ioprio_changed = 1;
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "non-idle wrais starting at %llu msec,"
-+ "rais_max_time %u",
-+ bfqq->last_rais_start_finish,
-+ jiffies_to_msecs(bfqq->
-+ raising_cur_max_time));
-+ }
-+ bfq_updated_next_req(bfqd, bfqq);
-+ }
-+
-+ if (bfqd->low_latency &&
-+ (old_raising_coeff == 1 || bfqq->raising_coeff == 1 ||
-+ idle_for_long_time))
-+ bfqq->last_rais_start_finish = jiffies;
-+}
-+
-+static void bfq_reposition_rq_rb(struct bfq_queue *bfqq, struct request *rq)
-+{
-+ elv_rb_del(&bfqq->sort_list, rq);
-+ bfqq->queued[rq_is_sync(rq)]--;
-+ bfqq->bfqd->queued--;
-+ bfq_add_rq_rb(rq);
-+}
-+
-+static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
-+ struct bio *bio)
-+{
-+ struct task_struct *tsk = current;
-+ struct bfq_io_cq *bic;
-+ struct bfq_queue *bfqq;
-+
-+ bic = bfq_bic_lookup(bfqd, tsk->io_context);
-+ if (bic == NULL)
-+ return NULL;
-+
-+ bfqq = bic_to_bfqq(bic, bfq_bio_sync(bio));
-+ if (bfqq != NULL)
-+ return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
-+
-+ return NULL;
-+}
-+
-+static void bfq_activate_request(struct request_queue *q, struct request *rq)
-+{
-+ struct bfq_data *bfqd = q->elevator->elevator_data;
-+
-+ bfqd->rq_in_driver++;
-+ bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
-+ bfq_log(bfqd, "activate_request: new bfqd->last_position %llu",
-+ (long long unsigned)bfqd->last_position);
-+}
-+
-+static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
-+{
-+ struct bfq_data *bfqd = q->elevator->elevator_data;
-+
-+ WARN_ON(bfqd->rq_in_driver == 0);
-+ bfqd->rq_in_driver--;
-+}
-+
-+static void bfq_remove_request(struct request *rq)
-+{
-+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
-+ struct bfq_data *bfqd = bfqq->bfqd;
-+
-+ if (bfqq->next_rq == rq) {
-+ bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
-+ bfq_updated_next_req(bfqd, bfqq);
-+ }
-+
-+ list_del_init(&rq->queuelist);
-+ bfq_del_rq_rb(rq);
-+
-+ if (rq->cmd_flags & REQ_META) {
-+ WARN_ON(bfqq->meta_pending == 0);
-+ bfqq->meta_pending--;
-+ }
-+}
-+
-+static int bfq_merge(struct request_queue *q, struct request **req,
-+ struct bio *bio)
-+{
-+ struct bfq_data *bfqd = q->elevator->elevator_data;
-+ struct request *__rq;
-+
-+ __rq = bfq_find_rq_fmerge(bfqd, bio);
-+ if (__rq != NULL && elv_rq_merge_ok(__rq, bio)) {
-+ *req = __rq;
-+ return ELEVATOR_FRONT_MERGE;
-+ }
-+
-+ return ELEVATOR_NO_MERGE;
-+}
-+
-+static void bfq_merged_request(struct request_queue *q, struct request *req,
-+ int type)
-+{
-+ if (type == ELEVATOR_FRONT_MERGE) {
-+ struct bfq_queue *bfqq = RQ_BFQQ(req);
-+
-+ bfq_reposition_rq_rb(bfqq, req);
-+ }
-+}
-+
-+static void bfq_merged_requests(struct request_queue *q, struct request *rq,
-+ struct request *next)
-+{
-+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
-+
-+ /*
-+ * Reposition in fifo if next is older than rq.
-+ */
-+ if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
-+ time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
-+ list_move(&rq->queuelist, &next->queuelist);
-+ rq_set_fifo_time(rq, rq_fifo_time(next));
-+ }
-+
-+ if (bfqq->next_rq == next)
-+ bfqq->next_rq = rq;
-+
-+ bfq_remove_request(next);
-+}
-+
-+/* Must be called with bfqq != NULL */
-+static inline void bfq_bfqq_end_raising(struct bfq_queue *bfqq)
-+{
-+ BUG_ON(bfqq == NULL);
-+ if (bfq_bfqq_busy(bfqq))
-+ bfqq->bfqd->raised_busy_queues--;
-+ bfqq->raising_coeff = 1;
-+ bfqq->raising_cur_max_time = 0;
-+ /* Trigger a weight change on the next activation of the queue */
-+ bfqq->entity.ioprio_changed = 1;
-+}
-+
-+static void bfq_end_raising_async_queues(struct bfq_data *bfqd,
-+ struct bfq_group *bfqg)
-+{
-+ int i, j;
-+
-+ for (i = 0; i < 2; i++)
-+ for (j = 0; j < IOPRIO_BE_NR; j++)
-+ if (bfqg->async_bfqq[i][j] != NULL)
-+ bfq_bfqq_end_raising(bfqg->async_bfqq[i][j]);
-+ if (bfqg->async_idle_bfqq != NULL)
-+ bfq_bfqq_end_raising(bfqg->async_idle_bfqq);
-+}
-+
-+static void bfq_end_raising(struct bfq_data *bfqd)
-+{
-+ struct bfq_queue *bfqq;
-+
-+ spin_lock_irq(bfqd->queue->queue_lock);
-+
-+ list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
-+ bfq_bfqq_end_raising(bfqq);
-+ list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
-+ bfq_bfqq_end_raising(bfqq);
-+ bfq_end_raising_async(bfqd);
-+
-+ spin_unlock_irq(bfqd->queue->queue_lock);
-+}
-+
-+static int bfq_allow_merge(struct request_queue *q, struct request *rq,
-+ struct bio *bio)
-+{
-+ struct bfq_data *bfqd = q->elevator->elevator_data;
-+ struct bfq_io_cq *bic;
-+ struct bfq_queue *bfqq;
-+
-+ /*
-+ * Disallow merge of a sync bio into an async request.
-+ */
-+ if (bfq_bio_sync(bio) && !rq_is_sync(rq))
-+ return 0;
-+
-+ /*
-+ * Lookup the bfqq that this bio will be queued with. Allow
-+ * merge only if rq is queued there.
-+ * Queue lock is held here.
-+ */
-+ bic = bfq_bic_lookup(bfqd, current->io_context);
-+ if (bic == NULL)
-+ return 0;
-+
-+ bfqq = bic_to_bfqq(bic, bfq_bio_sync(bio));
-+ return bfqq == RQ_BFQQ(rq);
-+}
-+
-+static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ if (bfqq != NULL) {
-+ bfq_mark_bfqq_must_alloc(bfqq);
-+ bfq_mark_bfqq_budget_new(bfqq);
-+ bfq_clear_bfqq_fifo_expire(bfqq);
-+
-+ bfqd->budgets_assigned = (bfqd->budgets_assigned*7 + 256) / 8;
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "set_in_service_queue, cur-budget = %lu",
-+ bfqq->entity.budget);
-+ }
-+
-+ bfqd->in_service_queue = bfqq;
-+}
-+
-+/*
-+ * Get and set a new queue for service.
-+ */
-+static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ if (!bfqq)
-+ bfqq = bfq_get_next_queue(bfqd);
-+ else
-+ bfq_get_next_queue_forced(bfqd, bfqq);
-+
-+ __bfq_set_in_service_queue(bfqd, bfqq);
-+ return bfqq;
-+}
-+
-+static inline sector_t bfq_dist_from_last(struct bfq_data *bfqd,
-+ struct request *rq)
-+{
-+ if (blk_rq_pos(rq) >= bfqd->last_position)
-+ return blk_rq_pos(rq) - bfqd->last_position;
-+ else
-+ return bfqd->last_position - blk_rq_pos(rq);
-+}
-+
-+/*
-+ * Return true if bfqq has no request pending and rq is close enough to
-+ * bfqd->last_position, or if rq is closer to bfqd->last_position than
-+ * bfqq->next_rq
-+ */
-+static inline int bfq_rq_close(struct bfq_data *bfqd, struct request *rq)
-+{
-+ return bfq_dist_from_last(bfqd, rq) <= BFQQ_SEEK_THR;
-+}
-+
-+static struct bfq_queue *bfqq_close(struct bfq_data *bfqd)
-+{
-+ struct rb_root *root = &bfqd->rq_pos_tree;
-+ struct rb_node *parent, *node;
-+ struct bfq_queue *__bfqq;
-+ sector_t sector = bfqd->last_position;
-+
-+ if (RB_EMPTY_ROOT(root))
-+ return NULL;
-+
-+ /*
-+ * First, if we find a request starting at the end of the last
-+ * request, choose it.
-+ */
-+ __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
-+ if (__bfqq != NULL)
-+ return __bfqq;
-+
-+ /*
-+ * If the exact sector wasn't found, the parent of the NULL leaf
-+ * will contain the closest sector (rq_pos_tree sorted by next_request
-+ * position).
-+ */
-+ __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
-+ if (bfq_rq_close(bfqd, __bfqq->next_rq))
-+ return __bfqq;
-+
-+ if (blk_rq_pos(__bfqq->next_rq) < sector)
-+ node = rb_next(&__bfqq->pos_node);
-+ else
-+ node = rb_prev(&__bfqq->pos_node);
-+ if (node == NULL)
-+ return NULL;
-+
-+ __bfqq = rb_entry(node, struct bfq_queue, pos_node);
-+ if (bfq_rq_close(bfqd, __bfqq->next_rq))
-+ return __bfqq;
-+
-+ return NULL;
-+}
-+
-+/*
-+ * bfqd - obvious
-+ * cur_bfqq - passed in so that we don't decide that the current queue
-+ * is closely cooperating with itself.
-+ *
-+ * We are assuming that cur_bfqq has dispatched at least one request,
-+ * and that bfqd->last_position reflects a position on the disk associated
-+ * with the I/O issued by cur_bfqq.
-+ */
-+static struct bfq_queue *bfq_close_cooperator(struct bfq_data *bfqd,
-+ struct bfq_queue *cur_bfqq)
-+{
-+ struct bfq_queue *bfqq;
-+
-+ if (bfq_class_idle(cur_bfqq))
-+ return NULL;
-+ if (!bfq_bfqq_sync(cur_bfqq))
-+ return NULL;
-+ if (BFQQ_SEEKY(cur_bfqq))
-+ return NULL;
-+
-+ /* If device has only one backlogged bfq_queue, don't search. */
-+ if (bfqd->busy_queues == 1)
-+ return NULL;
-+
-+ /*
-+ * We should notice if some of the queues are cooperating, e.g.
-+ * working closely on the same area of the disk. In that case,
-+ * we can group them together and don't waste time idling.
-+ */
-+ bfqq = bfqq_close(bfqd);
-+ if (bfqq == NULL || bfqq == cur_bfqq)
-+ return NULL;
-+
-+ /*
-+ * Do not merge queues from different bfq_groups.
-+ */
-+ if (bfqq->entity.parent != cur_bfqq->entity.parent)
-+ return NULL;
-+
-+ /*
-+ * It only makes sense to merge sync queues.
-+ */
-+ if (!bfq_bfqq_sync(bfqq))
-+ return NULL;
-+ if (BFQQ_SEEKY(bfqq))
-+ return NULL;
-+
-+ /*
-+ * Do not merge queues of different priority classes.
-+ */
-+ if (bfq_class_rt(bfqq) != bfq_class_rt(cur_bfqq))
-+ return NULL;
-+
-+ return bfqq;
-+}
-+
-+/*
-+ * If enough samples have been computed, return the current max budget
-+ * stored in bfqd, which is dynamically updated according to the
-+ * estimated disk peak rate; otherwise return the default max budget
-+ */
-+static inline unsigned long bfq_max_budget(struct bfq_data *bfqd)
-+{
-+ if (bfqd->budgets_assigned < 194)
-+ return bfq_default_max_budget;
-+ else
-+ return bfqd->bfq_max_budget;
-+}
-+
-+/*
-+ * Return min budget, which is a fraction of the current or default
-+ * max budget (trying with 1/32)
-+ */
-+static inline unsigned long bfq_min_budget(struct bfq_data *bfqd)
-+{
-+ if (bfqd->budgets_assigned < 194)
-+ return bfq_default_max_budget / 32;
-+ else
-+ return bfqd->bfq_max_budget / 32;
-+}
-+
-+/*
-+ * Decides whether idling should be done for given device and
-+ * given in-service queue.
-+ */
-+static inline bool bfq_queue_nonrot_noidle(struct bfq_data *bfqd,
-+ struct bfq_queue *in_service_bfqq)
-+{
-+ if (in_service_bfqq == NULL)
-+ return false;
-+ /*
-+ * If device is SSD it has no seek penalty, disable idling; but
-+ * do so only if:
-+ * - device does not support queuing, otherwise we still have
-+ * a problem with sync vs async workloads;
-+ * - the queue is not weight-raised, to preserve guarantees.
-+ */
-+ return (blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag &&
-+ in_service_bfqq->raising_coeff == 1);
-+}
-+
-+static void bfq_arm_slice_timer(struct bfq_data *bfqd)
-+{
-+ struct bfq_queue *bfqq = bfqd->in_service_queue;
-+ struct bfq_io_cq *bic;
-+ unsigned long sl;
-+
-+ WARN_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
-+
-+ /* Tasks have exited, don't wait. */
-+ bic = bfqd->in_service_bic;
-+ if (bic == NULL || atomic_read(&bic->icq.ioc->active_ref) == 0)
-+ return;
-+
-+ bfq_mark_bfqq_wait_request(bfqq);
-+
-+ /*
-+ * We don't want to idle for seeks, but we do want to allow
-+ * fair distribution of slice time for a process doing back-to-back
-+ * seeks. So allow a little bit of time for him to submit a new rq.
-+ *
-+ * To prevent processes with (partly) seeky workloads from
-+ * being too ill-treated, grant them a small fraction of the
-+ * assigned budget before reducing the waiting time to
-+ * BFQ_MIN_TT. This happened to help reduce latency.
-+ */
-+ sl = bfqd->bfq_slice_idle;
-+ if (bfq_sample_valid(bfqq->seek_samples) && BFQQ_SEEKY(bfqq) &&
-+ bfqq->entity.service > bfq_max_budget(bfqd) / 8 &&
-+ bfqq->raising_coeff == 1)
-+ sl = min(sl, msecs_to_jiffies(BFQ_MIN_TT));
-+ else if (bfqq->raising_coeff > 1)
-+ sl = sl * 3;
-+ bfqd->last_idling_start = ktime_get();
-+ mod_timer(&bfqd->idle_slice_timer, jiffies + sl);
-+ bfq_log(bfqd, "arm idle: %u/%u ms",
-+ jiffies_to_msecs(sl), jiffies_to_msecs(bfqd->bfq_slice_idle));
-+}
-+
-+/*
-+ * Set the maximum time for the in-service queue to consume its
-+ * budget. This prevents seeky processes from lowering the disk
-+ * throughput (always guaranteed with a time slice scheme as in CFQ).
-+ */
-+static void bfq_set_budget_timeout(struct bfq_data *bfqd)
-+{
-+ struct bfq_queue *bfqq = bfqd->in_service_queue;
-+ unsigned int timeout_coeff;
-+ if (bfqq->raising_cur_max_time == bfqd->bfq_raising_rt_max_time)
-+ timeout_coeff = 1;
-+ else
-+ timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
-+
-+ bfqd->last_budget_start = ktime_get();
-+
-+ bfq_clear_bfqq_budget_new(bfqq);
-+ bfqq->budget_timeout = jiffies +
-+ bfqd->bfq_timeout[bfq_bfqq_sync(bfqq)] * timeout_coeff;
-+
-+ bfq_log_bfqq(bfqd, bfqq, "set budget_timeout %u",
-+ jiffies_to_msecs(bfqd->bfq_timeout[bfq_bfqq_sync(bfqq)] *
-+ timeout_coeff));
-+}
-+
-+/*
-+ * Move request from internal lists to the request queue dispatch list.
-+ */
-+static void bfq_dispatch_insert(struct request_queue *q, struct request *rq)
-+{
-+ struct bfq_data *bfqd = q->elevator->elevator_data;
-+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
-+
-+ bfq_remove_request(rq);
-+ bfqq->dispatched++;
-+ elv_dispatch_sort(q, rq);
-+
-+ if (bfq_bfqq_sync(bfqq))
-+ bfqd->sync_flight++;
-+}
-+
-+/*
-+ * Return expired entry, or NULL to just start from scratch in rbtree.
-+ */
-+static struct request *bfq_check_fifo(struct bfq_queue *bfqq)
-+{
-+ struct request *rq = NULL;
-+
-+ if (bfq_bfqq_fifo_expire(bfqq))
-+ return NULL;
-+
-+ bfq_mark_bfqq_fifo_expire(bfqq);
-+
-+ if (list_empty(&bfqq->fifo))
-+ return NULL;
-+
-+ rq = rq_entry_fifo(bfqq->fifo.next);
-+
-+ if (time_before(jiffies, rq_fifo_time(rq)))
-+ return NULL;
-+
-+ return rq;
-+}
-+
-+/*
-+ * Must be called with the queue_lock held.
-+ */
-+static int bfqq_process_refs(struct bfq_queue *bfqq)
-+{
-+ int process_refs, io_refs;
-+
-+ io_refs = bfqq->allocated[READ] + bfqq->allocated[WRITE];
-+ process_refs = atomic_read(&bfqq->ref) - io_refs - bfqq->entity.on_st;
-+ BUG_ON(process_refs < 0);
-+ return process_refs;
-+}
-+
-+static void bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
-+{
-+ int process_refs, new_process_refs;
-+ struct bfq_queue *__bfqq;
-+
-+ /*
-+ * If there are no process references on the new_bfqq, then it is
-+ * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
-+ * may have dropped their last reference (not just their last process
-+ * reference).
-+ */
-+ if (!bfqq_process_refs(new_bfqq))
-+ return;
-+
-+ /* Avoid a circular list and skip interim queue merges. */
-+ while ((__bfqq = new_bfqq->new_bfqq)) {
-+ if (__bfqq == bfqq)
-+ return;
-+ new_bfqq = __bfqq;
-+ }
-+
-+ process_refs = bfqq_process_refs(bfqq);
-+ new_process_refs = bfqq_process_refs(new_bfqq);
-+ /*
-+ * If the process for the bfqq has gone away, there is no
-+ * sense in merging the queues.
-+ */
-+ if (process_refs == 0 || new_process_refs == 0)
-+ return;
-+
-+ /*
-+ * Merge in the direction of the lesser amount of work.
-+ */
-+ if (new_process_refs >= process_refs) {
-+ bfqq->new_bfqq = new_bfqq;
-+ atomic_add(process_refs, &new_bfqq->ref);
-+ } else {
-+ new_bfqq->new_bfqq = bfqq;
-+ atomic_add(new_process_refs, &bfqq->ref);
-+ }
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
-+ new_bfqq->pid);
-+}
-+
-+static inline unsigned long bfq_bfqq_budget_left(struct bfq_queue *bfqq)
-+{
-+ struct bfq_entity *entity = &bfqq->entity;
-+ return entity->budget - entity->service;
-+}
-+
-+static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
-+{
-+ BUG_ON(bfqq != bfqd->in_service_queue);
-+
-+ __bfq_bfqd_reset_in_service(bfqd);
-+
-+ /*
-+ * If this bfqq is shared between multiple processes, check
-+ * to make sure that those processes are still issuing I/Os
-+ * within the mean seek distance. If not, it may be time to
-+ * break the queues apart again.
-+ */
-+ if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
-+ bfq_mark_bfqq_split_coop(bfqq);
-+
-+ if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
-+ /*
-+ * overloading budget_timeout field to store when
-+ * the queue remains with no backlog, used by
-+ * the weight-raising mechanism
-+ */
-+ bfqq->budget_timeout = jiffies;
-+ bfq_del_bfqq_busy(bfqd, bfqq, 1);
-+ } else {
-+ bfq_activate_bfqq(bfqd, bfqq);
-+ /*
-+ * Resort priority tree of potential close cooperators.
-+ */
-+ bfq_rq_pos_tree_add(bfqd, bfqq);
-+ }
-+}
-+
-+/**
-+ * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
-+ * @bfqd: device data.
-+ * @bfqq: queue to update.
-+ * @reason: reason for expiration.
-+ *
-+ * Handle the feedback on @bfqq budget. See the body for detailed
-+ * comments.
-+ */
-+static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ enum bfqq_expiration reason)
-+{
-+ struct request *next_rq;
-+ unsigned long budget, min_budget;
-+
-+ budget = bfqq->max_budget;
-+ min_budget = bfq_min_budget(bfqd);
-+
-+ BUG_ON(bfqq != bfqd->in_service_queue);
-+
-+ bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %lu, budg left %lu",
-+ bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
-+ bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %lu, min budg %lu",
-+ budget, bfq_min_budget(bfqd));
-+ bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
-+ bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
-+
-+ if (bfq_bfqq_sync(bfqq)) {
-+ switch (reason) {
-+ /*
-+ * Caveat: in all the following cases we trade latency
-+ * for throughput.
-+ */
-+ case BFQ_BFQQ_TOO_IDLE:
-+ /*
-+ * This is the only case where we may reduce
-+ * the budget: if there is no requets of the
-+ * process still waiting for completion, then
-+ * we assume (tentatively) that the timer has
-+ * expired because the batch of requests of
-+ * the process could have been served with a
-+ * smaller budget. Hence, betting that
-+ * process will behave in the same way when it
-+ * becomes backlogged again, we reduce its
-+ * next budget. As long as we guess right,
-+ * this budget cut reduces the latency
-+ * experienced by the process.
-+ *
-+ * However, if there are still outstanding
-+ * requests, then the process may have not yet
-+ * issued its next request just because it is
-+ * still waiting for the completion of some of
-+ * the still oustanding ones. So in this
-+ * subcase we do not reduce its budget, on the
-+ * contrary we increase it to possibly boost
-+ * the throughput, as discussed in the
-+ * comments to the BUDGET_TIMEOUT case.
-+ */
-+ if (bfqq->dispatched > 0) /* still oustanding reqs */
-+ budget = min(budget * 2, bfqd->bfq_max_budget);
-+ else {
-+ if (budget > 5 * min_budget)
-+ budget -= 4 * min_budget;
-+ else
-+ budget = min_budget;
-+ }
-+ break;
-+ case BFQ_BFQQ_BUDGET_TIMEOUT:
-+ /*
-+ * We double the budget here because: 1) it
-+ * gives the chance to boost the throughput if
-+ * this is not a seeky process (which may have
-+ * bumped into this timeout because of, e.g.,
-+ * ZBR), 2) together with charge_full_budget
-+ * it helps give seeky processes higher
-+ * timestamps, and hence be served less
-+ * frequently.
-+ */
-+ budget = min(budget * 2, bfqd->bfq_max_budget);
-+ break;
-+ case BFQ_BFQQ_BUDGET_EXHAUSTED:
-+ /*
-+ * The process still has backlog, and did not
-+ * let either the budget timeout or the disk
-+ * idling timeout expire. Hence it is not
-+ * seeky, has a short thinktime and may be
-+ * happy with a higher budget too. So
-+ * definitely increase the budget of this good
-+ * candidate to boost the disk throughput.
-+ */
-+ budget = min(budget * 4, bfqd->bfq_max_budget);
-+ break;
-+ case BFQ_BFQQ_NO_MORE_REQUESTS:
-+ /*
-+ * Leave the budget unchanged.
-+ */
-+ default:
-+ return;
-+ }
-+ } else /* async queue */
-+ /* async queues get always the maximum possible budget
-+ * (their ability to dispatch is limited by
-+ * @bfqd->bfq_max_budget_async_rq).
-+ */
-+ budget = bfqd->bfq_max_budget;
-+
-+ bfqq->max_budget = budget;
-+
-+ if (bfqd->budgets_assigned >= 194 && bfqd->bfq_user_max_budget == 0 &&
-+ bfqq->max_budget > bfqd->bfq_max_budget)
-+ bfqq->max_budget = bfqd->bfq_max_budget;
-+
-+ /*
-+ * Make sure that we have enough budget for the next request.
-+ * Since the finish time of the bfqq must be kept in sync with
-+ * the budget, be sure to call __bfq_bfqq_expire() after the
-+ * update.
-+ */
-+ next_rq = bfqq->next_rq;
-+ if (next_rq != NULL)
-+ bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
-+ bfq_serv_to_charge(next_rq, bfqq));
-+ else
-+ bfqq->entity.budget = bfqq->max_budget;
-+
-+ bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %lu",
-+ next_rq != NULL ? blk_rq_sectors(next_rq) : 0,
-+ bfqq->entity.budget);
-+}
-+
-+static unsigned long bfq_calc_max_budget(u64 peak_rate, u64 timeout)
-+{
-+ unsigned long max_budget;
-+
-+ /*
-+ * The max_budget calculated when autotuning is equal to the
-+ * amount of sectors transfered in timeout_sync at the
-+ * estimated peak rate.
-+ */
-+ max_budget = (unsigned long)(peak_rate * 1000 *
-+ timeout >> BFQ_RATE_SHIFT);
-+
-+ return max_budget;
-+}
-+
-+/*
-+ * In addition to updating the peak rate, checks whether the process
-+ * is "slow", and returns 1 if so. This slow flag is used, in addition
-+ * to the budget timeout, to reduce the amount of service provided to
-+ * seeky processes, and hence reduce their chances to lower the
-+ * throughput. See the code for more details.
-+ */
-+static int bfq_update_peak_rate(struct bfq_data *bfqd, struct bfq_queue *bfqq,
-+ int compensate, enum bfqq_expiration reason)
-+{
-+ u64 bw, usecs, expected, timeout;
-+ ktime_t delta;
-+ int update = 0;
-+
-+ if (!bfq_bfqq_sync(bfqq) || bfq_bfqq_budget_new(bfqq))
-+ return 0;
-+
-+ if (compensate)
-+ delta = bfqd->last_idling_start;
-+ else
-+ delta = ktime_get();
-+ delta = ktime_sub(delta, bfqd->last_budget_start);
-+ usecs = ktime_to_us(delta);
-+
-+ /* Don't trust short/unrealistic values. */
-+ if (usecs < 100 || usecs >= LONG_MAX)
-+ return 0;
-+
-+ /*
-+ * Calculate the bandwidth for the last slice. We use a 64 bit
-+ * value to store the peak rate, in sectors per usec in fixed
-+ * point math. We do so to have enough precision in the estimate
-+ * and to avoid overflows.
-+ */
-+ bw = (u64)bfqq->entity.service << BFQ_RATE_SHIFT;
-+ do_div(bw, (unsigned long)usecs);
-+
-+ timeout = jiffies_to_msecs(bfqd->bfq_timeout[BLK_RW_SYNC]);
-+
-+ /*
-+ * Use only long (> 20ms) intervals to filter out spikes for
-+ * the peak rate estimation.
-+ */
-+ if (usecs > 20000) {
-+ if (bw > bfqd->peak_rate ||
-+ (!BFQQ_SEEKY(bfqq) &&
-+ reason == BFQ_BFQQ_BUDGET_TIMEOUT)) {
-+ bfq_log(bfqd, "measured bw =%llu", bw);
-+ /*
-+ * To smooth oscillations use a low-pass filter with
-+ * alpha=7/8, i.e.,
-+ * new_rate = (7/8) * old_rate + (1/8) * bw
-+ */
-+ do_div(bw, 8);
-+ if (bw == 0)
-+ return 0;
-+ bfqd->peak_rate *= 7;
-+ do_div(bfqd->peak_rate, 8);
-+ bfqd->peak_rate += bw;
-+ update = 1;
-+ bfq_log(bfqd, "new peak_rate=%llu", bfqd->peak_rate);
-+ }
-+
-+ update |= bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES - 1;
-+
-+ if (bfqd->peak_rate_samples < BFQ_PEAK_RATE_SAMPLES)
-+ bfqd->peak_rate_samples++;
-+
-+ if (bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES &&
-+ update && bfqd->bfq_user_max_budget == 0) {
-+ bfqd->bfq_max_budget =
-+ bfq_calc_max_budget(bfqd->peak_rate, timeout);
-+ bfq_log(bfqd, "new max_budget=%lu",
-+ bfqd->bfq_max_budget);
-+ }
-+ }
-+
-+ /*
-+ * If the process has been served for a too short time
-+ * interval to let its possible sequential accesses prevail on
-+ * the initial seek time needed to move the disk head on the
-+ * first sector it requested, then give the process a chance
-+ * and for the moment return false.
-+ */
-+ if (bfqq->entity.budget <= bfq_max_budget(bfqd) / 8)
-+ return 0;
-+
-+ /*
-+ * A process is considered ``slow'' (i.e., seeky, so that we
-+ * cannot treat it fairly in the service domain, as it would
-+ * slow down too much the other processes) if, when a slice
-+ * ends for whatever reason, it has received service at a
-+ * rate that would not be high enough to complete the budget
-+ * before the budget timeout expiration.
-+ */
-+ expected = bw * 1000 * timeout >> BFQ_RATE_SHIFT;
-+
-+ /*
-+ * Caveat: processes doing IO in the slower disk zones will
-+ * tend to be slow(er) even if not seeky. And the estimated
-+ * peak rate will actually be an average over the disk
-+ * surface. Hence, to not be too harsh with unlucky processes,
-+ * we keep a budget/3 margin of safety before declaring a
-+ * process slow.
-+ */
-+ return expected > (4 * bfqq->entity.budget) / 3;
-+}
-+
-+/*
-+ * To be deemed as soft real-time, an application must meet two requirements.
-+ * The first is that the application must not require an average bandwidth
-+ * higher than the approximate bandwidth required to playback or record a
-+ * compressed high-definition video.
-+ * The next function is invoked on the completion of the last request of a
-+ * batch, to compute the next-start time instant, soft_rt_next_start, such
-+ * that, if the next request of the application does not arrive before
-+ * soft_rt_next_start, then the above requirement on the bandwidth is met.
-+ *
-+ * The second requirement is that the request pattern of the application is
-+ * isochronous, i.e., that, after issuing a request or a batch of requests, the
-+ * application stops for a while, then issues a new batch, and so on. For this
-+ * reason the next function is invoked to compute soft_rt_next_start only for
-+ * applications that meet this requirement, whereas soft_rt_next_start is set
-+ * to infinity for applications that do not.
-+ *
-+ * Unfortunately, even a greedy application may happen to behave in an
-+ * isochronous way if several processes are competing for the CPUs. In fact,
-+ * in this scenario the application stops issuing requests while the CPUs are
-+ * busy serving other processes, then restarts, then stops again for a while,
-+ * and so on. In addition, if the disk achieves a low enough throughput with
-+ * the request pattern issued by the application, then the above bandwidth
-+ * requirement may happen to be met too. To prevent such a greedy application
-+ * to be deemed as soft real-time, a further rule is used in the computation
-+ * of soft_rt_next_start: soft_rt_next_start must be higher than the current
-+ * time plus the maximum time for which the arrival of a request is waited
-+ * for when a sync queue becomes idle, namely bfqd->bfq_slice_idle. This
-+ * filters out greedy applications, as the latter issue instead their next
-+ * request as soon as possible after the last one has been completed (in
-+ * contrast, when a batch of requests is completed, a soft real-time
-+ * application spends some time processing data).
-+ *
-+ * Actually, the last filter may easily generate false positives if: only
-+ * bfqd->bfq_slice_idle is used as a reference time interval, and one or
-+ * both the following two cases occur:
-+ * 1) HZ is so low that the duration of a jiffie is comparable to or higher
-+ * than bfqd->bfq_slice_idle. This happens, e.g., on slow devices with
-+ * HZ=100.
-+ * 2) jiffies, instead of increasing at a constant rate, may stop increasing
-+ * for a while, then suddenly 'jump' by several units to recover the lost
-+ * increments. This seems to happen, e.g., inside virtual machines.
-+ * To address this issue, we do not use as a reference time interval just
-+ * bfqd->bfq_slice_idle, but bfqd->bfq_slice_idle plus a few jiffies. In
-+ * particular we add the minimum number of jiffies for which the filter seems
-+ * to be quite precise also in embedded systems and KVM/QEMU virtual machines.
-+ */
-+static inline u64 bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ return max(bfqq->last_idle_bklogged +
-+ HZ * bfqq->service_from_backlogged /
-+ bfqd->bfq_raising_max_softrt_rate,
-+ (u64)jiffies + bfqq->bfqd->bfq_slice_idle + 4);
-+}
-+
-+/**
-+ * bfq_bfqq_expire - expire a queue.
-+ * @bfqd: device owning the queue.
-+ * @bfqq: the queue to expire.
-+ * @compensate: if true, compensate for the time spent idling.
-+ * @reason: the reason causing the expiration.
-+ *
-+ *
-+ * If the process associated to the queue is slow (i.e., seeky), or in
-+ * case of budget timeout, or, finally, if it is async, we
-+ * artificially charge it an entire budget (independently of the
-+ * actual service it received). As a consequence, the queue will get
-+ * higher timestamps than the correct ones upon reactivation, and
-+ * hence it will be rescheduled as if it had received more service
-+ * than what it actually received. In the end, this class of processes
-+ * will receive less service in proportion to how slowly they consume
-+ * their budgets (and hence how seriously they tend to lower the
-+ * throughput).
-+ *
-+ * In contrast, when a queue expires because it has been idling for
-+ * too much or because it exhausted its budget, we do not touch the
-+ * amount of service it has received. Hence when the queue will be
-+ * reactivated and its timestamps updated, the latter will be in sync
-+ * with the actual service received by the queue until expiration.
-+ *
-+ * Charging a full budget to the first type of queues and the exact
-+ * service to the others has the effect of using the WF2Q+ policy to
-+ * schedule the former on a timeslice basis, without violating the
-+ * service domain guarantees of the latter.
-+ */
-+static void bfq_bfqq_expire(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ int compensate,
-+ enum bfqq_expiration reason)
-+{
-+ int slow;
-+ BUG_ON(bfqq != bfqd->in_service_queue);
-+
-+ /* Update disk peak rate for autotuning and check whether the
-+ * process is slow (see bfq_update_peak_rate).
-+ */
-+ slow = bfq_update_peak_rate(bfqd, bfqq, compensate, reason);
-+
-+ /*
-+ * As above explained, 'punish' slow (i.e., seeky), timed-out
-+ * and async queues, to favor sequential sync workloads.
-+ *
-+ * Processes doing IO in the slower disk zones will tend to be
-+ * slow(er) even if not seeky. Hence, since the estimated peak
-+ * rate is actually an average over the disk surface, these
-+ * processes may timeout just for bad luck. To avoid punishing
-+ * them we do not charge a full budget to a process that
-+ * succeeded in consuming at least 2/3 of its budget.
-+ */
-+ if (slow || (reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
-+ bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3))
-+ bfq_bfqq_charge_full_budget(bfqq);
-+
-+ bfqq->service_from_backlogged += bfqq->entity.service;
-+
-+ if (bfqd->low_latency && bfqq->raising_coeff == 1)
-+ bfqq->last_rais_start_finish = jiffies;
-+
-+ if (bfqd->low_latency && bfqd->bfq_raising_max_softrt_rate > 0) {
-+ if (reason != BFQ_BFQQ_BUDGET_TIMEOUT &&
-+ reason != BFQ_BFQQ_BUDGET_EXHAUSTED) {
-+ /*
-+ * If we get here, then the request pattern is
-+ * isochronous (see the comments to the function
-+ * bfq_bfqq_softrt_next_start()). However, if the
-+ * queue still has in-flight requests, then it is
-+ * better to postpone the computation of next_start
-+ * to the next request completion. In fact, if we
-+ * computed it now, then the application might pass
-+ * the greedy-application filter improperly, because
-+ * the arrival of its next request may happen to be
-+ * higher than (jiffies + bfqq->bfqd->bfq_slice_idle)
-+ * not because the application is truly soft real-
-+ * time, but just because the application is currently
-+ * waiting for the completion of some request before
-+ * issuing, as quickly as possible, its next request.
-+ */
-+ if (bfqq->dispatched > 0) {
-+ bfqq->soft_rt_next_start = -1;
-+ bfq_mark_bfqq_softrt_update(bfqq);
-+ } else
-+ bfqq->soft_rt_next_start =
-+ bfq_bfqq_softrt_next_start(bfqd, bfqq);
-+ } else
-+ bfqq->soft_rt_next_start = -1; /* infinity */
-+ }
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "expire (%d, slow %d, num_disp %d, idle_win %d)", reason, slow,
-+ bfqq->dispatched, bfq_bfqq_idle_window(bfqq));
-+
-+ /* Increase, decrease or leave budget unchanged according to reason */
-+ __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
-+ __bfq_bfqq_expire(bfqd, bfqq);
-+}
-+
-+/*
-+ * Budget timeout is not implemented through a dedicated timer, but
-+ * just checked on request arrivals and completions, as well as on
-+ * idle timer expirations.
-+ */
-+static int bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
-+{
-+ if (bfq_bfqq_budget_new(bfqq))
-+ return 0;
-+
-+ if (time_before(jiffies, bfqq->budget_timeout))
-+ return 0;
-+
-+ return 1;
-+}
-+
-+/*
-+ * If we expire a queue that is waiting for the arrival of a new
-+ * request, we may prevent the fictitious timestamp backshifting that
-+ * allows the guarantees of the queue to be preserved (see [1] for
-+ * this tricky aspect). Hence we return true only if this condition
-+ * does not hold, or if the queue is slow enough to deserve only to be
-+ * kicked off for preserving a high throughput.
-+*/
-+static inline int bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
-+{
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "may_budget_timeout: wr %d left %d timeout %d",
-+ bfq_bfqq_wait_request(bfqq),
-+ bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
-+ bfq_bfqq_budget_timeout(bfqq));
-+
-+ return (!bfq_bfqq_wait_request(bfqq) ||
-+ bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
-+ &&
-+ bfq_bfqq_budget_timeout(bfqq);
-+}
-+
-+/*
-+ * For weight-raised queues issuing sync requests, idling is always performed,
-+ * as this is instrumental in guaranteeing a high fraction of the throughput
-+ * to these queues, and hence in guaranteeing a lower latency for their
-+ * requests. See [1] for details.
-+ *
-+ * For non-weight-raised queues, idling is instead disabled if the device is
-+ * NCQ-enabled and non-rotational, as this boosts the throughput on such
-+ * devices.
-+ */
-+static inline bool bfq_bfqq_must_not_expire(struct bfq_queue *bfqq)
-+{
-+ struct bfq_data *bfqd = bfqq->bfqd;
-+
-+ return bfq_bfqq_sync(bfqq) && (
-+ bfqq->raising_coeff > 1 ||
-+ (bfq_bfqq_idle_window(bfqq) &&
-+ !(bfqd->hw_tag &&
-+ (blk_queue_nonrot(bfqd->queue) ||
-+ /*
-+ * If there are weight-raised busy queues, then do not idle
-+ * the disk for a sync non-weight-raised queue, and hence
-+ * expire the queue immediately if empty. Combined with the
-+ * timestamping rules of BFQ (see [1] for details), this
-+ * causes sync non-weight-raised queues to get a lower
-+ * fraction of the disk throughput, and hence reduces the rate
-+ * at which the processes associated to these queues ask for
-+ * requests from the request pool.
-+ *
-+ * This is beneficial for weight-raised processes, when the
-+ * system operates in request-pool saturation conditions
-+ * (e.g., in the presence of write hogs). In fact, if
-+ * non-weight-raised processes ask for requests at a lower
-+ * rate, then weight-raised processes have a higher
-+ * probability to get a request from the pool immediately
-+ * (or at least soon) when they need one. Hence they have a
-+ * higher probability to actually get a fraction of the disk
-+ * throughput proportional to their high weight. This is
-+ * especially true with NCQ-enabled drives, which enqueue
-+ * several requests in advance and further reorder
-+ * internally-queued requests.
-+ *
-+ * Mistreating non-weight-raised queues in the above-described
-+ * way, when there are busy weight-raised queues, seems to
-+ * mitigate starvation problems in the presence of heavy write
-+ * workloads and NCQ, and hence to guarantee a higher
-+ * application and system responsiveness in these hostile
-+ * scenarios.
-+ */
-+ bfqd->raised_busy_queues > 0)
-+ )
-+ )
-+ );
-+}
-+
-+/*
-+ * If the in-service queue is empty, but it is sync and either of the following
-+ * conditions holds, then: 1) the queue must remain in service and cannot be
-+ * expired, and 2) the disk must be idled to wait for the possible arrival
-+ * of a new request for the queue. The conditions are:
-+ * - the device is rotational and not performing NCQ, and the queue has its
-+ * idle window set (in this case, waiting for a new request for the queue
-+ * is likely to boost the disk throughput);
-+ * - the queue is weight-raised (waiting for the request is necessary to
-+ * provide the queue with fairness and latency guarantees, see [1] for
-+ * details).
-+ */
-+static inline bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
-+{
-+ struct bfq_data *bfqd = bfqq->bfqd;
-+
-+ return (RB_EMPTY_ROOT(&bfqq->sort_list) && bfqd->bfq_slice_idle != 0 &&
-+ bfq_bfqq_must_not_expire(bfqq) &&
-+ !bfq_queue_nonrot_noidle(bfqd, bfqq));
-+}
-+
-+/*
-+ * Select a queue for service. If we have a current queue in service,
-+ * check whether to continue servicing it, or retrieve and set a new one.
-+ */
-+static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
-+{
-+ struct bfq_queue *bfqq, *new_bfqq = NULL;
-+ struct request *next_rq;
-+ enum bfqq_expiration reason = BFQ_BFQQ_BUDGET_TIMEOUT;
-+
-+ bfqq = bfqd->in_service_queue;
-+ if (bfqq == NULL)
-+ goto new_queue;
-+
-+ bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
-+
-+ /*
-+ * If another queue has a request waiting within our mean seek
-+ * distance, let it run. The expire code will check for close
-+ * cooperators and put the close queue at the front of the
-+ * service tree. If possible, merge the expiring queue with the
-+ * new bfqq.
-+ */
-+ new_bfqq = bfq_close_cooperator(bfqd, bfqq);
-+ if (new_bfqq != NULL && bfqq->new_bfqq == NULL)
-+ bfq_setup_merge(bfqq, new_bfqq);
-+
-+ if (bfq_may_expire_for_budg_timeout(bfqq) &&
-+ !timer_pending(&bfqd->idle_slice_timer) &&
-+ !bfq_bfqq_must_idle(bfqq))
-+ goto expire;
-+
-+ next_rq = bfqq->next_rq;
-+ /*
-+ * If bfqq has requests queued and it has enough budget left to
-+ * serve them, keep the queue, otherwise expire it.
-+ */
-+ if (next_rq != NULL) {
-+ if (bfq_serv_to_charge(next_rq, bfqq) >
-+ bfq_bfqq_budget_left(bfqq)) {
-+ reason = BFQ_BFQQ_BUDGET_EXHAUSTED;
-+ goto expire;
-+ } else {
-+ /*
-+ * The idle timer may be pending because we may not
-+ * disable disk idling even when a new request arrives
-+ */
-+ if (timer_pending(&bfqd->idle_slice_timer)) {
-+ /*
-+ * If we get here: 1) at least a new request
-+ * has arrived but we have not disabled the
-+ * timer because the request was too small,
-+ * 2) then the block layer has unplugged the
-+ * device, causing the dispatch to be invoked.
-+ *
-+ * Since the device is unplugged, now the
-+ * requests are probably large enough to
-+ * provide a reasonable throughput.
-+ * So we disable idling.
-+ */
-+ bfq_clear_bfqq_wait_request(bfqq);
-+ del_timer(&bfqd->idle_slice_timer);
-+ }
-+ if (new_bfqq == NULL)
-+ goto keep_queue;
-+ else
-+ goto expire;
-+ }
-+ }
-+
-+ /*
-+ * No requests pending. If the in-service queue has no cooperator and
-+ * still has requests in flight (possibly waiting for a completion)
-+ * or is idling for a new request, then keep it.
-+ */
-+ if (new_bfqq == NULL && (timer_pending(&bfqd->idle_slice_timer) ||
-+ (bfqq->dispatched != 0 && bfq_bfqq_must_not_expire(bfqq)))) {
-+ bfqq = NULL;
-+ goto keep_queue;
-+ } else if (new_bfqq != NULL && timer_pending(&bfqd->idle_slice_timer)) {
-+ /*
-+ * Expiring the queue because there is a close cooperator,
-+ * cancel timer.
-+ */
-+ bfq_clear_bfqq_wait_request(bfqq);
-+ del_timer(&bfqd->idle_slice_timer);
-+ }
-+
-+ reason = BFQ_BFQQ_NO_MORE_REQUESTS;
-+expire:
-+ bfq_bfqq_expire(bfqd, bfqq, 0, reason);
-+new_queue:
-+ bfqq = bfq_set_in_service_queue(bfqd, new_bfqq);
-+ bfq_log(bfqd, "select_queue: new queue %d returned",
-+ bfqq != NULL ? bfqq->pid : 0);
-+keep_queue:
-+ return bfqq;
-+}
-+
-+static void bfq_update_raising_data(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ if (bfqq->raising_coeff > 1) { /* queue is being boosted */
-+ struct bfq_entity *entity = &bfqq->entity;
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "raising period dur %u/%u msec, "
-+ "old raising coeff %u, w %d(%d)",
-+ jiffies_to_msecs(jiffies -
-+ bfqq->last_rais_start_finish),
-+ jiffies_to_msecs(bfqq->raising_cur_max_time),
-+ bfqq->raising_coeff,
-+ bfqq->entity.weight, bfqq->entity.orig_weight);
-+
-+ BUG_ON(bfqq != bfqd->in_service_queue && entity->weight !=
-+ entity->orig_weight * bfqq->raising_coeff);
-+ if (entity->ioprio_changed)
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "WARN: pending prio change");
-+ /*
-+ * If too much time has elapsed from the beginning
-+ * of this weight-raising, stop it.
-+ */
-+ if (jiffies - bfqq->last_rais_start_finish >
-+ bfqq->raising_cur_max_time) {
-+ bfqq->last_rais_start_finish = jiffies;
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "wrais ending at %llu msec,"
-+ "rais_max_time %u",
-+ bfqq->last_rais_start_finish,
-+ jiffies_to_msecs(bfqq->
-+ raising_cur_max_time));
-+ bfq_bfqq_end_raising(bfqq);
-+ __bfq_entity_update_weight_prio(
-+ bfq_entity_service_tree(entity),
-+ entity);
-+ }
-+ }
-+}
-+
-+/*
-+ * Dispatch one request from bfqq, moving it to the request queue
-+ * dispatch list.
-+ */
-+static int bfq_dispatch_request(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ int dispatched = 0;
-+ struct request *rq;
-+ unsigned long service_to_charge;
-+
-+ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
-+
-+ /* Follow expired path, else get first next available. */
-+ rq = bfq_check_fifo(bfqq);
-+ if (rq == NULL)
-+ rq = bfqq->next_rq;
-+ service_to_charge = bfq_serv_to_charge(rq, bfqq);
-+
-+ if (service_to_charge > bfq_bfqq_budget_left(bfqq)) {
-+ /*
-+ * This may happen if the next rq is chosen
-+ * in fifo order instead of sector order.
-+ * The budget is properly dimensioned
-+ * to be always sufficient to serve the next request
-+ * only if it is chosen in sector order. The reason is
-+ * that it would be quite inefficient and little useful
-+ * to always make sure that the budget is large enough
-+ * to serve even the possible next rq in fifo order.
-+ * In fact, requests are seldom served in fifo order.
-+ *
-+ * Expire the queue for budget exhaustion, and
-+ * make sure that the next act_budget is enough
-+ * to serve the next request, even if it comes
-+ * from the fifo expired path.
-+ */
-+ bfqq->next_rq = rq;
-+ /*
-+ * Since this dispatch is failed, make sure that
-+ * a new one will be performed
-+ */
-+ if (!bfqd->rq_in_driver)
-+ bfq_schedule_dispatch(bfqd);
-+ goto expire;
-+ }
-+
-+ /* Finally, insert request into driver dispatch list. */
-+ bfq_bfqq_served(bfqq, service_to_charge);
-+ bfq_dispatch_insert(bfqd->queue, rq);
-+
-+ bfq_update_raising_data(bfqd, bfqq);
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "dispatched %u sec req (%llu), budg left %lu",
-+ blk_rq_sectors(rq),
-+ (long long unsigned)blk_rq_pos(rq),
-+ bfq_bfqq_budget_left(bfqq));
-+
-+ dispatched++;
-+
-+ if (bfqd->in_service_bic == NULL) {
-+ atomic_long_inc(&RQ_BIC(rq)->icq.ioc->refcount);
-+ bfqd->in_service_bic = RQ_BIC(rq);
-+ }
-+
-+ if (bfqd->busy_queues > 1 && ((!bfq_bfqq_sync(bfqq) &&
-+ dispatched >= bfqd->bfq_max_budget_async_rq) ||
-+ bfq_class_idle(bfqq)))
-+ goto expire;
-+
-+ return dispatched;
-+
-+expire:
-+ bfq_bfqq_expire(bfqd, bfqq, 0, BFQ_BFQQ_BUDGET_EXHAUSTED);
-+ return dispatched;
-+}
-+
-+static int __bfq_forced_dispatch_bfqq(struct bfq_queue *bfqq)
-+{
-+ int dispatched = 0;
-+
-+ while (bfqq->next_rq != NULL) {
-+ bfq_dispatch_insert(bfqq->bfqd->queue, bfqq->next_rq);
-+ dispatched++;
-+ }
-+
-+ BUG_ON(!list_empty(&bfqq->fifo));
-+ return dispatched;
-+}
-+
-+/*
-+ * Drain our current requests. Used for barriers and when switching
-+ * io schedulers on-the-fly.
-+ */
-+static int bfq_forced_dispatch(struct bfq_data *bfqd)
-+{
-+ struct bfq_queue *bfqq, *n;
-+ struct bfq_service_tree *st;
-+ int dispatched = 0;
-+
-+ bfqq = bfqd->in_service_queue;
-+ if (bfqq != NULL)
-+ __bfq_bfqq_expire(bfqd, bfqq);
-+
-+ /*
-+ * Loop through classes, and be careful to leave the scheduler
-+ * in a consistent state, as feedback mechanisms and vtime
-+ * updates cannot be disabled during the process.
-+ */
-+ list_for_each_entry_safe(bfqq, n, &bfqd->active_list, bfqq_list) {
-+ st = bfq_entity_service_tree(&bfqq->entity);
-+
-+ dispatched += __bfq_forced_dispatch_bfqq(bfqq);
-+ bfqq->max_budget = bfq_max_budget(bfqd);
-+
-+ bfq_forget_idle(st);
-+ }
-+
-+ BUG_ON(bfqd->busy_queues != 0);
-+
-+ return dispatched;
-+}
-+
-+static int bfq_dispatch_requests(struct request_queue *q, int force)
-+{
-+ struct bfq_data *bfqd = q->elevator->elevator_data;
-+ struct bfq_queue *bfqq;
-+ int max_dispatch;
-+
-+ bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
-+ if (bfqd->busy_queues == 0)
-+ return 0;
-+
-+ if (unlikely(force))
-+ return bfq_forced_dispatch(bfqd);
-+
-+ bfqq = bfq_select_queue(bfqd);
-+ if (bfqq == NULL)
-+ return 0;
-+
-+ max_dispatch = bfqd->bfq_quantum;
-+ if (bfq_class_idle(bfqq))
-+ max_dispatch = 1;
-+
-+ if (!bfq_bfqq_sync(bfqq))
-+ max_dispatch = bfqd->bfq_max_budget_async_rq;
-+
-+ if (bfqq->dispatched >= max_dispatch) {
-+ if (bfqd->busy_queues > 1)
-+ return 0;
-+ if (bfqq->dispatched >= 4 * max_dispatch)
-+ return 0;
-+ }
-+
-+ if (bfqd->sync_flight != 0 && !bfq_bfqq_sync(bfqq))
-+ return 0;
-+
-+ bfq_clear_bfqq_wait_request(bfqq);
-+ BUG_ON(timer_pending(&bfqd->idle_slice_timer));
-+
-+ if (!bfq_dispatch_request(bfqd, bfqq))
-+ return 0;
-+
-+ bfq_log_bfqq(bfqd, bfqq, "dispatched one request of %d (max_disp %d)",
-+ bfqq->pid, max_dispatch);
-+
-+ return 1;
-+}
-+
-+/*
-+ * Task holds one reference to the queue, dropped when task exits. Each rq
-+ * in-flight on this queue also holds a reference, dropped when rq is freed.
-+ *
-+ * Queue lock must be held here.
-+ */
-+static void bfq_put_queue(struct bfq_queue *bfqq)
-+{
-+ struct bfq_data *bfqd = bfqq->bfqd;
-+
-+ BUG_ON(atomic_read(&bfqq->ref) <= 0);
-+
-+ bfq_log_bfqq(bfqd, bfqq, "put_queue: %p %d", bfqq,
-+ atomic_read(&bfqq->ref));
-+ if (!atomic_dec_and_test(&bfqq->ref))
-+ return;
-+
-+ BUG_ON(rb_first(&bfqq->sort_list) != NULL);
-+ BUG_ON(bfqq->allocated[READ] + bfqq->allocated[WRITE] != 0);
-+ BUG_ON(bfqq->entity.tree != NULL);
-+ BUG_ON(bfq_bfqq_busy(bfqq));
-+ BUG_ON(bfqd->in_service_queue == bfqq);
-+
-+ bfq_log_bfqq(bfqd, bfqq, "put_queue: %p freed", bfqq);
-+
-+ kmem_cache_free(bfq_pool, bfqq);
-+}
-+
-+static void bfq_put_cooperator(struct bfq_queue *bfqq)
-+{
-+ struct bfq_queue *__bfqq, *next;
-+
-+ /*
-+ * If this queue was scheduled to merge with another queue, be
-+ * sure to drop the reference taken on that queue (and others in
-+ * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
-+ */
-+ __bfqq = bfqq->new_bfqq;
-+ while (__bfqq) {
-+ if (__bfqq == bfqq) {
-+ WARN(1, "bfqq->new_bfqq loop detected.\n");
-+ break;
-+ }
-+ next = __bfqq->new_bfqq;
-+ bfq_put_queue(__bfqq);
-+ __bfqq = next;
-+ }
-+}
-+
-+static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
-+{
-+ if (bfqq == bfqd->in_service_queue) {
-+ __bfq_bfqq_expire(bfqd, bfqq);
-+ bfq_schedule_dispatch(bfqd);
-+ }
-+
-+ bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq,
-+ atomic_read(&bfqq->ref));
-+
-+ bfq_put_cooperator(bfqq);
-+
-+ bfq_put_queue(bfqq);
-+}
-+
-+static void bfq_init_icq(struct io_cq *icq)
-+{
-+ struct bfq_io_cq *bic = icq_to_bic(icq);
-+
-+ bic->ttime.last_end_request = jiffies;
-+}
-+
-+static void bfq_exit_icq(struct io_cq *icq)
-+{
-+ struct bfq_io_cq *bic = icq_to_bic(icq);
-+ struct bfq_data *bfqd = bic_to_bfqd(bic);
-+
-+ if (bic->bfqq[BLK_RW_ASYNC]) {
-+ bfq_exit_bfqq(bfqd, bic->bfqq[BLK_RW_ASYNC]);
-+ bic->bfqq[BLK_RW_ASYNC] = NULL;
-+ }
-+
-+ if (bic->bfqq[BLK_RW_SYNC]) {
-+ bfq_exit_bfqq(bfqd, bic->bfqq[BLK_RW_SYNC]);
-+ bic->bfqq[BLK_RW_SYNC] = NULL;
-+ }
-+}
-+
-+/*
-+ * Update the entity prio values; note that the new values will not
-+ * be used until the next (re)activation.
-+ */
-+static void bfq_init_prio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
-+{
-+ struct task_struct *tsk = current;
-+ int ioprio_class;
-+
-+ if (!bfq_bfqq_prio_changed(bfqq))
-+ return;
-+
-+ ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
-+ switch (ioprio_class) {
-+ default:
-+ dev_err(bfqq->bfqd->queue->backing_dev_info.dev,
-+ "bfq: bad prio %x\n", ioprio_class);
-+ case IOPRIO_CLASS_NONE:
-+ /*
-+ * No prio set, inherit CPU scheduling settings.
-+ */
-+ bfqq->entity.new_ioprio = task_nice_ioprio(tsk);
-+ bfqq->entity.new_ioprio_class = task_nice_ioclass(tsk);
-+ break;
-+ case IOPRIO_CLASS_RT:
-+ bfqq->entity.new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
-+ bfqq->entity.new_ioprio_class = IOPRIO_CLASS_RT;
-+ break;
-+ case IOPRIO_CLASS_BE:
-+ bfqq->entity.new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
-+ bfqq->entity.new_ioprio_class = IOPRIO_CLASS_BE;
-+ break;
-+ case IOPRIO_CLASS_IDLE:
-+ bfqq->entity.new_ioprio_class = IOPRIO_CLASS_IDLE;
-+ bfqq->entity.new_ioprio = 7;
-+ bfq_clear_bfqq_idle_window(bfqq);
-+ break;
-+ }
-+
-+ bfqq->entity.ioprio_changed = 1;
-+
-+ /*
-+ * Keep track of original prio settings in case we have to temporarily
-+ * elevate the priority of this queue.
-+ */
-+ bfqq->org_ioprio = bfqq->entity.new_ioprio;
-+ bfq_clear_bfqq_prio_changed(bfqq);
-+}
-+
-+static void bfq_changed_ioprio(struct bfq_io_cq *bic)
-+{
-+ struct bfq_data *bfqd;
-+ struct bfq_queue *bfqq, *new_bfqq;
-+ struct bfq_group *bfqg;
-+ unsigned long uninitialized_var(flags);
-+ int ioprio = bic->icq.ioc->ioprio;
-+
-+ bfqd = bfq_get_bfqd_locked(&(bic->icq.q->elevator->elevator_data),
-+ &flags);
-+ /*
-+ * This condition may trigger on a newly created bic, be sure to drop
-+ * the lock before returning.
-+ */
-+ if (unlikely(bfqd == NULL) || likely(bic->ioprio == ioprio))
-+ goto out;
-+
-+ bfqq = bic->bfqq[BLK_RW_ASYNC];
-+ if (bfqq != NULL) {
-+ bfqg = container_of(bfqq->entity.sched_data, struct bfq_group,
-+ sched_data);
-+ new_bfqq = bfq_get_queue(bfqd, bfqg, BLK_RW_ASYNC, bic,
-+ GFP_ATOMIC);
-+ if (new_bfqq != NULL) {
-+ bic->bfqq[BLK_RW_ASYNC] = new_bfqq;
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "changed_ioprio: bfqq %p %d",
-+ bfqq, atomic_read(&bfqq->ref));
-+ bfq_put_queue(bfqq);
-+ }
-+ }
-+
-+ bfqq = bic->bfqq[BLK_RW_SYNC];
-+ if (bfqq != NULL)
-+ bfq_mark_bfqq_prio_changed(bfqq);
-+
-+ bic->ioprio = ioprio;
-+
-+out:
-+ bfq_put_bfqd_unlock(bfqd, &flags);
-+}
-+
-+static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
-+ pid_t pid, int is_sync)
-+{
-+ RB_CLEAR_NODE(&bfqq->entity.rb_node);
-+ INIT_LIST_HEAD(&bfqq->fifo);
-+
-+ atomic_set(&bfqq->ref, 0);
-+ bfqq->bfqd = bfqd;
-+
-+ bfq_mark_bfqq_prio_changed(bfqq);
-+
-+ if (is_sync) {
-+ if (!bfq_class_idle(bfqq))
-+ bfq_mark_bfqq_idle_window(bfqq);
-+ bfq_mark_bfqq_sync(bfqq);
-+ }
-+
-+ /* Tentative initial value to trade off between thr and lat */
-+ bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
-+ bfqq->pid = pid;
-+
-+ bfqq->raising_coeff = 1;
-+ bfqq->last_rais_start_finish = 0;
-+ bfqq->soft_rt_next_start = -1;
-+}
-+
-+static struct bfq_queue *bfq_find_alloc_queue(struct bfq_data *bfqd,
-+ struct bfq_group *bfqg,
-+ int is_sync,
-+ struct bfq_io_cq *bic,
-+ gfp_t gfp_mask)
-+{
-+ struct bfq_queue *bfqq, *new_bfqq = NULL;
-+
-+retry:
-+ /* bic always exists here */
-+ bfqq = bic_to_bfqq(bic, is_sync);
-+
-+ /*
-+ * Always try a new alloc if we fall back to the OOM bfqq
-+ * originally, since it should just be a temporary situation.
-+ */
-+ if (bfqq == NULL || bfqq == &bfqd->oom_bfqq) {
-+ bfqq = NULL;
-+ if (new_bfqq != NULL) {
-+ bfqq = new_bfqq;
-+ new_bfqq = NULL;
-+ } else if (gfp_mask & __GFP_WAIT) {
-+ spin_unlock_irq(bfqd->queue->queue_lock);
-+ new_bfqq = kmem_cache_alloc_node(bfq_pool,
-+ gfp_mask | __GFP_ZERO,
-+ bfqd->queue->node);
-+ spin_lock_irq(bfqd->queue->queue_lock);
-+ if (new_bfqq != NULL)
-+ goto retry;
-+ } else {
-+ bfqq = kmem_cache_alloc_node(bfq_pool,
-+ gfp_mask | __GFP_ZERO,
-+ bfqd->queue->node);
-+ }
-+
-+ if (bfqq != NULL) {
-+ bfq_init_bfqq(bfqd, bfqq, current->pid, is_sync);
-+ bfq_log_bfqq(bfqd, bfqq, "allocated");
-+ } else {
-+ bfqq = &bfqd->oom_bfqq;
-+ bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
-+ }
-+
-+ bfq_init_prio_data(bfqq, bic);
-+ bfq_init_entity(&bfqq->entity, bfqg);
-+ }
-+
-+ if (new_bfqq != NULL)
-+ kmem_cache_free(bfq_pool, new_bfqq);
-+
-+ return bfqq;
-+}
-+
-+static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
-+ struct bfq_group *bfqg,
-+ int ioprio_class, int ioprio)
-+{
-+ switch (ioprio_class) {
-+ case IOPRIO_CLASS_RT:
-+ return &bfqg->async_bfqq[0][ioprio];
-+ case IOPRIO_CLASS_NONE:
-+ ioprio = IOPRIO_NORM;
-+ /* fall through */
-+ case IOPRIO_CLASS_BE:
-+ return &bfqg->async_bfqq[1][ioprio];
-+ case IOPRIO_CLASS_IDLE:
-+ return &bfqg->async_idle_bfqq;
-+ default:
-+ BUG();
-+ }
-+}
-+
-+static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
-+ struct bfq_group *bfqg, int is_sync,
-+ struct bfq_io_cq *bic, gfp_t gfp_mask)
-+{
-+ const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
-+ const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
-+ struct bfq_queue **async_bfqq = NULL;
-+ struct bfq_queue *bfqq = NULL;
-+
-+ if (!is_sync) {
-+ async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
-+ ioprio);
-+ bfqq = *async_bfqq;
-+ }
-+
-+ if (bfqq == NULL)
-+ bfqq = bfq_find_alloc_queue(bfqd, bfqg, is_sync, bic, gfp_mask);
-+
-+ /*
-+ * Pin the queue now that it's allocated, scheduler exit will prune it.
-+ */
-+ if (!is_sync && *async_bfqq == NULL) {
-+ atomic_inc(&bfqq->ref);
-+ bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
-+ bfqq, atomic_read(&bfqq->ref));
-+ *async_bfqq = bfqq;
-+ }
-+
-+ atomic_inc(&bfqq->ref);
-+ bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq,
-+ atomic_read(&bfqq->ref));
-+ return bfqq;
-+}
-+
-+static void bfq_update_io_thinktime(struct bfq_data *bfqd,
-+ struct bfq_io_cq *bic)
-+{
-+ unsigned long elapsed = jiffies - bic->ttime.last_end_request;
-+ unsigned long ttime = min(elapsed, 2UL * bfqd->bfq_slice_idle);
-+
-+ bic->ttime.ttime_samples = (7*bic->ttime.ttime_samples + 256) / 8;
-+ bic->ttime.ttime_total = (7*bic->ttime.ttime_total + 256*ttime) / 8;
-+ bic->ttime.ttime_mean = (bic->ttime.ttime_total + 128) /
-+ bic->ttime.ttime_samples;
-+}
-+
-+static void bfq_update_io_seektime(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ struct request *rq)
-+{
-+ sector_t sdist;
-+ u64 total;
-+
-+ if (bfqq->last_request_pos < blk_rq_pos(rq))
-+ sdist = blk_rq_pos(rq) - bfqq->last_request_pos;
-+ else
-+ sdist = bfqq->last_request_pos - blk_rq_pos(rq);
-+
-+ /*
-+ * Don't allow the seek distance to get too large from the
-+ * odd fragment, pagein, etc.
-+ */
-+ if (bfqq->seek_samples == 0) /* first request, not really a seek */
-+ sdist = 0;
-+ else if (bfqq->seek_samples <= 60) /* second & third seek */
-+ sdist = min(sdist, (bfqq->seek_mean * 4) + 2*1024*1024);
-+ else
-+ sdist = min(sdist, (bfqq->seek_mean * 4) + 2*1024*64);
-+
-+ bfqq->seek_samples = (7*bfqq->seek_samples + 256) / 8;
-+ bfqq->seek_total = (7*bfqq->seek_total + (u64)256*sdist) / 8;
-+ total = bfqq->seek_total + (bfqq->seek_samples/2);
-+ do_div(total, bfqq->seek_samples);
-+ bfqq->seek_mean = (sector_t)total;
-+
-+ bfq_log_bfqq(bfqd, bfqq, "dist=%llu mean=%llu", (u64)sdist,
-+ (u64)bfqq->seek_mean);
-+}
-+
-+/*
-+ * Disable idle window if the process thinks too long or seeks so much that
-+ * it doesn't matter.
-+ */
-+static void bfq_update_idle_window(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq,
-+ struct bfq_io_cq *bic)
-+{
-+ int enable_idle;
-+
-+ /* Don't idle for async or idle io prio class. */
-+ if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq))
-+ return;
-+
-+ enable_idle = bfq_bfqq_idle_window(bfqq);
-+
-+ if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
-+ bfqd->bfq_slice_idle == 0 ||
-+ (bfqd->hw_tag && BFQQ_SEEKY(bfqq) &&
-+ bfqq->raising_coeff == 1))
-+ enable_idle = 0;
-+ else if (bfq_sample_valid(bic->ttime.ttime_samples)) {
-+ if (bic->ttime.ttime_mean > bfqd->bfq_slice_idle &&
-+ bfqq->raising_coeff == 1)
-+ enable_idle = 0;
-+ else
-+ enable_idle = 1;
-+ }
-+ bfq_log_bfqq(bfqd, bfqq, "update_idle_window: enable_idle %d",
-+ enable_idle);
-+
-+ if (enable_idle)
-+ bfq_mark_bfqq_idle_window(bfqq);
-+ else
-+ bfq_clear_bfqq_idle_window(bfqq);
-+}
-+
-+/*
-+ * Called when a new fs request (rq) is added to bfqq. Check if there's
-+ * something we should do about it.
-+ */
-+static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
-+ struct request *rq)
-+{
-+ struct bfq_io_cq *bic = RQ_BIC(rq);
-+
-+ if (rq->cmd_flags & REQ_META)
-+ bfqq->meta_pending++;
-+
-+ bfq_update_io_thinktime(bfqd, bic);
-+ bfq_update_io_seektime(bfqd, bfqq, rq);
-+ if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 ||
-+ !BFQQ_SEEKY(bfqq))
-+ bfq_update_idle_window(bfqd, bfqq, bic);
-+
-+ bfq_log_bfqq(bfqd, bfqq,
-+ "rq_enqueued: idle_window=%d (seeky %d, mean %llu)",
-+ bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq),
-+ (long long unsigned)bfqq->seek_mean);
-+
-+ bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
-+
-+ if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
-+ int small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
-+ blk_rq_sectors(rq) < 32;
-+ int budget_timeout = bfq_bfqq_budget_timeout(bfqq);
-+
-+ /*
-+ * There is just this request queued: if the request
-+ * is small and the queue is not to be expired, then
-+ * just exit.
-+ *
-+ * In this way, if the disk is being idled to wait for
-+ * a new request from the in-service queue, we avoid
-+ * unplugging the device and committing the disk to serve
-+ * just a small request. On the contrary, we wait for
-+ * the block layer to decide when to unplug the device:
-+ * hopefully, new requests will be merged to this one
-+ * quickly, then the device will be unplugged and
-+ * larger requests will be dispatched.
-+ */
-+ if (small_req && !budget_timeout)
-+ return;
-+
-+ /*
-+ * A large enough request arrived, or the queue is to
-+ * be expired: in both cases disk idling is to be
-+ * stopped, so clear wait_request flag and reset
-+ * timer.
-+ */
-+ bfq_clear_bfqq_wait_request(bfqq);
-+ del_timer(&bfqd->idle_slice_timer);
-+
-+ /*
-+ * The queue is not empty, because a new request just
-+ * arrived. Hence we can safely expire the queue, in
-+ * case of budget timeout, without risking that the
-+ * timestamps of the queue are not updated correctly.
-+ * See [1] for more details.
-+ */
-+ if (budget_timeout)
-+ bfq_bfqq_expire(bfqd, bfqq, 0, BFQ_BFQQ_BUDGET_TIMEOUT);
-+
-+ /*
-+ * Let the request rip immediately, or let a new queue be
-+ * selected if bfqq has just been expired.
-+ */
-+ __blk_run_queue(bfqd->queue);
-+ }
-+}
-+
-+static void bfq_insert_request(struct request_queue *q, struct request *rq)
-+{
-+ struct bfq_data *bfqd = q->elevator->elevator_data;
-+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
-+
-+ assert_spin_locked(bfqd->queue->queue_lock);
-+ bfq_init_prio_data(bfqq, RQ_BIC(rq));
-+
-+ bfq_add_rq_rb(rq);
-+
-+ rq_set_fifo_time(rq, jiffies + bfqd->bfq_fifo_expire[rq_is_sync(rq)]);
-+ list_add_tail(&rq->queuelist, &bfqq->fifo);
-+
-+ bfq_rq_enqueued(bfqd, bfqq, rq);
-+}
-+
-+static void bfq_update_hw_tag(struct bfq_data *bfqd)
-+{
-+ bfqd->max_rq_in_driver = max(bfqd->max_rq_in_driver,
-+ bfqd->rq_in_driver);
-+
-+ if (bfqd->hw_tag == 1)
-+ return;
-+
-+ /*
-+ * This sample is valid if the number of outstanding requests
-+ * is large enough to allow a queueing behavior. Note that the
-+ * sum is not exact, as it's not taking into account deactivated
-+ * requests.
-+ */
-+ if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
-+ return;
-+
-+ if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
-+ return;
-+
-+ bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
-+ bfqd->max_rq_in_driver = 0;
-+ bfqd->hw_tag_samples = 0;
-+}
-+
-+static void bfq_completed_request(struct request_queue *q, struct request *rq)
-+{
-+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
-+ struct bfq_data *bfqd = bfqq->bfqd;
-+ const int sync = rq_is_sync(rq);
-+
-+ bfq_log_bfqq(bfqd, bfqq, "completed %u sects req (%d)",
-+ blk_rq_sectors(rq), sync);
-+
-+ bfq_update_hw_tag(bfqd);
-+
-+ WARN_ON(!bfqd->rq_in_driver);
-+ WARN_ON(!bfqq->dispatched);
-+ bfqd->rq_in_driver--;
-+ bfqq->dispatched--;
-+
-+ if (bfq_bfqq_sync(bfqq))
-+ bfqd->sync_flight--;
-+
-+ if (sync)
-+ RQ_BIC(rq)->ttime.last_end_request = jiffies;
-+
-+ /*
-+ * The computation of softrt_next_start was scheduled for the next
-+ * request completion: it is now time to compute it.
-+ */
-+ if (bfq_bfqq_softrt_update(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list))
-+ bfqq->soft_rt_next_start =
-+ bfq_bfqq_softrt_next_start(bfqd, bfqq);
-+
-+ /*
-+ * If this is the in-service queue, check if it needs to be expired,
-+ * or if we want to idle in case it has no pending requests.
-+ */
-+ if (bfqd->in_service_queue == bfqq) {
-+ if (bfq_bfqq_budget_new(bfqq))
-+ bfq_set_budget_timeout(bfqd);
-+
-+ if (bfq_bfqq_must_idle(bfqq)) {
-+ bfq_arm_slice_timer(bfqd);
-+ goto out;
-+ } else if (bfq_may_expire_for_budg_timeout(bfqq))
-+ bfq_bfqq_expire(bfqd, bfqq, 0, BFQ_BFQQ_BUDGET_TIMEOUT);
-+ else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
-+ (bfqq->dispatched == 0 ||
-+ !bfq_bfqq_must_not_expire(bfqq)))
-+ bfq_bfqq_expire(bfqd, bfqq, 0,
-+ BFQ_BFQQ_NO_MORE_REQUESTS);
-+ }
-+
-+ if (!bfqd->rq_in_driver)
-+ bfq_schedule_dispatch(bfqd);
-+
-+out:
-+ return;
-+}
-+
-+static inline int __bfq_may_queue(struct bfq_queue *bfqq)
-+{
-+ if (bfq_bfqq_wait_request(bfqq) && bfq_bfqq_must_alloc(bfqq)) {
-+ bfq_clear_bfqq_must_alloc(bfqq);
-+ return ELV_MQUEUE_MUST;
-+ }
-+
-+ return ELV_MQUEUE_MAY;
-+}
-+
-+static int bfq_may_queue(struct request_queue *q, int rw)
-+{
-+ struct bfq_data *bfqd = q->elevator->elevator_data;
-+ struct task_struct *tsk = current;
-+ struct bfq_io_cq *bic;
-+ struct bfq_queue *bfqq;
-+
-+ /*
-+ * Don't force setup of a queue from here, as a call to may_queue
-+ * does not necessarily imply that a request actually will be queued.
-+ * So just lookup a possibly existing queue, or return 'may queue'
-+ * if that fails.
-+ */
-+ bic = bfq_bic_lookup(bfqd, tsk->io_context);
-+ if (bic == NULL)
-+ return ELV_MQUEUE_MAY;
-+
-+ bfqq = bic_to_bfqq(bic, rw_is_sync(rw));
-+ if (bfqq != NULL) {
-+ bfq_init_prio_data(bfqq, bic);
-+
-+ return __bfq_may_queue(bfqq);
-+ }
-+
-+ return ELV_MQUEUE_MAY;
-+}
-+
-+/*
-+ * Queue lock held here.
-+ */
-+static void bfq_put_request(struct request *rq)
-+{
-+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
-+
-+ if (bfqq != NULL) {
-+ const int rw = rq_data_dir(rq);
-+
-+ BUG_ON(!bfqq->allocated[rw]);
-+ bfqq->allocated[rw]--;
-+
-+ rq->elv.priv[0] = NULL;
-+ rq->elv.priv[1] = NULL;
-+
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "put_request %p, %d",
-+ bfqq, atomic_read(&bfqq->ref));
-+ bfq_put_queue(bfqq);
-+ }
-+}
-+
-+static struct bfq_queue *
-+bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
-+ struct bfq_queue *bfqq)
-+{
-+ bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
-+ (long unsigned)bfqq->new_bfqq->pid);
-+ bic_set_bfqq(bic, bfqq->new_bfqq, 1);
-+ bfq_mark_bfqq_coop(bfqq->new_bfqq);
-+ bfq_put_queue(bfqq);
-+ return bic_to_bfqq(bic, 1);
-+}
-+
-+/*
-+ * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
-+ * was the last process referring to said bfqq.
-+ */
-+static struct bfq_queue *
-+bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
-+{
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
-+ if (bfqq_process_refs(bfqq) == 1) {
-+ bfqq->pid = current->pid;
-+ bfq_clear_bfqq_coop(bfqq);
-+ bfq_clear_bfqq_split_coop(bfqq);
-+ return bfqq;
-+ }
-+
-+ bic_set_bfqq(bic, NULL, 1);
-+
-+ bfq_put_cooperator(bfqq);
-+
-+ bfq_put_queue(bfqq);
-+ return NULL;
-+}
-+
-+/*
-+ * Allocate bfq data structures associated with this request.
-+ */
-+static int bfq_set_request(struct request_queue *q, struct request *rq,
-+ struct bio *bio, gfp_t gfp_mask)
-+{
-+ struct bfq_data *bfqd = q->elevator->elevator_data;
-+ struct bfq_io_cq *bic = icq_to_bic(rq->elv.icq);
-+ const int rw = rq_data_dir(rq);
-+ const int is_sync = rq_is_sync(rq);
-+ struct bfq_queue *bfqq;
-+ struct bfq_group *bfqg;
-+ unsigned long flags;
-+
-+ might_sleep_if(gfp_mask & __GFP_WAIT);
-+
-+ bfq_changed_ioprio(bic);
-+
-+ spin_lock_irqsave(q->queue_lock, flags);
-+
-+ if (bic == NULL)
-+ goto queue_fail;
-+
-+ bfqg = bfq_bic_update_cgroup(bic);
-+
-+new_queue:
-+ bfqq = bic_to_bfqq(bic, is_sync);
-+ if (bfqq == NULL || bfqq == &bfqd->oom_bfqq) {
-+ bfqq = bfq_get_queue(bfqd, bfqg, is_sync, bic, gfp_mask);
-+ bic_set_bfqq(bic, bfqq, is_sync);
-+ } else {
-+ /*
-+ * If the queue was seeky for too long, break it apart.
-+ */
-+ if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
-+ bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
-+ bfqq = bfq_split_bfqq(bic, bfqq);
-+ if (!bfqq)
-+ goto new_queue;
-+ }
-+
-+ /*
-+ * Check to see if this queue is scheduled to merge with
-+ * another closely cooperating queue. The merging of queues
-+ * happens here as it must be done in process context.
-+ * The reference on new_bfqq was taken in merge_bfqqs.
-+ */
-+ if (bfqq->new_bfqq != NULL)
-+ bfqq = bfq_merge_bfqqs(bfqd, bic, bfqq);
-+ }
-+
-+ bfqq->allocated[rw]++;
-+ atomic_inc(&bfqq->ref);
-+ bfq_log_bfqq(bfqd, bfqq, "set_request: bfqq %p, %d", bfqq,
-+ atomic_read(&bfqq->ref));
-+
-+ rq->elv.priv[0] = bic;
-+ rq->elv.priv[1] = bfqq;
-+
-+ spin_unlock_irqrestore(q->queue_lock, flags);
-+
-+ return 0;
-+
-+queue_fail:
-+ bfq_schedule_dispatch(bfqd);
-+ spin_unlock_irqrestore(q->queue_lock, flags);
-+
-+ return 1;
-+}
-+
-+static void bfq_kick_queue(struct work_struct *work)
-+{
-+ struct bfq_data *bfqd =
-+ container_of(work, struct bfq_data, unplug_work);
-+ struct request_queue *q = bfqd->queue;
-+
-+ spin_lock_irq(q->queue_lock);
-+ __blk_run_queue(q);
-+ spin_unlock_irq(q->queue_lock);
-+}
-+
-+/*
-+ * Handler of the expiration of the timer running if the in-service queue
-+ * is idling inside its time slice.
-+ */
-+static void bfq_idle_slice_timer(unsigned long data)
-+{
-+ struct bfq_data *bfqd = (struct bfq_data *)data;
-+ struct bfq_queue *bfqq;
-+ unsigned long flags;
-+ enum bfqq_expiration reason;
-+
-+ spin_lock_irqsave(bfqd->queue->queue_lock, flags);
-+
-+ bfqq = bfqd->in_service_queue;
-+ /*
-+ * Theoretical race here: the in-service queue can be NULL or different
-+ * from the queue that was idling if the timer handler spins on
-+ * the queue_lock and a new request arrives for the current
-+ * queue and there is a full dispatch cycle that changes the
-+ * in-service queue. This can hardly happen, but in the worst case
-+ * we just expire a queue too early.
-+ */
-+ if (bfqq != NULL) {
-+ bfq_log_bfqq(bfqd, bfqq, "slice_timer expired");
-+ if (bfq_bfqq_budget_timeout(bfqq))
-+ /*
-+ * Also here the queue can be safely expired
-+ * for budget timeout without wasting
-+ * guarantees
-+ */
-+ reason = BFQ_BFQQ_BUDGET_TIMEOUT;
-+ else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
-+ /*
-+ * The queue may not be empty upon timer expiration,
-+ * because we may not disable the timer when the first
-+ * request of the in-service queue arrives during
-+ * disk idling
-+ */
-+ reason = BFQ_BFQQ_TOO_IDLE;
-+ else
-+ goto schedule_dispatch;
-+
-+ bfq_bfqq_expire(bfqd, bfqq, 1, reason);
-+ }
-+
-+schedule_dispatch:
-+ bfq_schedule_dispatch(bfqd);
-+
-+ spin_unlock_irqrestore(bfqd->queue->queue_lock, flags);
-+}
-+
-+static void bfq_shutdown_timer_wq(struct bfq_data *bfqd)
-+{
-+ del_timer_sync(&bfqd->idle_slice_timer);
-+ cancel_work_sync(&bfqd->unplug_work);
-+}
-+
-+static inline void __bfq_put_async_bfqq(struct bfq_data *bfqd,
-+ struct bfq_queue **bfqq_ptr)
-+{
-+ struct bfq_group *root_group = bfqd->root_group;
-+ struct bfq_queue *bfqq = *bfqq_ptr;
-+
-+ bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
-+ if (bfqq != NULL) {
-+ bfq_bfqq_move(bfqd, bfqq, &bfqq->entity, root_group);
-+ bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
-+ bfqq, atomic_read(&bfqq->ref));
-+ bfq_put_queue(bfqq);
-+ *bfqq_ptr = NULL;
-+ }
-+}
-+
-+/*
-+ * Release all the bfqg references to its async queues. If we are
-+ * deallocating the group these queues may still contain requests, so
-+ * we reparent them to the root cgroup (i.e., the only one that will
-+ * exist for sure untill all the requests on a device are gone).
-+ */
-+static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
-+{
-+ int i, j;
-+
-+ for (i = 0; i < 2; i++)
-+ for (j = 0; j < IOPRIO_BE_NR; j++)
-+ __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
-+
-+ __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
-+}
-+
-+static void bfq_exit_queue(struct elevator_queue *e)
-+{
-+ struct bfq_data *bfqd = e->elevator_data;
-+ struct request_queue *q = bfqd->queue;
-+ struct bfq_queue *bfqq, *n;
-+
-+ bfq_shutdown_timer_wq(bfqd);
-+
-+ spin_lock_irq(q->queue_lock);
-+
-+ BUG_ON(bfqd->in_service_queue != NULL);
-+ list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
-+ bfq_deactivate_bfqq(bfqd, bfqq, 0);
-+
-+ bfq_disconnect_groups(bfqd);
-+ spin_unlock_irq(q->queue_lock);
-+
-+ bfq_shutdown_timer_wq(bfqd);
-+
-+ synchronize_rcu();
-+
-+ BUG_ON(timer_pending(&bfqd->idle_slice_timer));
-+
-+ bfq_free_root_group(bfqd);
-+ kfree(bfqd);
-+}
-+
-+static int bfq_init_queue(struct request_queue *q)
-+{
-+ struct bfq_group *bfqg;
-+ struct bfq_data *bfqd;
-+
-+ bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
-+ if (bfqd == NULL)
-+ return -ENOMEM;
-+
-+ /*
-+ * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
-+ * Grab a permanent reference to it, so that the normal code flow
-+ * will not attempt to free it.
-+ */
-+ bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, 1, 0);
-+ atomic_inc(&bfqd->oom_bfqq.ref);
-+
-+ bfqd->queue = q;
-+ q->elevator->elevator_data = bfqd;
-+
-+ bfqg = bfq_alloc_root_group(bfqd, q->node);
-+ if (bfqg == NULL) {
-+ kfree(bfqd);
-+ return -ENOMEM;
-+ }
-+
-+ bfqd->root_group = bfqg;
-+
-+ init_timer(&bfqd->idle_slice_timer);
-+ bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
-+ bfqd->idle_slice_timer.data = (unsigned long)bfqd;
-+
-+ bfqd->rq_pos_tree = RB_ROOT;
-+
-+ INIT_WORK(&bfqd->unplug_work, bfq_kick_queue);
-+
-+ INIT_LIST_HEAD(&bfqd->active_list);
-+ INIT_LIST_HEAD(&bfqd->idle_list);
-+
-+ bfqd->hw_tag = -1;
-+
-+ bfqd->bfq_max_budget = bfq_default_max_budget;
-+
-+ bfqd->bfq_quantum = bfq_quantum;
-+ bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
-+ bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
-+ bfqd->bfq_back_max = bfq_back_max;
-+ bfqd->bfq_back_penalty = bfq_back_penalty;
-+ bfqd->bfq_slice_idle = bfq_slice_idle;
-+ bfqd->bfq_class_idle_last_service = 0;
-+ bfqd->bfq_max_budget_async_rq = bfq_max_budget_async_rq;
-+ bfqd->bfq_timeout[BLK_RW_ASYNC] = bfq_timeout_async;
-+ bfqd->bfq_timeout[BLK_RW_SYNC] = bfq_timeout_sync;
-+
-+ bfqd->low_latency = true;
-+
-+ bfqd->bfq_raising_coeff = 20;
-+ bfqd->bfq_raising_rt_max_time = msecs_to_jiffies(300);
-+ bfqd->bfq_raising_max_time = 0;
-+ bfqd->bfq_raising_min_idle_time = msecs_to_jiffies(2000);
-+ bfqd->bfq_raising_min_inter_arr_async = msecs_to_jiffies(500);
-+ bfqd->bfq_raising_max_softrt_rate = 7000; /*
-+ * Approximate rate required
-+ * to playback or record a
-+ * high-definition compressed
-+ * video.
-+ */
-+ bfqd->raised_busy_queues = 0;
-+
-+ /* Initially estimate the device's peak rate as the reference rate */
-+ if (blk_queue_nonrot(bfqd->queue)) {
-+ bfqd->RT_prod = R_nonrot * T_nonrot;
-+ bfqd->peak_rate = R_nonrot;
-+ } else {
-+ bfqd->RT_prod = R_rot * T_rot;
-+ bfqd->peak_rate = R_rot;
-+ }
-+
-+ return 0;
-+}
-+
-+static void bfq_slab_kill(void)
-+{
-+ if (bfq_pool != NULL)
-+ kmem_cache_destroy(bfq_pool);
-+}
-+
-+static int __init bfq_slab_setup(void)
-+{
-+ bfq_pool = KMEM_CACHE(bfq_queue, 0);
-+ if (bfq_pool == NULL)
-+ return -ENOMEM;
-+ return 0;
-+}
-+
-+static ssize_t bfq_var_show(unsigned int var, char *page)
-+{
-+ return sprintf(page, "%d\n", var);
-+}
-+
-+static ssize_t bfq_var_store(unsigned long *var, const char *page, size_t count)
-+{
-+ unsigned long new_val;
-+ int ret = kstrtoul(page, 10, &new_val);
-+
-+ if (ret == 0)
-+ *var = new_val;
-+
-+ return count;
-+}
-+
-+static ssize_t bfq_raising_max_time_show(struct elevator_queue *e, char *page)
-+{
-+ struct bfq_data *bfqd = e->elevator_data;
-+ return sprintf(page, "%d\n", bfqd->bfq_raising_max_time > 0 ?
-+ jiffies_to_msecs(bfqd->bfq_raising_max_time) :
-+ jiffies_to_msecs(bfq_wrais_duration(bfqd)));
-+}
-+
-+static ssize_t bfq_weights_show(struct elevator_queue *e, char *page)
-+{
-+ struct bfq_queue *bfqq;
-+ struct bfq_data *bfqd = e->elevator_data;
-+ ssize_t num_char = 0;
-+
-+ num_char += sprintf(page + num_char, "Tot reqs queued %d\n\n",
-+ bfqd->queued);
-+
-+ spin_lock_irq(bfqd->queue->queue_lock);
-+
-+ num_char += sprintf(page + num_char, "Active:\n");
-+ list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list) {
-+ num_char += sprintf(page + num_char,
-+ "pid%d: weight %hu, nr_queued %d %d,"
-+ " dur %d/%u\n",
-+ bfqq->pid,
-+ bfqq->entity.weight,
-+ bfqq->queued[0],
-+ bfqq->queued[1],
-+ jiffies_to_msecs(jiffies -
-+ bfqq->last_rais_start_finish),
-+ jiffies_to_msecs(bfqq->raising_cur_max_time));
-+ }
-+
-+ num_char += sprintf(page + num_char, "Idle:\n");
-+ list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list) {
-+ num_char += sprintf(page + num_char,
-+ "pid%d: weight %hu, dur %d/%u\n",
-+ bfqq->pid,
-+ bfqq->entity.weight,
-+ jiffies_to_msecs(jiffies -
-+ bfqq->last_rais_start_finish),
-+ jiffies_to_msecs(bfqq->raising_cur_max_time));
-+ }
-+
-+ spin_unlock_irq(bfqd->queue->queue_lock);
-+
-+ return num_char;
-+}
-+
-+#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
-+static ssize_t __FUNC(struct elevator_queue *e, char *page) \
-+{ \
-+ struct bfq_data *bfqd = e->elevator_data; \
-+ unsigned int __data = __VAR; \
-+ if (__CONV) \
-+ __data = jiffies_to_msecs(__data); \
-+ return bfq_var_show(__data, (page)); \
-+}
-+SHOW_FUNCTION(bfq_quantum_show, bfqd->bfq_quantum, 0);
-+SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 1);
-+SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 1);
-+SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
-+SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
-+SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 1);
-+SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
-+SHOW_FUNCTION(bfq_max_budget_async_rq_show, bfqd->bfq_max_budget_async_rq, 0);
-+SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout[BLK_RW_SYNC], 1);
-+SHOW_FUNCTION(bfq_timeout_async_show, bfqd->bfq_timeout[BLK_RW_ASYNC], 1);
-+SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
-+SHOW_FUNCTION(bfq_raising_coeff_show, bfqd->bfq_raising_coeff, 0);
-+SHOW_FUNCTION(bfq_raising_rt_max_time_show, bfqd->bfq_raising_rt_max_time, 1);
-+SHOW_FUNCTION(bfq_raising_min_idle_time_show, bfqd->bfq_raising_min_idle_time,
-+ 1);
-+SHOW_FUNCTION(bfq_raising_min_inter_arr_async_show,
-+ bfqd->bfq_raising_min_inter_arr_async,
-+ 1);
-+SHOW_FUNCTION(bfq_raising_max_softrt_rate_show,
-+ bfqd->bfq_raising_max_softrt_rate, 0);
-+#undef SHOW_FUNCTION
-+
-+#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
-+static ssize_t \
-+__FUNC(struct elevator_queue *e, const char *page, size_t count) \
-+{ \
-+ struct bfq_data *bfqd = e->elevator_data; \
-+ unsigned long uninitialized_var(__data); \
-+ int ret = bfq_var_store(&__data, (page), count); \
-+ if (__data < (MIN)) \
-+ __data = (MIN); \
-+ else if (__data > (MAX)) \
-+ __data = (MAX); \
-+ if (__CONV) \
-+ *(__PTR) = msecs_to_jiffies(__data); \
-+ else \
-+ *(__PTR) = __data; \
-+ return ret; \
-+}
-+STORE_FUNCTION(bfq_quantum_store, &bfqd->bfq_quantum, 1, INT_MAX, 0);
-+STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
-+ INT_MAX, 1);
-+STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
-+ INT_MAX, 1);
-+STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
-+STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
-+ INT_MAX, 0);
-+STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 1);
-+STORE_FUNCTION(bfq_max_budget_async_rq_store, &bfqd->bfq_max_budget_async_rq,
-+ 1, INT_MAX, 0);
-+STORE_FUNCTION(bfq_timeout_async_store, &bfqd->bfq_timeout[BLK_RW_ASYNC], 0,
-+ INT_MAX, 1);
-+STORE_FUNCTION(bfq_raising_coeff_store, &bfqd->bfq_raising_coeff, 1,
-+ INT_MAX, 0);
-+STORE_FUNCTION(bfq_raising_max_time_store, &bfqd->bfq_raising_max_time, 0,
-+ INT_MAX, 1);
-+STORE_FUNCTION(bfq_raising_rt_max_time_store, &bfqd->bfq_raising_rt_max_time, 0,
-+ INT_MAX, 1);
-+STORE_FUNCTION(bfq_raising_min_idle_time_store,
-+ &bfqd->bfq_raising_min_idle_time, 0, INT_MAX, 1);
-+STORE_FUNCTION(bfq_raising_min_inter_arr_async_store,
-+ &bfqd->bfq_raising_min_inter_arr_async, 0, INT_MAX, 1);
-+STORE_FUNCTION(bfq_raising_max_softrt_rate_store,
-+ &bfqd->bfq_raising_max_softrt_rate, 0, INT_MAX, 0);
-+#undef STORE_FUNCTION
-+
-+/* do nothing for the moment */
-+static ssize_t bfq_weights_store(struct elevator_queue *e,
-+ const char *page, size_t count)
-+{
-+ return count;
-+}
-+
-+static inline unsigned long bfq_estimated_max_budget(struct bfq_data *bfqd)
-+{
-+ u64 timeout = jiffies_to_msecs(bfqd->bfq_timeout[BLK_RW_SYNC]);
-+
-+ if (bfqd->peak_rate_samples >= BFQ_PEAK_RATE_SAMPLES)
-+ return bfq_calc_max_budget(bfqd->peak_rate, timeout);
-+ else
-+ return bfq_default_max_budget;
-+}
-+
-+static ssize_t bfq_max_budget_store(struct elevator_queue *e,
-+ const char *page, size_t count)
-+{
-+ struct bfq_data *bfqd = e->elevator_data;
-+ unsigned long uninitialized_var(__data);
-+ int ret = bfq_var_store(&__data, (page), count);
-+
-+ if (__data == 0)
-+ bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd);
-+ else {
-+ if (__data > INT_MAX)
-+ __data = INT_MAX;
-+ bfqd->bfq_max_budget = __data;
-+ }
-+
-+ bfqd->bfq_user_max_budget = __data;
-+
-+ return ret;
-+}
-+
-+static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
-+ const char *page, size_t count)
-+{
-+ struct bfq_data *bfqd = e->elevator_data;
-+ unsigned long uninitialized_var(__data);
-+ int ret = bfq_var_store(&__data, (page), count);
-+
-+ if (__data < 1)
-+ __data = 1;
-+ else if (__data > INT_MAX)
-+ __data = INT_MAX;
-+
-+ bfqd->bfq_timeout[BLK_RW_SYNC] = msecs_to_jiffies(__data);
-+ if (bfqd->bfq_user_max_budget == 0)
-+ bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd);
-+
-+ return ret;
-+}
-+
-+static ssize_t bfq_low_latency_store(struct elevator_queue *e,
-+ const char *page, size_t count)
-+{
-+ struct bfq_data *bfqd = e->elevator_data;
-+ unsigned long uninitialized_var(__data);
-+ int ret = bfq_var_store(&__data, (page), count);
-+
-+ if (__data > 1)
-+ __data = 1;
-+ if (__data == 0 && bfqd->low_latency != 0)
-+ bfq_end_raising(bfqd);
-+ bfqd->low_latency = __data;
-+
-+ return ret;
-+}
-+
-+#define BFQ_ATTR(name) \
-+ __ATTR(name, S_IRUGO|S_IWUSR, bfq_##name##_show, bfq_##name##_store)
-+
-+static struct elv_fs_entry bfq_attrs[] = {
-+ BFQ_ATTR(quantum),
-+ BFQ_ATTR(fifo_expire_sync),
-+ BFQ_ATTR(fifo_expire_async),
-+ BFQ_ATTR(back_seek_max),
-+ BFQ_ATTR(back_seek_penalty),
-+ BFQ_ATTR(slice_idle),
-+ BFQ_ATTR(max_budget),
-+ BFQ_ATTR(max_budget_async_rq),
-+ BFQ_ATTR(timeout_sync),
-+ BFQ_ATTR(timeout_async),
-+ BFQ_ATTR(low_latency),
-+ BFQ_ATTR(raising_coeff),
-+ BFQ_ATTR(raising_max_time),
-+ BFQ_ATTR(raising_rt_max_time),
-+ BFQ_ATTR(raising_min_idle_time),
-+ BFQ_ATTR(raising_min_inter_arr_async),
-+ BFQ_ATTR(raising_max_softrt_rate),
-+ BFQ_ATTR(weights),
-+ __ATTR_NULL
-+};
-+
-+static struct elevator_type iosched_bfq = {
-+ .ops = {
-+ .elevator_merge_fn = bfq_merge,
-+ .elevator_merged_fn = bfq_merged_request,
-+ .elevator_merge_req_fn = bfq_merged_requests,
-+ .elevator_allow_merge_fn = bfq_allow_merge,
-+ .elevator_dispatch_fn = bfq_dispatch_requests,
-+ .elevator_add_req_fn = bfq_insert_request,
-+ .elevator_activate_req_fn = bfq_activate_request,
-+ .elevator_deactivate_req_fn = bfq_deactivate_request,
-+ .elevator_completed_req_fn = bfq_completed_request,
-+ .elevator_former_req_fn = elv_rb_former_request,
-+ .elevator_latter_req_fn = elv_rb_latter_request,
-+ .elevator_init_icq_fn = bfq_init_icq,
-+ .elevator_exit_icq_fn = bfq_exit_icq,
-+ .elevator_set_req_fn = bfq_set_request,
-+ .elevator_put_req_fn = bfq_put_request,
-+ .elevator_may_queue_fn = bfq_may_queue,
-+ .elevator_init_fn = bfq_init_queue,
-+ .elevator_exit_fn = bfq_exit_queue,
-+ },
-+ .icq_size = sizeof(struct bfq_io_cq),
-+ .icq_align = __alignof__(struct bfq_io_cq),
-+ .elevator_attrs = bfq_attrs,
-+ .elevator_name = "bfq",
-+ .elevator_owner = THIS_MODULE,
-+};
-+
-+static int __init bfq_init(void)
-+{
-+ /*
-+ * Can be 0 on HZ < 1000 setups.
-+ */
-+ if (bfq_slice_idle == 0)
-+ bfq_slice_idle = 1;
-+
-+ if (bfq_timeout_async == 0)
-+ bfq_timeout_async = 1;
-+
-+ if (bfq_slab_setup())
-+ return -ENOMEM;
-+
-+ elv_register(&iosched_bfq);
-+ printk(KERN_INFO "BFQ I/O-scheduler version: v7");
-+
-+ return 0;
-+}
-+
-+static void __exit bfq_exit(void)
-+{
-+ elv_unregister(&iosched_bfq);
-+ bfq_slab_kill();
-+}
-+
-+module_init(bfq_init);
-+module_exit(bfq_exit);
-+
-+MODULE_AUTHOR("Fabio Checconi, Paolo Valente");
-+MODULE_LICENSE("GPL");
-+MODULE_DESCRIPTION("Budget Fair Queueing IO scheduler");
-diff --git a/block/bfq-sched.c b/block/bfq-sched.c
-new file mode 100644
-index 0000000..30df81c
---- /dev/null
-+++ b/block/bfq-sched.c
-@@ -0,0 +1,1077 @@
-+/*
-+ * BFQ: Hierarchical B-WF2Q+ scheduler.
-+ *
-+ * Based on ideas and code from CFQ:
-+ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
-+ *
-+ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
-+ * Paolo Valente <paolo.valente@unimore.it>
-+ *
-+ * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
-+ */
-+
-+#ifdef CONFIG_CGROUP_BFQIO
-+#define for_each_entity(entity) \
-+ for (; entity != NULL; entity = entity->parent)
-+
-+#define for_each_entity_safe(entity, parent) \
-+ for (; entity && ({ parent = entity->parent; 1; }); entity = parent)
-+
-+static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
-+ int extract,
-+ struct bfq_data *bfqd);
-+
-+static inline void bfq_update_budget(struct bfq_entity *next_active)
-+{
-+ struct bfq_entity *bfqg_entity;
-+ struct bfq_group *bfqg;
-+ struct bfq_sched_data *group_sd;
-+
-+ BUG_ON(next_active == NULL);
-+
-+ group_sd = next_active->sched_data;
-+
-+ bfqg = container_of(group_sd, struct bfq_group, sched_data);
-+ /*
-+ * bfq_group's my_entity field is not NULL only if the group
-+ * is not the root group. We must not touch the root entity
-+ * as it must never become an active entity.
-+ */
-+ bfqg_entity = bfqg->my_entity;
-+ if (bfqg_entity != NULL)
-+ bfqg_entity->budget = next_active->budget;
-+}
-+
-+static int bfq_update_next_active(struct bfq_sched_data *sd)
-+{
-+ struct bfq_entity *next_active;
-+
-+ if (sd->active_entity != NULL)
-+ /* will update/requeue at the end of service */
-+ return 0;
-+
-+ /*
-+ * NOTE: this can be improved in many ways, such as returning
-+ * 1 (and thus propagating upwards the update) only when the
-+ * budget changes, or caching the bfqq that will be scheduled
-+ * next from this subtree. By now we worry more about
-+ * correctness than about performance...
-+ */
-+ next_active = bfq_lookup_next_entity(sd, 0, NULL);
-+ sd->next_active = next_active;
-+
-+ if (next_active != NULL)
-+ bfq_update_budget(next_active);
-+
-+ return 1;
-+}
-+
-+static inline void bfq_check_next_active(struct bfq_sched_data *sd,
-+ struct bfq_entity *entity)
-+{
-+ BUG_ON(sd->next_active != entity);
-+}
-+#else
-+#define for_each_entity(entity) \
-+ for (; entity != NULL; entity = NULL)
-+
-+#define for_each_entity_safe(entity, parent) \
-+ for (parent = NULL; entity != NULL; entity = parent)
-+
-+static inline int bfq_update_next_active(struct bfq_sched_data *sd)
-+{
-+ return 0;
-+}
-+
-+static inline void bfq_check_next_active(struct bfq_sched_data *sd,
-+ struct bfq_entity *entity)
-+{
-+}
-+
-+static inline void bfq_update_budget(struct bfq_entity *next_active)
-+{
-+}
-+#endif
-+
-+/*
-+ * Shift for timestamp calculations. This actually limits the maximum
-+ * service allowed in one timestamp delta (small shift values increase it),
-+ * the maximum total weight that can be used for the queues in the system
-+ * (big shift values increase it), and the period of virtual time wraparounds.
-+ */
-+#define WFQ_SERVICE_SHIFT 22
-+
-+/**
-+ * bfq_gt - compare two timestamps.
-+ * @a: first ts.
-+ * @b: second ts.
-+ *
-+ * Return @a > @b, dealing with wrapping correctly.
-+ */
-+static inline int bfq_gt(u64 a, u64 b)
-+{
-+ return (s64)(a - b) > 0;
-+}
-+
-+static inline struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
-+{
-+ struct bfq_queue *bfqq = NULL;
-+
-+ BUG_ON(entity == NULL);
-+
-+ if (entity->my_sched_data == NULL)
-+ bfqq = container_of(entity, struct bfq_queue, entity);
-+
-+ return bfqq;
-+}
-+
-+
-+/**
-+ * bfq_delta - map service into the virtual time domain.
-+ * @service: amount of service.
-+ * @weight: scale factor (weight of an entity or weight sum).
-+ */
-+static inline u64 bfq_delta(unsigned long service,
-+ unsigned long weight)
-+{
-+ u64 d = (u64)service << WFQ_SERVICE_SHIFT;
-+
-+ do_div(d, weight);
-+ return d;
-+}
-+
-+/**
-+ * bfq_calc_finish - assign the finish time to an entity.
-+ * @entity: the entity to act upon.
-+ * @service: the service to be charged to the entity.
-+ */
-+static inline void bfq_calc_finish(struct bfq_entity *entity,
-+ unsigned long service)
-+{
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+
-+ BUG_ON(entity->weight == 0);
-+
-+ entity->finish = entity->start +
-+ bfq_delta(service, entity->weight);
-+
-+ if (bfqq != NULL) {
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "calc_finish: serv %lu, w %d",
-+ service, entity->weight);
-+ bfq_log_bfqq(bfqq->bfqd, bfqq,
-+ "calc_finish: start %llu, finish %llu, delta %llu",
-+ entity->start, entity->finish,
-+ bfq_delta(service, entity->weight));
-+ }
-+}
-+
-+/**
-+ * bfq_entity_of - get an entity from a node.
-+ * @node: the node field of the entity.
-+ *
-+ * Convert a node pointer to the relative entity. This is used only
-+ * to simplify the logic of some functions and not as the generic
-+ * conversion mechanism because, e.g., in the tree walking functions,
-+ * the check for a %NULL value would be redundant.
-+ */
-+static inline struct bfq_entity *bfq_entity_of(struct rb_node *node)
-+{
-+ struct bfq_entity *entity = NULL;
-+
-+ if (node != NULL)
-+ entity = rb_entry(node, struct bfq_entity, rb_node);
-+
-+ return entity;
-+}
-+
-+/**
-+ * bfq_extract - remove an entity from a tree.
-+ * @root: the tree root.
-+ * @entity: the entity to remove.
-+ */
-+static inline void bfq_extract(struct rb_root *root,
-+ struct bfq_entity *entity)
-+{
-+ BUG_ON(entity->tree != root);
-+
-+ entity->tree = NULL;
-+ rb_erase(&entity->rb_node, root);
-+}
-+
-+/**
-+ * bfq_idle_extract - extract an entity from the idle tree.
-+ * @st: the service tree of the owning @entity.
-+ * @entity: the entity being removed.
-+ */
-+static void bfq_idle_extract(struct bfq_service_tree *st,
-+ struct bfq_entity *entity)
-+{
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+ struct rb_node *next;
-+
-+ BUG_ON(entity->tree != &st->idle);
-+
-+ if (entity == st->first_idle) {
-+ next = rb_next(&entity->rb_node);
-+ st->first_idle = bfq_entity_of(next);
-+ }
-+
-+ if (entity == st->last_idle) {
-+ next = rb_prev(&entity->rb_node);
-+ st->last_idle = bfq_entity_of(next);
-+ }
-+
-+ bfq_extract(&st->idle, entity);
-+
-+ if (bfqq != NULL)
-+ list_del(&bfqq->bfqq_list);
-+}
-+
-+/**
-+ * bfq_insert - generic tree insertion.
-+ * @root: tree root.
-+ * @entity: entity to insert.
-+ *
-+ * This is used for the idle and the active tree, since they are both
-+ * ordered by finish time.
-+ */
-+static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
-+{
-+ struct bfq_entity *entry;
-+ struct rb_node **node = &root->rb_node;
-+ struct rb_node *parent = NULL;
-+
-+ BUG_ON(entity->tree != NULL);
-+
-+ while (*node != NULL) {
-+ parent = *node;
-+ entry = rb_entry(parent, struct bfq_entity, rb_node);
-+
-+ if (bfq_gt(entry->finish, entity->finish))
-+ node = &parent->rb_left;
-+ else
-+ node = &parent->rb_right;
-+ }
-+
-+ rb_link_node(&entity->rb_node, parent, node);
-+ rb_insert_color(&entity->rb_node, root);
-+
-+ entity->tree = root;
-+}
-+
-+/**
-+ * bfq_update_min - update the min_start field of a entity.
-+ * @entity: the entity to update.
-+ * @node: one of its children.
-+ *
-+ * This function is called when @entity may store an invalid value for
-+ * min_start due to updates to the active tree. The function assumes
-+ * that the subtree rooted at @node (which may be its left or its right
-+ * child) has a valid min_start value.
-+ */
-+static inline void bfq_update_min(struct bfq_entity *entity,
-+ struct rb_node *node)
-+{
-+ struct bfq_entity *child;
-+
-+ if (node != NULL) {
-+ child = rb_entry(node, struct bfq_entity, rb_node);
-+ if (bfq_gt(entity->min_start, child->min_start))
-+ entity->min_start = child->min_start;
-+ }
-+}
-+
-+/**
-+ * bfq_update_active_node - recalculate min_start.
-+ * @node: the node to update.
-+ *
-+ * @node may have changed position or one of its children may have moved,
-+ * this function updates its min_start value. The left and right subtrees
-+ * are assumed to hold a correct min_start value.
-+ */
-+static inline void bfq_update_active_node(struct rb_node *node)
-+{
-+ struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
-+
-+ entity->min_start = entity->start;
-+ bfq_update_min(entity, node->rb_right);
-+ bfq_update_min(entity, node->rb_left);
-+}
-+
-+/**
-+ * bfq_update_active_tree - update min_start for the whole active tree.
-+ * @node: the starting node.
-+ *
-+ * @node must be the deepest modified node after an update. This function
-+ * updates its min_start using the values held by its children, assuming
-+ * that they did not change, and then updates all the nodes that may have
-+ * changed in the path to the root. The only nodes that may have changed
-+ * are the ones in the path or their siblings.
-+ */
-+static void bfq_update_active_tree(struct rb_node *node)
-+{
-+ struct rb_node *parent;
-+
-+up:
-+ bfq_update_active_node(node);
-+
-+ parent = rb_parent(node);
-+ if (parent == NULL)
-+ return;
-+
-+ if (node == parent->rb_left && parent->rb_right != NULL)
-+ bfq_update_active_node(parent->rb_right);
-+ else if (parent->rb_left != NULL)
-+ bfq_update_active_node(parent->rb_left);
-+
-+ node = parent;
-+ goto up;
-+}
-+
-+/**
-+ * bfq_active_insert - insert an entity in the active tree of its group/device.
-+ * @st: the service tree of the entity.
-+ * @entity: the entity being inserted.
-+ *
-+ * The active tree is ordered by finish time, but an extra key is kept
-+ * per each node, containing the minimum value for the start times of
-+ * its children (and the node itself), so it's possible to search for
-+ * the eligible node with the lowest finish time in logarithmic time.
-+ */
-+static void bfq_active_insert(struct bfq_service_tree *st,
-+ struct bfq_entity *entity)
-+{
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+ struct rb_node *node = &entity->rb_node;
-+
-+ bfq_insert(&st->active, entity);
-+
-+ if (node->rb_left != NULL)
-+ node = node->rb_left;
-+ else if (node->rb_right != NULL)
-+ node = node->rb_right;
-+
-+ bfq_update_active_tree(node);
-+
-+ if (bfqq != NULL)
-+ list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
-+}
-+
-+/**
-+ * bfq_ioprio_to_weight - calc a weight from an ioprio.
-+ * @ioprio: the ioprio value to convert.
-+ */
-+static unsigned short bfq_ioprio_to_weight(int ioprio)
-+{
-+ WARN_ON(ioprio < 0 || ioprio >= IOPRIO_BE_NR);
-+ return IOPRIO_BE_NR - ioprio;
-+}
-+
-+/**
-+ * bfq_weight_to_ioprio - calc an ioprio from a weight.
-+ * @weight: the weight value to convert.
-+ *
-+ * To preserve as mush as possible the old only-ioprio user interface,
-+ * 0 is used as an escape ioprio value for weights (numerically) equal or
-+ * larger than IOPRIO_BE_NR
-+ */
-+static unsigned short bfq_weight_to_ioprio(int weight)
-+{
-+ WARN_ON(weight < BFQ_MIN_WEIGHT || weight > BFQ_MAX_WEIGHT);
-+ return IOPRIO_BE_NR - weight < 0 ? 0 : IOPRIO_BE_NR - weight;
-+}
-+
-+static inline void bfq_get_entity(struct bfq_entity *entity)
-+{
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+ struct bfq_sched_data *sd;
-+
-+ if (bfqq != NULL) {
-+ sd = entity->sched_data;
-+ atomic_inc(&bfqq->ref);
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
-+ bfqq, atomic_read(&bfqq->ref));
-+ }
-+}
-+
-+/**
-+ * bfq_find_deepest - find the deepest node that an extraction can modify.
-+ * @node: the node being removed.
-+ *
-+ * Do the first step of an extraction in an rb tree, looking for the
-+ * node that will replace @node, and returning the deepest node that
-+ * the following modifications to the tree can touch. If @node is the
-+ * last node in the tree return %NULL.
-+ */
-+static struct rb_node *bfq_find_deepest(struct rb_node *node)
-+{
-+ struct rb_node *deepest;
-+
-+ if (node->rb_right == NULL && node->rb_left == NULL)
-+ deepest = rb_parent(node);
-+ else if (node->rb_right == NULL)
-+ deepest = node->rb_left;
-+ else if (node->rb_left == NULL)
-+ deepest = node->rb_right;
-+ else {
-+ deepest = rb_next(node);
-+ if (deepest->rb_right != NULL)
-+ deepest = deepest->rb_right;
-+ else if (rb_parent(deepest) != node)
-+ deepest = rb_parent(deepest);
-+ }
-+
-+ return deepest;
-+}
-+
-+/**
-+ * bfq_active_extract - remove an entity from the active tree.
-+ * @st: the service_tree containing the tree.
-+ * @entity: the entity being removed.
-+ */
-+static void bfq_active_extract(struct bfq_service_tree *st,
-+ struct bfq_entity *entity)
-+{
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+ struct rb_node *node;
-+
-+ node = bfq_find_deepest(&entity->rb_node);
-+ bfq_extract(&st->active, entity);
-+
-+ if (node != NULL)
-+ bfq_update_active_tree(node);
-+
-+ if (bfqq != NULL)
-+ list_del(&bfqq->bfqq_list);
-+}
-+
-+/**
-+ * bfq_idle_insert - insert an entity into the idle tree.
-+ * @st: the service tree containing the tree.
-+ * @entity: the entity to insert.
-+ */
-+static void bfq_idle_insert(struct bfq_service_tree *st,
-+ struct bfq_entity *entity)
-+{
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+ struct bfq_entity *first_idle = st->first_idle;
-+ struct bfq_entity *last_idle = st->last_idle;
-+
-+ if (first_idle == NULL || bfq_gt(first_idle->finish, entity->finish))
-+ st->first_idle = entity;
-+ if (last_idle == NULL || bfq_gt(entity->finish, last_idle->finish))
-+ st->last_idle = entity;
-+
-+ bfq_insert(&st->idle, entity);
-+
-+ if (bfqq != NULL)
-+ list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
-+}
-+
-+/**
-+ * bfq_forget_entity - remove an entity from the wfq trees.
-+ * @st: the service tree.
-+ * @entity: the entity being removed.
-+ *
-+ * Update the device status and forget everything about @entity, putting
-+ * the device reference to it, if it is a queue. Entities belonging to
-+ * groups are not refcounted.
-+ */
-+static void bfq_forget_entity(struct bfq_service_tree *st,
-+ struct bfq_entity *entity)
-+{
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+ struct bfq_sched_data *sd;
-+
-+ BUG_ON(!entity->on_st);
-+
-+ entity->on_st = 0;
-+ st->wsum -= entity->weight;
-+ if (bfqq != NULL) {
-+ sd = entity->sched_data;
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "forget_entity: %p %d",
-+ bfqq, atomic_read(&bfqq->ref));
-+ bfq_put_queue(bfqq);
-+ }
-+}
-+
-+/**
-+ * bfq_put_idle_entity - release the idle tree ref of an entity.
-+ * @st: service tree for the entity.
-+ * @entity: the entity being released.
-+ */
-+static void bfq_put_idle_entity(struct bfq_service_tree *st,
-+ struct bfq_entity *entity)
-+{
-+ bfq_idle_extract(st, entity);
-+ bfq_forget_entity(st, entity);
-+}
-+
-+/**
-+ * bfq_forget_idle - update the idle tree if necessary.
-+ * @st: the service tree to act upon.
-+ *
-+ * To preserve the global O(log N) complexity we only remove one entry here;
-+ * as the idle tree will not grow indefinitely this can be done safely.
-+ */
-+static void bfq_forget_idle(struct bfq_service_tree *st)
-+{
-+ struct bfq_entity *first_idle = st->first_idle;
-+ struct bfq_entity *last_idle = st->last_idle;
-+
-+ if (RB_EMPTY_ROOT(&st->active) && last_idle != NULL &&
-+ !bfq_gt(last_idle->finish, st->vtime)) {
-+ /*
-+ * Forget the whole idle tree, increasing the vtime past
-+ * the last finish time of idle entities.
-+ */
-+ st->vtime = last_idle->finish;
-+ }
-+
-+ if (first_idle != NULL && !bfq_gt(first_idle->finish, st->vtime))
-+ bfq_put_idle_entity(st, first_idle);
-+}
-+
-+static struct bfq_service_tree *
-+__bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
-+ struct bfq_entity *entity)
-+{
-+ struct bfq_service_tree *new_st = old_st;
-+
-+ if (entity->ioprio_changed) {
-+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
-+
-+ BUG_ON(old_st->wsum < entity->weight);
-+ old_st->wsum -= entity->weight;
-+
-+ if (entity->new_weight != entity->orig_weight) {
-+ entity->orig_weight = entity->new_weight;
-+ entity->ioprio =
-+ bfq_weight_to_ioprio(entity->orig_weight);
-+ } else if (entity->new_ioprio != entity->ioprio) {
-+ entity->ioprio = entity->new_ioprio;
-+ entity->orig_weight =
-+ bfq_ioprio_to_weight(entity->ioprio);
-+ } else
-+ entity->new_weight = entity->orig_weight =
-+ bfq_ioprio_to_weight(entity->ioprio);
-+
-+ entity->ioprio_class = entity->new_ioprio_class;
-+ entity->ioprio_changed = 0;
-+
-+ /*
-+ * NOTE: here we may be changing the weight too early,
-+ * this will cause unfairness. The correct approach
-+ * would have required additional complexity to defer
-+ * weight changes to the proper time instants (i.e.,
-+ * when entity->finish <= old_st->vtime).
-+ */
-+ new_st = bfq_entity_service_tree(entity);
-+ entity->weight = entity->orig_weight *
-+ (bfqq != NULL ? bfqq->raising_coeff : 1);
-+ new_st->wsum += entity->weight;
-+
-+ if (new_st != old_st)
-+ entity->start = new_st->vtime;
-+ }
-+
-+ return new_st;
-+}
-+
-+/**
-+ * bfq_bfqq_served - update the scheduler status after selection for service.
-+ * @bfqq: the queue being served.
-+ * @served: bytes to transfer.
-+ *
-+ * NOTE: this can be optimized, as the timestamps of upper level entities
-+ * are synchronized every time a new bfqq is selected for service. By now,
-+ * we keep it to better check consistency.
-+ */
-+static void bfq_bfqq_served(struct bfq_queue *bfqq, unsigned long served)
-+{
-+ struct bfq_entity *entity = &bfqq->entity;
-+ struct bfq_service_tree *st;
-+
-+ for_each_entity(entity) {
-+ st = bfq_entity_service_tree(entity);
-+
-+ entity->service += served;
-+ BUG_ON(entity->service > entity->budget);
-+ BUG_ON(st->wsum == 0);
-+
-+ st->vtime += bfq_delta(served, st->wsum);
-+ bfq_forget_idle(st);
-+ }
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %lu secs", served);
-+}
-+
-+/**
-+ * bfq_bfqq_charge_full_budget - set the service to the entity budget.
-+ * @bfqq: the queue that needs a service update.
-+ *
-+ * When it's not possible to be fair in the service domain, because
-+ * a queue is not consuming its budget fast enough (the meaning of
-+ * fast depends on the timeout parameter), we charge it a full
-+ * budget. In this way we should obtain a sort of time-domain
-+ * fairness among all the seeky/slow queues.
-+ */
-+static inline void bfq_bfqq_charge_full_budget(struct bfq_queue *bfqq)
-+{
-+ struct bfq_entity *entity = &bfqq->entity;
-+
-+ bfq_log_bfqq(bfqq->bfqd, bfqq, "charge_full_budget");
-+
-+ bfq_bfqq_served(bfqq, entity->budget - entity->service);
-+}
-+
-+/**
-+ * __bfq_activate_entity - activate an entity.
-+ * @entity: the entity being activated.
-+ *
-+ * Called whenever an entity is activated, i.e., it is not active and one
-+ * of its children receives a new request, or has to be reactivated due to
-+ * budget exhaustion. It uses the current budget of the entity (and the
-+ * service received if @entity is active) of the queue to calculate its
-+ * timestamps.
-+ */
-+static void __bfq_activate_entity(struct bfq_entity *entity)
-+{
-+ struct bfq_sched_data *sd = entity->sched_data;
-+ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
-+
-+ if (entity == sd->active_entity) {
-+ BUG_ON(entity->tree != NULL);
-+ /*
-+ * If we are requeueing the current entity we have
-+ * to take care of not charging to it service it has
-+ * not received.
-+ */
-+ bfq_calc_finish(entity, entity->service);
-+ entity->start = entity->finish;
-+ sd->active_entity = NULL;
-+ } else if (entity->tree == &st->active) {
-+ /*
-+ * Requeueing an entity due to a change of some
-+ * next_active entity below it. We reuse the old
-+ * start time.
-+ */
-+ bfq_active_extract(st, entity);
-+ } else if (entity->tree == &st->idle) {
-+ /*
-+ * Must be on the idle tree, bfq_idle_extract() will
-+ * check for that.
-+ */
-+ bfq_idle_extract(st, entity);
-+ entity->start = bfq_gt(st->vtime, entity->finish) ?
-+ st->vtime : entity->finish;
-+ } else {
-+ /*
-+ * The finish time of the entity may be invalid, and
-+ * it is in the past for sure, otherwise the queue
-+ * would have been on the idle tree.
-+ */
-+ entity->start = st->vtime;
-+ st->wsum += entity->weight;
-+ bfq_get_entity(entity);
-+
-+ BUG_ON(entity->on_st);
-+ entity->on_st = 1;
-+ }
-+
-+ st = __bfq_entity_update_weight_prio(st, entity);
-+ bfq_calc_finish(entity, entity->budget);
-+ bfq_active_insert(st, entity);
-+}
-+
-+/**
-+ * bfq_activate_entity - activate an entity and its ancestors if necessary.
-+ * @entity: the entity to activate.
-+ *
-+ * Activate @entity and all the entities on the path from it to the root.
-+ */
-+static void bfq_activate_entity(struct bfq_entity *entity)
-+{
-+ struct bfq_sched_data *sd;
-+
-+ for_each_entity(entity) {
-+ __bfq_activate_entity(entity);
-+
-+ sd = entity->sched_data;
-+ if (!bfq_update_next_active(sd))
-+ /*
-+ * No need to propagate the activation to the
-+ * upper entities, as they will be updated when
-+ * the active entity is rescheduled.
-+ */
-+ break;
-+ }
-+}
-+
-+/**
-+ * __bfq_deactivate_entity - deactivate an entity from its service tree.
-+ * @entity: the entity to deactivate.
-+ * @requeue: if false, the entity will not be put into the idle tree.
-+ *
-+ * Deactivate an entity, independently from its previous state. If the
-+ * entity was not on a service tree just return, otherwise if it is on
-+ * any scheduler tree, extract it from that tree, and if necessary
-+ * and if the caller did not specify @requeue, put it on the idle tree.
-+ *
-+ * Return %1 if the caller should update the entity hierarchy, i.e.,
-+ * if the entity was under service or if it was the next_active for
-+ * its sched_data; return %0 otherwise.
-+ */
-+static int __bfq_deactivate_entity(struct bfq_entity *entity, int requeue)
-+{
-+ struct bfq_sched_data *sd = entity->sched_data;
-+ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
-+ int was_active = entity == sd->active_entity;
-+ int ret = 0;
-+
-+ if (!entity->on_st)
-+ return 0;
-+
-+ BUG_ON(was_active && entity->tree != NULL);
-+
-+ if (was_active) {
-+ bfq_calc_finish(entity, entity->service);
-+ sd->active_entity = NULL;
-+ } else if (entity->tree == &st->active)
-+ bfq_active_extract(st, entity);
-+ else if (entity->tree == &st->idle)
-+ bfq_idle_extract(st, entity);
-+ else if (entity->tree != NULL)
-+ BUG();
-+
-+ if (was_active || sd->next_active == entity)
-+ ret = bfq_update_next_active(sd);
-+
-+ if (!requeue || !bfq_gt(entity->finish, st->vtime))
-+ bfq_forget_entity(st, entity);
-+ else
-+ bfq_idle_insert(st, entity);
-+
-+ BUG_ON(sd->active_entity == entity);
-+ BUG_ON(sd->next_active == entity);
-+
-+ return ret;
-+}
-+
-+/**
-+ * bfq_deactivate_entity - deactivate an entity.
-+ * @entity: the entity to deactivate.
-+ * @requeue: true if the entity can be put on the idle tree
-+ */
-+static void bfq_deactivate_entity(struct bfq_entity *entity, int requeue)
-+{
-+ struct bfq_sched_data *sd;
-+ struct bfq_entity *parent;
-+
-+ for_each_entity_safe(entity, parent) {
-+ sd = entity->sched_data;
-+
-+ if (!__bfq_deactivate_entity(entity, requeue))
-+ /*
-+ * The parent entity is still backlogged, and
-+ * we don't need to update it as it is still
-+ * under service.
-+ */
-+ break;
-+
-+ if (sd->next_active != NULL)
-+ /*
-+ * The parent entity is still backlogged and
-+ * the budgets on the path towards the root
-+ * need to be updated.
-+ */
-+ goto update;
-+
-+ /*
-+ * If we reach there the parent is no more backlogged and
-+ * we want to propagate the dequeue upwards.
-+ */
-+ requeue = 1;
-+ }
-+
-+ return;
-+
-+update:
-+ entity = parent;
-+ for_each_entity(entity) {
-+ __bfq_activate_entity(entity);
-+
-+ sd = entity->sched_data;
-+ if (!bfq_update_next_active(sd))
-+ break;
-+ }
-+}
-+
-+/**
-+ * bfq_update_vtime - update vtime if necessary.
-+ * @st: the service tree to act upon.
-+ *
-+ * If necessary update the service tree vtime to have at least one
-+ * eligible entity, skipping to its start time. Assumes that the
-+ * active tree of the device is not empty.
-+ *
-+ * NOTE: this hierarchical implementation updates vtimes quite often,
-+ * we may end up with reactivated tasks getting timestamps after a
-+ * vtime skip done because we needed a ->first_active entity on some
-+ * intermediate node.
-+ */
-+static void bfq_update_vtime(struct bfq_service_tree *st)
-+{
-+ struct bfq_entity *entry;
-+ struct rb_node *node = st->active.rb_node;
-+
-+ entry = rb_entry(node, struct bfq_entity, rb_node);
-+ if (bfq_gt(entry->min_start, st->vtime)) {
-+ st->vtime = entry->min_start;
-+ bfq_forget_idle(st);
-+ }
-+}
-+
-+/**
-+ * bfq_first_active - find the eligible entity with the smallest finish time
-+ * @st: the service tree to select from.
-+ *
-+ * This function searches the first schedulable entity, starting from the
-+ * root of the tree and going on the left every time on this side there is
-+ * a subtree with at least one eligible (start >= vtime) entity. The path
-+ * on the right is followed only if a) the left subtree contains no eligible
-+ * entities and b) no eligible entity has been found yet.
-+ */
-+static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st)
-+{
-+ struct bfq_entity *entry, *first = NULL;
-+ struct rb_node *node = st->active.rb_node;
-+
-+ while (node != NULL) {
-+ entry = rb_entry(node, struct bfq_entity, rb_node);
-+left:
-+ if (!bfq_gt(entry->start, st->vtime))
-+ first = entry;
-+
-+ BUG_ON(bfq_gt(entry->min_start, st->vtime));
-+
-+ if (node->rb_left != NULL) {
-+ entry = rb_entry(node->rb_left,
-+ struct bfq_entity, rb_node);
-+ if (!bfq_gt(entry->min_start, st->vtime)) {
-+ node = node->rb_left;
-+ goto left;
-+ }
-+ }
-+ if (first != NULL)
-+ break;
-+ node = node->rb_right;
-+ }
-+
-+ BUG_ON(first == NULL && !RB_EMPTY_ROOT(&st->active));
-+ return first;
-+}
-+
-+/**
-+ * __bfq_lookup_next_entity - return the first eligible entity in @st.
-+ * @st: the service tree.
-+ *
-+ * Update the virtual time in @st and return the first eligible entity
-+ * it contains.
-+ */
-+static struct bfq_entity *__bfq_lookup_next_entity(struct bfq_service_tree *st,
-+ bool force)
-+{
-+ struct bfq_entity *entity, *new_next_active = NULL;
-+
-+ if (RB_EMPTY_ROOT(&st->active))
-+ return NULL;
-+
-+ bfq_update_vtime(st);
-+ entity = bfq_first_active_entity(st);
-+ BUG_ON(bfq_gt(entity->start, st->vtime));
-+
-+ /*
-+ * If the chosen entity does not match with the sched_data's
-+ * next_active and we are forcedly serving the IDLE priority
-+ * class tree, bubble up budget update.
-+ */
-+ if (unlikely(force && entity != entity->sched_data->next_active)) {
-+ new_next_active = entity;
-+ for_each_entity(new_next_active)
-+ bfq_update_budget(new_next_active);
-+ }
-+
-+ return entity;
-+}
-+
-+/**
-+ * bfq_lookup_next_entity - return the first eligible entity in @sd.
-+ * @sd: the sched_data.
-+ * @extract: if true the returned entity will be also extracted from @sd.
-+ *
-+ * NOTE: since we cache the next_active entity at each level of the
-+ * hierarchy, the complexity of the lookup can be decreased with
-+ * absolutely no effort just returning the cached next_active value;
-+ * we prefer to do full lookups to test the consistency of * the data
-+ * structures.
-+ */
-+static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
-+ int extract,
-+ struct bfq_data *bfqd)
-+{
-+ struct bfq_service_tree *st = sd->service_tree;
-+ struct bfq_entity *entity;
-+ int i = 0;
-+
-+ BUG_ON(sd->active_entity != NULL);
-+
-+ if (bfqd != NULL &&
-+ jiffies - bfqd->bfq_class_idle_last_service > BFQ_CL_IDLE_TIMEOUT) {
-+ entity = __bfq_lookup_next_entity(st + BFQ_IOPRIO_CLASSES - 1,
-+ true);
-+ if (entity != NULL) {
-+ i = BFQ_IOPRIO_CLASSES - 1;
-+ bfqd->bfq_class_idle_last_service = jiffies;
-+ sd->next_active = entity;
-+ }
-+ }
-+ for (; i < BFQ_IOPRIO_CLASSES; i++) {
-+ entity = __bfq_lookup_next_entity(st + i, false);
-+ if (entity != NULL) {
-+ if (extract) {
-+ bfq_check_next_active(sd, entity);
-+ bfq_active_extract(st + i, entity);
-+ sd->active_entity = entity;
-+ sd->next_active = NULL;
-+ }
-+ break;
-+ }
-+ }
-+
-+ return entity;
-+}
-+
-+/*
-+ * Get next queue for service.
-+ */
-+static struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
-+{
-+ struct bfq_entity *entity = NULL;
-+ struct bfq_sched_data *sd;
-+ struct bfq_queue *bfqq;
-+
-+ BUG_ON(bfqd->in_service_queue != NULL);
-+
-+ if (bfqd->busy_queues == 0)
-+ return NULL;
-+
-+ sd = &bfqd->root_group->sched_data;
-+ for (; sd != NULL; sd = entity->my_sched_data) {
-+ entity = bfq_lookup_next_entity(sd, 1, bfqd);
-+ BUG_ON(entity == NULL);
-+ entity->service = 0;
-+ }
-+
-+ bfqq = bfq_entity_to_bfqq(entity);
-+ BUG_ON(bfqq == NULL);
-+
-+ return bfqq;
-+}
-+
-+/*
-+ * Forced extraction of the given queue.
-+ */
-+static void bfq_get_next_queue_forced(struct bfq_data *bfqd,
-+ struct bfq_queue *bfqq)
-+{
-+ struct bfq_entity *entity;
-+ struct bfq_sched_data *sd;
-+
-+ BUG_ON(bfqd->in_service_queue != NULL);
-+
-+ entity = &bfqq->entity;
-+ /*
-+ * Bubble up extraction/update from the leaf to the root.
-+ */
-+ for_each_entity(entity) {
-+ sd = entity->sched_data;
-+ bfq_update_budget(entity);
-+ bfq_update_vtime(bfq_entity_service_tree(entity));
-+ bfq_active_extract(bfq_entity_service_tree(entity), entity);
-+ sd->active_entity = entity;
-+ sd->next_active = NULL;
-+ entity->service = 0;
-+ }
-+
-+ return;
-+}
-+
-+static void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
-+{
-+ if (bfqd->in_service_bic != NULL) {
-+ put_io_context(bfqd->in_service_bic->icq.ioc);
-+ bfqd->in_service_bic = NULL;
-+ }
-+
-+ bfqd->in_service_queue = NULL;
-+ del_timer(&bfqd->idle_slice_timer);
-+}
-+
-+static void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
-+ int requeue)
-+{
-+ struct bfq_entity *entity = &bfqq->entity;
-+
-+ if (bfqq == bfqd->in_service_queue)
-+ __bfq_bfqd_reset_in_service(bfqd);
-+
-+ bfq_deactivate_entity(entity, requeue);
-+}
-+
-+static void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
-+{
-+ struct bfq_entity *entity = &bfqq->entity;
-+
-+ bfq_activate_entity(entity);
-+}
-+
-+/*
-+ * Called when the bfqq no longer has requests pending, remove it from
-+ * the service tree.
-+ */
-+static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
-+ int requeue)
-+{
-+ BUG_ON(!bfq_bfqq_busy(bfqq));
-+ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
-+
-+ bfq_log_bfqq(bfqd, bfqq, "del from busy");
-+
-+ bfq_clear_bfqq_busy(bfqq);
-+
-+ BUG_ON(bfqd->busy_queues == 0);
-+ bfqd->busy_queues--;
-+ if (bfqq->raising_coeff > 1)
-+ bfqd->raised_busy_queues--;
-+
-+ bfq_deactivate_bfqq(bfqd, bfqq, requeue);
-+}
-+
-+/*
-+ * Called when an inactive queue receives a new request.
-+ */
-+static void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
-+{
-+ BUG_ON(bfq_bfqq_busy(bfqq));
-+ BUG_ON(bfqq == bfqd->in_service_queue);
-+
-+ bfq_log_bfqq(bfqd, bfqq, "add to busy");
-+
-+ bfq_activate_bfqq(bfqd, bfqq);
-+
-+ bfq_mark_bfqq_busy(bfqq);
-+ bfqd->busy_queues++;
-+ if (bfqq->raising_coeff > 1)
-+ bfqd->raised_busy_queues++;
-+}
-diff --git a/block/bfq.h b/block/bfq.h
-new file mode 100644
-index 0000000..78da7d2
---- /dev/null
-+++ b/block/bfq.h
-@@ -0,0 +1,612 @@
-+/*
-+ * BFQ-v7 for 3.10.0: data structures and common functions prototypes.
-+ *
-+ * Based on ideas and code from CFQ:
-+ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
-+ *
-+ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
-+ * Paolo Valente <paolo.valente@unimore.it>
-+ *
-+ * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
-+ */
-+
-+#ifndef _BFQ_H
-+#define _BFQ_H
-+
-+#include <linux/blktrace_api.h>
-+#include <linux/hrtimer.h>
-+#include <linux/ioprio.h>
-+#include <linux/rbtree.h>
-+
-+#define BFQ_IOPRIO_CLASSES 3
-+#define BFQ_CL_IDLE_TIMEOUT (HZ/5)
-+
-+#define BFQ_MIN_WEIGHT 1
-+#define BFQ_MAX_WEIGHT 1000
-+
-+#define BFQ_DEFAULT_GRP_WEIGHT 10
-+#define BFQ_DEFAULT_GRP_IOPRIO 0
-+#define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE
-+
-+struct bfq_entity;
-+
-+/**
-+ * struct bfq_service_tree - per ioprio_class service tree.
-+ * @active: tree for active entities (i.e., those backlogged).
-+ * @idle: tree for idle entities (i.e., those not backlogged, with V <= F_i).
-+ * @first_idle: idle entity with minimum F_i.
-+ * @last_idle: idle entity with maximum F_i.
-+ * @vtime: scheduler virtual time.
-+ * @wsum: scheduler weight sum; active and idle entities contribute to it.
-+ *
-+ * Each service tree represents a B-WF2Q+ scheduler on its own. Each
-+ * ioprio_class has its own independent scheduler, and so its own
-+ * bfq_service_tree. All the fields are protected by the queue lock
-+ * of the containing bfqd.
-+ */
-+struct bfq_service_tree {
-+ struct rb_root active;
-+ struct rb_root idle;
-+
-+ struct bfq_entity *first_idle;
-+ struct bfq_entity *last_idle;
-+
-+ u64 vtime;
-+ unsigned long wsum;
-+};
-+
-+/**
-+ * struct bfq_sched_data - multi-class scheduler.
-+ * @active_entity: entity under service.
-+ * @next_active: head-of-the-line entity in the scheduler.
-+ * @service_tree: array of service trees, one per ioprio_class.
-+ *
-+ * bfq_sched_data is the basic scheduler queue. It supports three
-+ * ioprio_classes, and can be used either as a toplevel queue or as
-+ * an intermediate queue on a hierarchical setup.
-+ * @next_active points to the active entity of the sched_data service
-+ * trees that will be scheduled next.
-+ *
-+ * The supported ioprio_classes are the same as in CFQ, in descending
-+ * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE.
-+ * Requests from higher priority queues are served before all the
-+ * requests from lower priority queues; among requests of the same
-+ * queue requests are served according to B-WF2Q+.
-+ * All the fields are protected by the queue lock of the containing bfqd.
-+ */
-+struct bfq_sched_data {
-+ struct bfq_entity *active_entity;
-+ struct bfq_entity *next_active;
-+ struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES];
-+};
-+
-+/**
-+ * struct bfq_entity - schedulable entity.
-+ * @rb_node: service_tree member.
-+ * @on_st: flag, true if the entity is on a tree (either the active or
-+ * the idle one of its service_tree).
-+ * @finish: B-WF2Q+ finish timestamp (aka F_i).
-+ * @start: B-WF2Q+ start timestamp (aka S_i).
-+ * @tree: tree the entity is enqueued into; %NULL if not on a tree.
-+ * @min_start: minimum start time of the (active) subtree rooted at
-+ * this entity; used for O(log N) lookups into active trees.
-+ * @service: service received during the last round of service.
-+ * @budget: budget used to calculate F_i; F_i = S_i + @budget / @weight.
-+ * @weight: weight of the queue
-+ * @parent: parent entity, for hierarchical scheduling.
-+ * @my_sched_data: for non-leaf nodes in the cgroup hierarchy, the
-+ * associated scheduler queue, %NULL on leaf nodes.
-+ * @sched_data: the scheduler queue this entity belongs to.
-+ * @ioprio: the ioprio in use.
-+ * @new_weight: when a weight change is requested, the new weight value.
-+ * @orig_weight: original weight, used to implement weight boosting
-+ * @new_ioprio: when an ioprio change is requested, the new ioprio value.
-+ * @ioprio_class: the ioprio_class in use.
-+ * @new_ioprio_class: when an ioprio_class change is requested, the new
-+ * ioprio_class value.
-+ * @ioprio_changed: flag, true when the user requested a weight, ioprio or
-+ * ioprio_class change.
-+ *
-+ * A bfq_entity is used to represent either a bfq_queue (leaf node in the
-+ * cgroup hierarchy) or a bfq_group into the upper level scheduler. Each
-+ * entity belongs to the sched_data of the parent group in the cgroup
-+ * hierarchy. Non-leaf entities have also their own sched_data, stored
-+ * in @my_sched_data.
-+ *
-+ * Each entity stores independently its priority values; this would
-+ * allow different weights on different devices, but this
-+ * functionality is not exported to userspace by now. Priorities and
-+ * weights are updated lazily, first storing the new values into the
-+ * new_* fields, then setting the @ioprio_changed flag. As soon as
-+ * there is a transition in the entity state that allows the priority
-+ * update to take place the effective and the requested priority
-+ * values are synchronized.
-+ *
-+ * Unless cgroups are used, the weight value is calculated from the
-+ * ioprio to export the same interface as CFQ. When dealing with
-+ * ``well-behaved'' queues (i.e., queues that do not spend too much
-+ * time to consume their budget and have true sequential behavior, and
-+ * when there are no external factors breaking anticipation) the
-+ * relative weights at each level of the cgroups hierarchy should be
-+ * guaranteed. All the fields are protected by the queue lock of the
-+ * containing bfqd.
-+ */
-+struct bfq_entity {
-+ struct rb_node rb_node;
-+
-+ int on_st;
-+
-+ u64 finish;
-+ u64 start;
-+
-+ struct rb_root *tree;
-+
-+ u64 min_start;
-+
-+ unsigned long service, budget;
-+ unsigned short weight, new_weight;
-+ unsigned short orig_weight;
-+
-+ struct bfq_entity *parent;
-+
-+ struct bfq_sched_data *my_sched_data;
-+ struct bfq_sched_data *sched_data;
-+
-+ unsigned short ioprio, new_ioprio;
-+ unsigned short ioprio_class, new_ioprio_class;
-+
-+ int ioprio_changed;
-+};
-+
-+struct bfq_group;
-+
-+/**
-+ * struct bfq_queue - leaf schedulable entity.
-+ * @ref: reference counter.
-+ * @bfqd: parent bfq_data.
-+ * @new_bfqq: shared bfq_queue if queue is cooperating with
-+ * one or more other queues.
-+ * @pos_node: request-position tree member (see bfq_data's @rq_pos_tree).
-+ * @pos_root: request-position tree root (see bfq_data's @rq_pos_tree).
-+ * @sort_list: sorted list of pending requests.
-+ * @next_rq: if fifo isn't expired, next request to serve.
-+ * @queued: nr of requests queued in @sort_list.
-+ * @allocated: currently allocated requests.
-+ * @meta_pending: pending metadata requests.
-+ * @fifo: fifo list of requests in sort_list.
-+ * @entity: entity representing this queue in the scheduler.
-+ * @max_budget: maximum budget allowed from the feedback mechanism.
-+ * @budget_timeout: budget expiration (in jiffies).
-+ * @dispatched: number of requests on the dispatch list or inside driver.
-+ * @org_ioprio: saved ioprio during boosted periods.
-+ * @flags: status flags.
-+ * @bfqq_list: node for active/idle bfqq list inside our bfqd.
-+ * @seek_samples: number of seeks sampled
-+ * @seek_total: sum of the distances of the seeks sampled
-+ * @seek_mean: mean seek distance
-+ * @last_request_pos: position of the last request enqueued
-+ * @pid: pid of the process owning the queue, used for logging purposes.
-+ * @last_rais_start_time: last (idle -> weight-raised) transition attempt
-+ * @raising_cur_max_time: current max raising time for this queue
-+ * @last_idle_bklogged: time of the last transition of the @bfq_queue from
-+ * idle to backlogged
-+ * @service_from_backlogged: cumulative service received from the @bfq_queue
-+ * since the last transition from idle to backlogged
-+ *
-+ * A bfq_queue is a leaf request queue; it can be associated to an io_context
-+ * or more (if it is an async one). @cgroup holds a reference to the
-+ * cgroup, to be sure that it does not disappear while a bfqq still
-+ * references it (mostly to avoid races between request issuing and task
-+ * migration followed by cgroup distruction).
-+ * All the fields are protected by the queue lock of the containing bfqd.
-+ */
-+struct bfq_queue {
-+ atomic_t ref;
-+ struct bfq_data *bfqd;
-+
-+ /* fields for cooperating queues handling */
-+ struct bfq_queue *new_bfqq;
-+ struct rb_node pos_node;
-+ struct rb_root *pos_root;
-+
-+ struct rb_root sort_list;
-+ struct request *next_rq;
-+ int queued[2];
-+ int allocated[2];
-+ int meta_pending;
-+ struct list_head fifo;
-+
-+ struct bfq_entity entity;
-+
-+ unsigned long max_budget;
-+ unsigned long budget_timeout;
-+
-+ int dispatched;
-+
-+ unsigned short org_ioprio;
-+
-+ unsigned int flags;
-+
-+ struct list_head bfqq_list;
-+
-+ unsigned int seek_samples;
-+ u64 seek_total;
-+ sector_t seek_mean;
-+ sector_t last_request_pos;
-+
-+ pid_t pid;
-+
-+ /* weight-raising fields */
-+ unsigned int raising_cur_max_time;
-+ unsigned long soft_rt_next_start;
-+ u64 last_rais_start_finish;
-+ unsigned int raising_coeff;
-+ u64 last_idle_bklogged;
-+ unsigned long service_from_backlogged;
-+};
-+
-+/**
-+ * struct bfq_ttime - per process thinktime stats.
-+ * @ttime_total: total process thinktime
-+ * @ttime_samples: number of thinktime samples
-+ * @ttime_mean: average process thinktime
-+ */
-+struct bfq_ttime {
-+ unsigned long last_end_request;
-+
-+ unsigned long ttime_total;
-+ unsigned long ttime_samples;
-+ unsigned long ttime_mean;
-+};
-+
-+/**
-+ * struct bfq_io_cq - per (request_queue, io_context) structure.
-+ * @icq: associated io_cq structure
-+ * @bfqq: array of two process queues, the sync and the async
-+ * @ttime: associated @bfq_ttime struct
-+ */
-+struct bfq_io_cq {
-+ struct io_cq icq; /* must be the first member */
-+ struct bfq_queue *bfqq[2];
-+ struct bfq_ttime ttime;
-+ int ioprio;
-+};
-+
-+/**
-+ * struct bfq_data - per device data structure.
-+ * @queue: request queue for the managed device.
-+ * @root_group: root bfq_group for the device.
-+ * @rq_pos_tree: rbtree sorted by next_request position,
-+ * used when determining if two or more queues
-+ * have interleaving requests (see bfq_close_cooperator).
-+ * @busy_queues: number of bfq_queues containing requests (including the
-+ * queue under service, even if it is idling).
-+ * @raised_busy_queues: number of weight-raised busy bfq_queues.
-+ * @queued: number of queued requests.
-+ * @rq_in_driver: number of requests dispatched and waiting for completion.
-+ * @sync_flight: number of sync requests in the driver.
-+ * @max_rq_in_driver: max number of reqs in driver in the last @hw_tag_samples
-+ * completed requests .
-+ * @hw_tag_samples: nr of samples used to calculate hw_tag.
-+ * @hw_tag: flag set to one if the driver is showing a queueing behavior.
-+ * @budgets_assigned: number of budgets assigned.
-+ * @idle_slice_timer: timer set when idling for the next sequential request
-+ * from the queue under service.
-+ * @unplug_work: delayed work to restart dispatching on the request queue.
-+ * @in_service_queue: bfq_queue under service.
-+ * @in_service_bic: bfq_io_cq (bic) associated with the @in_service_queue.
-+ * @last_position: on-disk position of the last served request.
-+ * @last_budget_start: beginning of the last budget.
-+ * @last_idling_start: beginning of the last idle slice.
-+ * @peak_rate: peak transfer rate observed for a budget.
-+ * @peak_rate_samples: number of samples used to calculate @peak_rate.
-+ * @bfq_max_budget: maximum budget allotted to a bfq_queue before rescheduling.
-+ * @group_list: list of all the bfq_groups active on the device.
-+ * @active_list: list of all the bfq_queues active on the device.
-+ * @idle_list: list of all the bfq_queues idle on the device.
-+ * @bfq_quantum: max number of requests dispatched per dispatch round.
-+ * @bfq_fifo_expire: timeout for async/sync requests; when it expires
-+ * requests are served in fifo order.
-+ * @bfq_back_penalty: weight of backward seeks wrt forward ones.
-+ * @bfq_back_max: maximum allowed backward seek.
-+ * @bfq_slice_idle: maximum idling time.
-+ * @bfq_user_max_budget: user-configured max budget value (0 for auto-tuning).
-+ * @bfq_max_budget_async_rq: maximum budget (in nr of requests) allotted to
-+ * async queues.
-+ * @bfq_timeout: timeout for bfq_queues to consume their budget; used to
-+ * to prevent seeky queues to impose long latencies to well
-+ * behaved ones (this also implies that seeky queues cannot
-+ * receive guarantees in the service domain; after a timeout
-+ * they are charged for the whole allocated budget, to try
-+ * to preserve a behavior reasonably fair among them, but
-+ * without service-domain guarantees).
-+ * @bfq_raising_coeff: Maximum factor by which the weight of a boosted
-+ * queue is multiplied
-+ * @bfq_raising_max_time: maximum duration of a weight-raising period (jiffies)
-+ * @bfq_raising_rt_max_time: maximum duration for soft real-time processes
-+ * @bfq_raising_min_idle_time: minimum idle period after which weight-raising
-+ * may be reactivated for a queue (in jiffies)
-+ * @bfq_raising_min_inter_arr_async: minimum period between request arrivals
-+ * after which weight-raising may be
-+ * reactivated for an already busy queue
-+ * (in jiffies)
-+ * @bfq_raising_max_softrt_rate: max service-rate for a soft real-time queue,
-+ * sectors per seconds
-+ * @RT_prod: cached value of the product R*T used for computing the maximum
-+ * duration of the weight raising automatically
-+ * @oom_bfqq: fallback dummy bfqq for extreme OOM conditions
-+ *
-+ * All the fields are protected by the @queue lock.
-+ */
-+struct bfq_data {
-+ struct request_queue *queue;
-+
-+ struct bfq_group *root_group;
-+
-+ struct rb_root rq_pos_tree;
-+
-+ int busy_queues;
-+ int raised_busy_queues;
-+ int queued;
-+ int rq_in_driver;
-+ int sync_flight;
-+
-+ int max_rq_in_driver;
-+ int hw_tag_samples;
-+ int hw_tag;
-+
-+ int budgets_assigned;
-+
-+ struct timer_list idle_slice_timer;
-+ struct work_struct unplug_work;
-+
-+ struct bfq_queue *in_service_queue;
-+ struct bfq_io_cq *in_service_bic;
-+
-+ sector_t last_position;
-+
-+ ktime_t last_budget_start;
-+ ktime_t last_idling_start;
-+ int peak_rate_samples;
-+ u64 peak_rate;
-+ unsigned long bfq_max_budget;
-+
-+ struct hlist_head group_list;
-+ struct list_head active_list;
-+ struct list_head idle_list;
-+
-+ unsigned int bfq_quantum;
-+ unsigned int bfq_fifo_expire[2];
-+ unsigned int bfq_back_penalty;
-+ unsigned int bfq_back_max;
-+ unsigned int bfq_slice_idle;
-+ u64 bfq_class_idle_last_service;
-+
-+ unsigned int bfq_user_max_budget;
-+ unsigned int bfq_max_budget_async_rq;
-+ unsigned int bfq_timeout[2];
-+
-+ bool low_latency;
-+
-+ /* parameters of the low_latency heuristics */
-+ unsigned int bfq_raising_coeff;
-+ unsigned int bfq_raising_max_time;
-+ unsigned int bfq_raising_rt_max_time;
-+ unsigned int bfq_raising_min_idle_time;
-+ unsigned long bfq_raising_min_inter_arr_async;
-+ unsigned int bfq_raising_max_softrt_rate;
-+ u64 RT_prod;
-+
-+ struct bfq_queue oom_bfqq;
-+};
-+
-+enum bfqq_state_flags {
-+ BFQ_BFQQ_FLAG_busy = 0, /* has requests or is under service */
-+ BFQ_BFQQ_FLAG_wait_request, /* waiting for a request */
-+ BFQ_BFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
-+ BFQ_BFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
-+ BFQ_BFQQ_FLAG_idle_window, /* slice idling enabled */
-+ BFQ_BFQQ_FLAG_prio_changed, /* task priority has changed */
-+ BFQ_BFQQ_FLAG_sync, /* synchronous queue */
-+ BFQ_BFQQ_FLAG_budget_new, /* no completion with this budget */
-+ BFQ_BFQQ_FLAG_coop, /* bfqq is shared */
-+ BFQ_BFQQ_FLAG_split_coop, /* shared bfqq will be splitted */
-+ BFQ_BFQQ_FLAG_softrt_update, /* needs softrt-next-start update */
-+};
-+
-+#define BFQ_BFQQ_FNS(name) \
-+static inline void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
-+{ \
-+ (bfqq)->flags |= (1 << BFQ_BFQQ_FLAG_##name); \
-+} \
-+static inline void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
-+{ \
-+ (bfqq)->flags &= ~(1 << BFQ_BFQQ_FLAG_##name); \
-+} \
-+static inline int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
-+{ \
-+ return ((bfqq)->flags & (1 << BFQ_BFQQ_FLAG_##name)) != 0; \
-+}
-+
-+BFQ_BFQQ_FNS(busy);
-+BFQ_BFQQ_FNS(wait_request);
-+BFQ_BFQQ_FNS(must_alloc);
-+BFQ_BFQQ_FNS(fifo_expire);
-+BFQ_BFQQ_FNS(idle_window);
-+BFQ_BFQQ_FNS(prio_changed);
-+BFQ_BFQQ_FNS(sync);
-+BFQ_BFQQ_FNS(budget_new);
-+BFQ_BFQQ_FNS(coop);
-+BFQ_BFQQ_FNS(split_coop);
-+BFQ_BFQQ_FNS(softrt_update);
-+#undef BFQ_BFQQ_FNS
-+
-+/* Logging facilities. */
-+#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \
-+ blk_add_trace_msg((bfqd)->queue, "bfq%d " fmt, (bfqq)->pid, ##args)
-+
-+#define bfq_log(bfqd, fmt, args...) \
-+ blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args)
-+
-+/* Expiration reasons. */
-+enum bfqq_expiration {
-+ BFQ_BFQQ_TOO_IDLE = 0, /* queue has been idling for too long */
-+ BFQ_BFQQ_BUDGET_TIMEOUT, /* budget took too long to be used */
-+ BFQ_BFQQ_BUDGET_EXHAUSTED, /* budget consumed */
-+ BFQ_BFQQ_NO_MORE_REQUESTS, /* the queue has no more requests */
-+};
-+
-+#ifdef CONFIG_CGROUP_BFQIO
-+/**
-+ * struct bfq_group - per (device, cgroup) data structure.
-+ * @entity: schedulable entity to insert into the parent group sched_data.
-+ * @sched_data: own sched_data, to contain child entities (they may be
-+ * both bfq_queues and bfq_groups).
-+ * @group_node: node to be inserted into the bfqio_cgroup->group_data
-+ * list of the containing cgroup's bfqio_cgroup.
-+ * @bfqd_node: node to be inserted into the @bfqd->group_list list
-+ * of the groups active on the same device; used for cleanup.
-+ * @bfqd: the bfq_data for the device this group acts upon.
-+ * @async_bfqq: array of async queues for all the tasks belonging to
-+ * the group, one queue per ioprio value per ioprio_class,
-+ * except for the idle class that has only one queue.
-+ * @async_idle_bfqq: async queue for the idle class (ioprio is ignored).
-+ * @my_entity: pointer to @entity, %NULL for the toplevel group; used
-+ * to avoid too many special cases during group creation/migration.
-+ *
-+ * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup
-+ * there is a set of bfq_groups, each one collecting the lower-level
-+ * entities belonging to the group that are acting on the same device.
-+ *
-+ * Locking works as follows:
-+ * o @group_node is protected by the bfqio_cgroup lock, and is accessed
-+ * via RCU from its readers.
-+ * o @bfqd is protected by the queue lock, RCU is used to access it
-+ * from the readers.
-+ * o All the other fields are protected by the @bfqd queue lock.
-+ */
-+struct bfq_group {
-+ struct bfq_entity entity;
-+ struct bfq_sched_data sched_data;
-+
-+ struct hlist_node group_node;
-+ struct hlist_node bfqd_node;
-+
-+ void *bfqd;
-+
-+ struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
-+ struct bfq_queue *async_idle_bfqq;
-+
-+ struct bfq_entity *my_entity;
-+};
-+
-+/**
-+ * struct bfqio_cgroup - bfq cgroup data structure.
-+ * @css: subsystem state for bfq in the containing cgroup.
-+ * @weight: cgroup weight.
-+ * @ioprio: cgroup ioprio.
-+ * @ioprio_class: cgroup ioprio_class.
-+ * @lock: spinlock that protects @ioprio, @ioprio_class and @group_data.
-+ * @group_data: list containing the bfq_group belonging to this cgroup.
-+ *
-+ * @group_data is accessed using RCU, with @lock protecting the updates,
-+ * @ioprio and @ioprio_class are protected by @lock.
-+ */
-+struct bfqio_cgroup {
-+ struct cgroup_subsys_state css;
-+
-+ unsigned short weight, ioprio, ioprio_class;
-+
-+ spinlock_t lock;
-+ struct hlist_head group_data;
-+};
-+#else
-+struct bfq_group {
-+ struct bfq_sched_data sched_data;
-+
-+ struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
-+ struct bfq_queue *async_idle_bfqq;
-+};
-+#endif
-+
-+static inline struct bfq_service_tree *
-+bfq_entity_service_tree(struct bfq_entity *entity)
-+{
-+ struct bfq_sched_data *sched_data = entity->sched_data;
-+ unsigned int idx = entity->ioprio_class - 1;
-+
-+ BUG_ON(idx >= BFQ_IOPRIO_CLASSES);
-+ BUG_ON(sched_data == NULL);
-+
-+ return sched_data->service_tree + idx;
-+}
-+
-+static inline struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic,
-+ int is_sync)
-+{
-+ return bic->bfqq[!!is_sync];
-+}
-+
-+static inline void bic_set_bfqq(struct bfq_io_cq *bic,
-+ struct bfq_queue *bfqq, int is_sync)
-+{
-+ bic->bfqq[!!is_sync] = bfqq;
-+}
-+
-+static inline struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
-+{
-+ return bic->icq.q->elevator->elevator_data;
-+}
-+
-+/**
-+ * bfq_get_bfqd_locked - get a lock to a bfqd using a RCU protected pointer.
-+ * @ptr: a pointer to a bfqd.
-+ * @flags: storage for the flags to be saved.
-+ *
-+ * This function allows bfqg->bfqd to be protected by the
-+ * queue lock of the bfqd they reference; the pointer is dereferenced
-+ * under RCU, so the storage for bfqd is assured to be safe as long
-+ * as the RCU read side critical section does not end. After the
-+ * bfqd->queue->queue_lock is taken the pointer is rechecked, to be
-+ * sure that no other writer accessed it. If we raced with a writer,
-+ * the function returns NULL, with the queue unlocked, otherwise it
-+ * returns the dereferenced pointer, with the queue locked.
-+ */
-+static inline struct bfq_data *bfq_get_bfqd_locked(void **ptr,
-+ unsigned long *flags)
-+{
-+ struct bfq_data *bfqd;
-+
-+ rcu_read_lock();
-+ bfqd = rcu_dereference(*(struct bfq_data **)ptr);
-+
-+ if (bfqd != NULL) {
-+ spin_lock_irqsave(bfqd->queue->queue_lock, *flags);
-+ if (*ptr == bfqd)
-+ goto out;
-+ spin_unlock_irqrestore(bfqd->queue->queue_lock, *flags);
-+ }
-+
-+ bfqd = NULL;
-+out:
-+ rcu_read_unlock();
-+ return bfqd;
-+}
-+
-+static inline void bfq_put_bfqd_unlock(struct bfq_data *bfqd,
-+ unsigned long *flags)
-+{
-+ spin_unlock_irqrestore(bfqd->queue->queue_lock, *flags);
-+}
-+
-+static void bfq_changed_ioprio(struct bfq_io_cq *bic);
-+static void bfq_put_queue(struct bfq_queue *bfqq);
-+static void bfq_dispatch_insert(struct request_queue *q, struct request *rq);
-+static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
-+ struct bfq_group *bfqg, int is_sync,
-+ struct bfq_io_cq *bic, gfp_t gfp_mask);
-+static void bfq_end_raising_async_queues(struct bfq_data *bfqd,
-+ struct bfq_group *bfqg);
-+static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
-+static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
-+#endif
---
-1.8.5.2
-